% ofdm_lib.m % David Rowe Mar 2017 #{ Library of functions that implement a PSK OFDM modem. #} 1; qam16; esno_est; ofdm_mode; ofdm_state; ofdm_helper; %------------------------------------------------------------- % ofdm_init %------------------------------------------------------------- #{ Modem frame has a pilot every Ns symbols. There are Ns-1 data symbols between every pilot. e.g. for Ns=4, Nc=6: |-Nc-| Time DDDDDD | PPPPPPPP --- | DDDDDD | | DDDDDD Ns | DDDDDD | | PPPPPPPP --- \|/ DDDDDD | | Freq------------------> In this figure, time flows down, freq across. #} function states = ofdm_init(config) Rs = config.Rs; Tcp = config.Tcp; Ns = config.Ns; Nc = config.Nc; bps = config.bps; Np = config.Np; Ntxtbits = config.Ntxtbits; Nuwbits = config.Nuwbits; ftwindow_width = config.ftwindow_width; timing_mx_thresh = config.timing_mx_thresh; tx_uw = config.tx_uw; bad_uw_errors = config.bad_uw_errors; amp_scale = config.amp_scale; amp_est_mode = config.amp_est_mode; EsNo_est_all_symbols = config.EsNo_est_all_symbols; EsNodB = config.EsNodB; state_machine = config.state_machine; edge_pilots = config.edge_pilots; clip_gain1 = config.clip_gain1; clip_gain2 = config.clip_gain2; foff_limiter = config.foff_limiter; txbpf_width_Hz = config.txbpf_width_Hz; data_mode = config.data_mode; states.Fs = 8000; states.bps = bps; states.Rs = Rs; states.Tcp = Tcp; states.Ns = Ns; % one pilot every Ns symbols, e.g. Ns=4, ...PDDDPDDDP... states.Nc = Nc; % Number of carriers states.M = states.Fs/Rs; % oversampling rate states.Ncp = Tcp*states.Fs; states.Nbitsperframe = (Ns-1)*Nc*bps; % total bits in all data symbols in modem frame states.Nsampersymbol = states.M+states.Ncp; % number of samples in a single symbol states.Nsamperframe = Ns*states.Nsampersymbol; % number of samples in a modem frame states.qam16 = [ 1 + j, 1 + j*3, 3 + j, 3 + j*3; 1 - j, 1 - j*3, 3 - j, 3 - j*3; -1 + j, -1 + j*3, -3 + j, -3 + j*3; -1 - j, -1 - j*3, -3 - j, -3 - j*3]/3; rms = sqrt(states.qam16(:)'*states.qam16(:)/16);% set average Es to 1 states.qam16 /= rms; states.qam16 *= exp(-j*pi/4); % same rotation as QPSK constellation states.Np = Np; % number of modem frames per packet. In some modes we want % the total packet of data to span multiple modem frames, e.g. HF data % and/or when the FEC codeword is larger than the one % modem frame. In other modes (e.g. 700D/2020) Np=1, ie the modem frame % is the same length as the packet/FEC codeword. states.Nbitsperpacket = Np*states.Nbitsperframe; states.Tpacket = Np*Ns*(Tcp+1/Rs); % time for one packet in ms states.Ntxtbits = Ntxtbits; % reserved bits/frame for auxiliary text information. Uncoded/unprotected so may % be of limited use going forward, consider setting to 0 states.Nuwbits = Nuwbits; % some basic sanity checks assert(floor(states.M) == states.M); % UW symbol placement. % Note we need to fill each UW symbols with bits. The LDPC decoder % works on symbols so we can't break up any symbols into UW/FEC % encoded bits. states.uw_ind = states.uw_ind_sym = []; % lets see if all UW syms will fit in frame Nuwsyms = states.Nuwbits/bps; Ndatasymsperframe = (Ns-1)*Nc; states.spread_uw = 0; if states.spread_uw uw_step = 1.8*floor(states.Nbitsperpacket/states.Nuwbits); else uw_step = Nc+1; % default step for UW sym placement end last_sym = floor(Nuwsyms*uw_step/bps+1); if last_sym > states.Np*Ndatasymsperframe uw_step = Nc-1; % try a different step end last_sym = floor(Nuwsyms*uw_step/bps+1); assert(last_sym <= states.Np*Ndatasymsperframe); % we still can't fit them all % Place UW symbols in frame for i=1:Nuwsyms ind_sym = floor(i*uw_step/bps+1); % printf("%d sym: %d\n",i, ind_sym); states.uw_ind_sym = [states.uw_ind_sym ind_sym]; % symbol index for b=bps-1:-1:0 states.uw_ind = [states.uw_ind bps*ind_sym-b]; % bit index end end % how many of the first few frames have UW symbols in them Nsymsperframe = states.Nbitsperframe/states.bps; states.Nuwframes = ceil(states.uw_ind_sym(end)/Nsymsperframe); states.tx_uw = tx_uw; assert(length(states.tx_uw) == states.Nuwbits); tx_uw_syms = []; for b=1:bps:states.Nuwbits if bps == 2 tx_uw_syms = [tx_uw_syms qpsk_mod(states.tx_uw(b:b+1))]; end if bps == 4 tx_uw_syms = [tx_uw_syms qam16_mod(states.qam16, states.tx_uw(b:b+bps-1))]; end end states.tx_uw_syms = tx_uw_syms; % if the UW has this many errors it is "bad", the binomal cdf can be used to % set this with the ofdm_determine_bad_uw_errors() function below % % Nuw=12; plot(0:Nuw, binocdf(0:Nuw,Nuw,0.05)); hold on; plot(binocdf(0:Nuw,Nuw,0.5)); hold off; states.bad_uw_errors = bad_uw_errors; states.ofdm_peak = 16384; % use this to scale tx output to 16 bit short to a peak value of 16384. Adjusted by experiment states.amp_scale = amp_scale; % when using the clipping, this is the manual gain value. Adjusted by experiment, trade off between % increased average power and BER states.clip_gain1 = clip_gain1; states.clip_gain2 = clip_gain2; states.txbpf_width_Hz = txbpf_width_Hz; % this is used to scale inputs to LDPC decoder to make it amplitude indep states.mean_amp = 0; % use a fixed EsNo for LDPC decoder, this seems to work OK and avoid another estimator states.EsNodB = EsNodB; % generate same BPSK pilots each time rand('seed',1); states.pilots = 1 - 2*(rand(1,Nc+2) > 0.5); %printf("number of pilots total: %d\n", length(states.pilots)); % If set, place pilots at carrier 1 and Nc+2 to support low bandwidth phase est over grid % of 12 pilot_samples. Used for 700D and 2020 states.edge_pilots = edge_pilots; if states.edge_pilots == 0 states.pilots(1) = 0; states.pilots(Nc+2) = 0; end % carrier tables for up and down conversion states.fcentre = fcentre = 1500; alower = fcentre - Rs * (Nc/2); % approx frequency of lowest carrier Nlower = round(alower / Rs) - 1; % round this to nearest integer multiple from 0Hz to keep DFT happy %printf(" fcentre: %f alower: %f alower/Rs: %f Nlower: %d\n", fcentre, alower, alower/Rs, Nlower); w = (Nlower:Nlower+Nc+1)*2*pi/(states.Fs/Rs); W = zeros(Nc+2,states.M); for c=1:Nc+2 W(c,:) = exp(j*w(c)*(0:states.M-1)); end states.w = w; states.W = W; % fine timing search +/- window_width/2 from current timing instant, % set this to roughly twice the maximum delay spread states.ftwindow_width = ftwindow_width; % magic number we adjust by experiment (see ofdm_dev.m acquisition tests, blog post on 700D sync) states.timing_mx_thresh = timing_mx_thresh; % Receive buffer: rxbufst + D P DDD P DDD P DDD P D % ^ % nominal start of current modem frame if length(data_mode) Nrxbufhistory = (states.Np+2)*states.Nsamperframe; % extra storage at start of rxbuf to allow us to step back in time else Nrxbufhistory = 0; end states.rxbufst = Nrxbufhistory; % start of rxbuf window used for demod of current rx frame states.Nrxbufhistory = Nrxbufhistory; % D P DDD P DDD P DDD P D states.Nrxbufmin = states.Nsampersymbol + 3*states.Nsamperframe + states.Nsampersymbol + states.Nsampersymbol; states.Nrxbuf = Nrxbufhistory + states.Nrxbufmin; states.rxbuf = zeros(1, states.Nrxbuf); % default settings on a bunch of options and states states.verbose = 0; states.timing_en = 1; states.foff_est_en = 1; states.phase_est_en = 1; states.phase_est_bandwidth = "high"; states.dpsk = 0; states.amp_est_mode = amp_est_mode; states.foff_est_gain = 0.1; states.foff_limiter = foff_limiter; states.foff_est_hz = 0; states.sample_point = states.timing_est = 1; states.nin = states.Nsamperframe; states.timing_valid = 0; states.timing_mx = 0; states.coarse_foff_est_hz = 0; states.foff_metric = 0; % generate OFDM pilot symbol, used for timing and freq offset est rate_fs_pilot_samples = states.pilots * W/states.M; % During tuning it was found that not including the cyc prefix in % rate_fs_pilot_samples produced better fest results %states.rate_fs_pilot_samples = [rate_fs_pilot_samples(states.M-states.Ncp+1:states.M) rate_fs_pilot_samples]; states.rate_fs_pilot_samples = [zeros(1,states.Ncp) rate_fs_pilot_samples]; % pre-compute a constant used to detect valid modem frames Npsam = length(states.rate_fs_pilot_samples); states.timing_norm = Npsam*(states.rate_fs_pilot_samples * states.rate_fs_pilot_samples'); % printf("timing_norm: %f\n", states.timing_norm) % sync state machine states.sync_state = states.last_sync_state = 'search'; states.uw_errors = 0; states.sync_counter = 0; states.frame_count = 0; % number of frames we have been in sync states.sync_start = 0; states.sync_end = 0; states.modem_frame = 0; % keep track of how many frames received in packet states.state_machine = state_machine; % mode specific state machine states.packetsperburst = 0; % for OFDM data modes, how many packets before we reset state machine states.postambledetectoren = strcmp(data_mode,"burst"); states.npre = states.npost = 0; % counters for logging % LDPC code is optionally enabled states.rate = 1.0; states.ldpc_en = 0; % init some output states for logging states.rx_sym = zeros(1+Ns+1+1, Nc+2); % Es/No (SNR) est states states.EsNo_est_all_symbols = EsNo_est_all_symbols; states.clock_offset_est = 0; % pre-amble for data modes states.data_mode = data_mode; if length(states.data_mode) states.tx_preamble = ofdm_generate_preamble(states, 2); states.tx_postamble = ofdm_generate_preamble(states, 3); end % automated tests test_qam16_mod_demod(states.qam16); test_assemble_disassemble(states); endfunction % Gray coded QPSK modulation function function symbol = qpsk_mod(two_bits) two_bits_decimal = sum(two_bits .* [2 1]); switch(two_bits_decimal) case (0) symbol = 1; case (1) symbol = j; case (2) symbol = -j; case (3) symbol = -1; endswitch endfunction % Gray coded QPSK demodulation function function two_bits = qpsk_demod(symbol) bit0 = real(symbol*exp(j*pi/4)) < 0; bit1 = imag(symbol*exp(j*pi/4)) < 0; two_bits = [bit1 bit0]; endfunction function out = freq_shift(in, foff, Fs) foff_rect = exp(j*2*pi*foff/Fs); foff_phase_rect = exp(j*0); for r=1:length(in) foff_phase_rect *= foff_rect; out(r) = in(r)*foff_phase_rect; end endfunction % ----------------------------------------------------------------- % ofdm_mod - modulates a complete packet (one or more modem frames) % ---------------------------------------------------------------- function tx = ofdm_mod(states, tx_bits) ofdm_load_const; assert(length(tx_bits) == Nbitsperpacket); % map to symbols in linear array if bps == 1 tx_sym_lin = 2*tx_bits - 1; end if bps == 2 for s=1:Nbitsperpacket/bps tx_sym_lin(s) = qpsk_mod(tx_bits(2*(s-1)+1:2*s)); end end if bps == 4 for s=1:Nbitsperpacket/bps tx_sym_lin(s) = qam16_mod(states.qam16,tx_bits(4*(s-1)+1:4*s)); end end tx = ofdm_txframe(states, tx_sym_lin); endfunction % ---------------------------------------------- % ofdm_txframe - modulates one packet of symbols % ---------------------------------------------- function tx = ofdm_txframe(states, tx_sym_lin) ofdm_load_const; assert(length(tx_sym_lin) == Nbitsperpacket/bps); % place data symbols in multi-carrier frame with pilots and boundary carriers s = 1; tx_frame = zeros(Np*Ns,Nc+2); for r=1:Np*Ns if mod(r-1,Ns) == 0 % row of pilots tx_frame(r,:) = pilots; else % row of data symbols arowofsymbols = tx_sym_lin(s:s+Nc-1); tx_frame(r,2:Nc+1) = arowofsymbols; s += Nc; if states.dpsk tx_frame(r,2:Nc+1) = tx_frame(r,2:Nc+1) .* tx_frame(r-1,2:Nc+1); end end end % make sure we use all the symbols assert((s-1) == length(tx_sym_lin)); % OFDM upconvert symbol by symbol so we can add CP tx = []; for r=1:Ns*Np asymbol = tx_frame(r,:) * W/M; asymbol_cp = [asymbol(M-Ncp+1:M) asymbol]; tx = [tx asymbol_cp]; end endfunction % ----------------------------------------------------------- % est_timing % ----------------------------------------------------------- #{ Correlates known samples (for example pilots or a preamble) with a window of received samples to determine the most likely timing offset. Optionally combines known samples from two frames (e.g. pilots at start of this and next frame) so we need at least Nsamperframe+M+Ncp samples in rx. Can be used for acquisition (coarse timing), and fine timing. Tends to break down when freq offset approaches +/- symbol rate (e.g +/- 25 Hz for 700D). #} function [t_est timing_valid timing_mx av_level] = est_timing(states, rx, known_samples, step, dual=1) ofdm_load_const; Npsam = length(known_samples); Ncorr = length(rx) - (Nsamperframe+Npsam); corr = zeros(1,Ncorr); %printf("Npsam: %d M+Ncp: %d Ncorr: %d Nsamperframe: %d step: %d\n", Npsam, M+Ncp, Ncorr, Nsamperframe, step); % normalise correlation so we can compare to a threshold across varying input levels av_level = 2*sqrt(states.timing_norm*(rx*rx')/length(rx)) + 1E-12; % correlate with pilots at start and (optionally) end of frame to determine timing offset for i=1:step:Ncorr rx1 = rx(i:i+Npsam-1); corr_st = rx1 * known_samples'; corr_en = 0; if dual % for the streaming voice modes we also correlate with pilot samples at start of next frame rx2 = rx(i+Nsamperframe:i+Nsamperframe+Npsam-1); corr_en = rx2 * known_samples'; end corr(i) = (abs(corr_st) + abs(corr_en))/av_level; end [timing_mx t_est] = max(abs(corr)); % only declare timing valid if there are enough samples in rxbuf to demodulate a frame timing_valid = (abs(rx(t_est)) > 0) && (timing_mx > timing_mx_thresh); if verbose > 1 printf(" av_level: %5.4f mx: %4.3f timing_est: %4d timing_valid: %d\n", av_level, timing_mx, t_est, timing_valid); end if verbose > 2 figure(10); clf; subplot(211); plot(rx) subplot(212); plot(corr) figure(11); clf; plot(real(known_samples)); end endfunction % ----------------------------------------------------------- % est_freq_offset_known_corr % ----------------------------------------------------------- #{ Determines frequency offset at current timing estimate, used for coarse freq offset estimation during streaming mode acquisition. #} function foff_est = est_freq_offset_known_corr(states, rx, known_samples, t_est, dual=1) ofdm_load_const; Npsam = length(known_samples); % extract pilot samples from either end of frame rx1 = rx(t_est:t_est+Npsam-1); rx2 = rx(t_est+Nsamperframe:t_est+Nsamperframe+Npsam-1); % "mix" these down (correlate) with 0 Hz offset pilot samples corr_st = rx1 .* conj(known_samples); if dual corr_en = rx2 .* conj(known_samples); end % sample sum of DFT magnitude of correlated signals at each freq offset and look for peak st = -20; en = 20; foff_est = 0; Cabs_max = 0; for f=st:en w = 2*pi*f/Fs; C_st = corr_st * exp(j*w*(0:Npsam-1))'; C_en = 0; if dual C_en = corr_en * exp(j*w*(0:Npsam-1))'; end Cabs = abs(C_st) + abs(C_en); %printf("f: %4.1f Cabs: %f Cmax: %f\n", f, Cabs, Cabs_max); if Cabs > Cabs_max Cabs_max = Cabs; foff_est = f; end end if states.verbose > 1 printf(" foff_est: %f\n", foff_est); end endfunction % Joint estimation used for data mode burst acquistion function [t_est foff_est timing_mx] = est_timing_and_freq(states, rx, known_samples, tstep, fmin, fmax, fstep) ofdm_load_const; Npsam = length(known_samples); Ncorr = length(rx) - Npsam + 1; corr = zeros(1,Ncorr); % set up matrix of freq shifted known samples for correlation with received signal. Each row % is the known samples shifted by a different freq offset M = []; for afcoarse=fmin:fstep:fmax w = 2*pi*afcoarse/Fs; wvec = exp(j*w*(0:Npsam-1)); M = [M; known_samples .* wvec]; end % At each timing position, correlate with known samples at all possible freq offsets. Result % is a column vector for each timing offset. Each matrix cell is a freq,timing coordinate corr = []; for t=1:tstep:Ncorr rx1 = rx(t:t+Npsam-1); col = M * rx1'; corr = [corr, col]; end % best timing offset is the col with the global max of the corr matrix max_col = max(abs(corr)); [mx mx_col] = max(max_col); t_est = (mx_col-1)*tstep; % obtain normalised real number for timing mx mag1 = known_samples*known_samples'; mag2 = rx(t_est+1:t_est+Npsam)*rx(t_est+1:t_est+Npsam)'; timing_mx = mx*mx'/(mag1*mag2+1E-12); % determine frequency offset for row where max is located [tmp freq_row] = max(corr(:,mx_col)); foff_est = fmin + fstep*(freq_row-1); if verbose > 1 printf(" t_est: %d timing:mx: %f foff_est: %f\n", t_est, timing_mx, foff_est); end if verbose > 2 figure(10); clf; subplot(211); plot(rx) subplot(212); plot(corr) figure(11); clf; plot(real(known_samples)); end endfunction % streaming mode acquistion, used mainly for voice modes function [timing_valid states] = ofdm_sync_search_stream(states) ofdm_load_const; st = rxbufst + M+Ncp + Nsamperframe + 1; en = st + 2*Nsamperframe + M+Ncp - 1; % Attempt coarse timing estimate (i.e. detect start of frame) at a range of frequency offsets timing_mx = 0; fcoarse = 0; timing_valid = 0; ct_est = 1; for afcoarse=-40:40:40 % vector of local oscillator samples to shift input vector % these could be computed on the fly to save memory, or pre-computed in flash at tables as they are static if afcoarse != 0 w = 2*pi*afcoarse/Fs; wvec = exp(-j*w*(0:2*Nsamperframe+M+Ncp-1)); % choose best timing offset metric at this freq offset [act_est atiming_valid atiming_mx] = est_timing(states, wvec .* states.rxbuf(st:en), states.rate_fs_pilot_samples, 2); else % exp(-j*0) is just 1 when afcoarse is 0 [act_est atiming_valid atiming_mx] = est_timing(states, states.rxbuf(st:en), states.rate_fs_pilot_samples, 2); end %printf("afcoarse: %f atiming_mx: %f\n", afcoarse, atiming_mx); if atiming_mx > timing_mx ct_est = act_est; timing_valid = atiming_valid; timing_mx = atiming_mx; fcoarse = afcoarse; end end % refine freq est within -/+ 20 Hz window if fcoarse != 0 w = 2*pi*fcoarse/Fs; wvec = exp(-j*w*(0:2*Nsamperframe+M+Ncp-1)); foff_est = est_freq_offset_known_corr(states, wvec .* states.rxbuf(st:en), states.rate_fs_pilot_samples, ct_est); foff_est += fcoarse; else % exp(-j*0) is just 1 when fcoarse is 0 foff_est = est_freq_offset_known_corr(states, states.rxbuf(st:en), states.rate_fs_pilot_samples, ct_est); end if verbose printf(" ct_est: %4d mx: %3.2f coarse_foff: %5.1f timing_valid: %d", ct_est, timing_mx, foff_est, timing_valid); end if timing_valid states.nin = ct_est - 1; else states.nin = Nsamperframe; end states.timing_valid = timing_valid; states.timing_mx = timing_mx; states.coarse_foff_est_hz = foff_est; states.sample_point = states.timing_est = 1; endfunction % two stage acquisition detector for burst mode function results = burst_acquisition_detector(states, rx, n, known_sequence) ofdm_load_const; % initial search over coarse grid tstep = 4; fstep = 5; [ct_est foff_est timing_mx] = est_timing_and_freq(states, rx(n:n+2*Nsamperframe-1), known_sequence, tstep, fmin = -50, fmax = 50, fstep); % refine estimate over finer grid fmin = foff_est - ceil(fstep/2); fmax = foff_est + ceil(fstep/2); fine_st = max(1, n + ct_est - tstep/2); fine_en = fine_st + Nsamperframe + tstep - 1; [ct_est foff_est timing_mx] = est_timing_and_freq(states, rx(fine_st:fine_en), known_sequence, 1, fmin, fmax, 1); % refer ct_est to nominal start of frame rx_buf(n) ct_est += fine_st - n; results.ct_est = ct_est; results.foff_est = foff_est; results.timing_mx = timing_mx; end % Burst mode acquisition ------------------------------------------ function [timing_valid states] = ofdm_sync_search_burst(states) ofdm_load_const; pre_post = ""; st = rxbufst + M+Ncp + Nsamperframe + 1; en = st + 2*Nsamperframe - 1; pre = burst_acquisition_detector(states, states.rxbuf, st, states.tx_preamble); if states.postambledetectoren post = burst_acquisition_detector(states, states.rxbuf, st, states.tx_postamble); end if isfield(states,"postambletest") pre.timing_mx = 0; end % force ignore preamble to test postamble if (states.postambledetectoren == 0) || (pre.timing_mx > post.timing_mx) timing_mx = pre.timing_mx; ct_est = pre.ct_est; foff_est = pre.foff_est; pre_post = "pre"; else timing_mx = post.timing_mx; ct_est = post.ct_est; foff_est = post.foff_est; pre_post = "post"; end timing_valid = timing_mx > timing_mx_thresh; if timing_valid % potential candidate found .... % calculate number of samples we need on next buffer to get into sync if strcmp(pre_post, "post") states.nin = 0; % printf("\n rxbufst: %d ", states.rxbufst); states.rxbufst -= states.Np*states.Nsamperframe; % backup to first modem frame in packet states.rxbufst += ct_est - 1; states.npost++; % printf("%d\n", states.rxbufst); else % ct_est is start of preamble, so advance past that to start of first modem frame states.nin = Nsamperframe + ct_est - 1; states.npre++; end else states.nin = Nsamperframe; end states.ct_est = ct_est; states.timing_valid = timing_valid; states.timing_mx = timing_mx; states.sample_point = states.timing_est = 1; states.foff_est_hz = foff_est; if verbose printf(" ct_est: %4d nin: %4d mx: %3.2f foff_est: %5.1f timing_valid: %d %4s", ct_est, states.nin, timing_mx, foff_est, timing_valid, pre_post); end endfunction % ---------------------------------------------------------------------------------- % ofdm_sync_search - attempts to find coarse sync parameters for modem initial sync % ---------------------------------------------------------------------------------- function [timing_valid states] = ofdm_sync_search(states, rxbuf_in) ofdm_load_const; % update rxbuf so it is primed for when we have to call ofdm_demod() states.rxbuf(1:Nrxbuf-states.nin) = states.rxbuf(states.nin+1:Nrxbuf); states.rxbuf(Nrxbuf-states.nin+1:Nrxbuf) = rxbuf_in; if strcmp(states.data_mode, "burst") [timing_valid states] = ofdm_sync_search_burst(states); else [timing_valid states] = ofdm_sync_search_stream(states); end endfunction % ------------------------------------------ % ofdm_demod - Demodulates one frame of bits % ------------------------------------------ #{ For phase estimation we need to maintain buffer of 3 frames plus one pilot, so we have 4 pilots total. '^' is the start of current frame that we are demodulating. P DDD P DDD P DDD P ^ Then add one symbol either side to account for movement in sampling instant due to sample clock differences: D P DDD P DDD P DDD P D ^ Returns: rx_bits - (hard decoded/raw/uncoded) demodulated data bits from packet aphase_est - phase est for each data symbol rx_np - output data symbols after phase correction rx_amp - amplitude estimates for each symbol #} function [states rx_bits achannel_est_rect_log rx_np rx_amp] = ofdm_demod(states, rxbuf_in) ofdm_load_const; % insert latest input samples into rxbuf rxbuf(1:Nrxbuf-states.nin) = rxbuf(states.nin+1:Nrxbuf); rxbuf(Nrxbuf-states.nin+1:Nrxbuf) = rxbuf_in; % get latest freq offset estimate woff_est = 2*pi*foff_est_hz/Fs; % update timing estimate -------------------------------------------------- delta_t = coarse_foff_est_hz = timing_valid = timing_mx = 0; if timing_en % update timing at start of every frame % search for timing in a window centered on timing_est, the window will typically be around 2Ncp wide as we could % get a shift of +Ncp or -Ncp if we swing from one delay extreme to another st = rxbufst + M+Ncp + Nsamperframe + 1 - floor(ftwindow_width/2) + (timing_est-1); en = st + Nsamperframe-1 + M+Ncp + ftwindow_width-1; [ft_est timing_valid timing_mx] = est_timing(states, rxbuf(st:en) .* exp(-j*woff_est*(st:en)), rate_fs_pilot_samples, 1); % printf(" timing_est: %d ft_est: %d timing_valid: %d timing_mx: %d\n", timing_est, ft_est, timing_valid, timing_mx); % if we are in a deep fade timing_valid will not be asserted as ft_est will be garbage, so we don't % adjust timing est, just freewheel for now if timing_valid % adjust timing_est based on ft_est timing_est = timing_est + ft_est - ceil(ftwindow_width/2); % Track the ideal sampling point, which is Ncp for a multipath signal whose delay varies between 0 and Ncp. The % timing est will be bouncing back and forth due to multipath so we may need to use the upper or lower limit of % the timing est to track the ideal sample_point. A good way to explore this algorithm is to disable the feedback % loop for nin adjustment below, and look at the plots from ofdm_rx with +ve and -ve sample clock offsets % (sox can be used to resample). The "4" constants are small guard bands so we don't stumble outside of the CP % due to noise. delta_t = ft_est - ceil(ftwindow_width/2); % just used for plotting sample_point = max(timing_est+4, sample_point); % we are at max timing est, so sample point just above sample_point = min(timing_est+Ncp-4, sample_point); % we are at min timing_est, so sample point Ncp above end if verbose > 1 printf(" ft_est: %2d mx: %3.2f coarse_foff: %4.1f foff: %4.1f\n", ft_est, timing_mx, coarse_foff_est_hz, foff_est_hz); end end % down convert at current timing instant---------------------------------- rx_sym = zeros(1+Ns+1+1, Nc+2); % previous pilot st = rxbufst + M+Ncp + Nsamperframe + (-Ns)*(M+Ncp) + 1 + sample_point; en = st + M - 1; for c=1:Nc+2 acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:)); rx_sym(1,c) = sum(acarrier); end % pilot - this frame - pilot for rr=1:Ns+1 st = rxbufst + M+Ncp + Nsamperframe + (rr-1)*(M+Ncp) + 1 + sample_point; en = st + M - 1; for c=1:Nc+2 acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:)); rx_sym(rr+1,c) = sum(acarrier); end end % next pilot st = rxbufst + M+Ncp + Nsamperframe + (2*Ns)*(M+Ncp) + 1 + sample_point; en = st + M - 1; for c=1:Nc+2 acarrier = rxbuf(st:en) .* exp(-j*woff_est*(st:en)) .* conj(W(c,:)); rx_sym(Ns+3,c) = sum(acarrier); end % est freq err based on all carriers ------------------------------------ if foff_est_en freq_err_rect = sum(rx_sym(2,:))' * sum(rx_sym(2+Ns,:)); % prevent instability in atan(im/re) when real part near 0 freq_err_rect += 1E-6; %printf("freq_err_rect: %f %f angle: %f\n", real(freq_err_rect), imag(freq_err_rect), angle(freq_err_rect)); freq_err_hz = angle(freq_err_rect)*Rs/(2*pi*Ns); if states.foff_limiter freq_err_hz = max(freq_err_hz,-1); freq_err_hz = min(freq_err_hz, 1); end foff_est_hz = foff_est_hz + foff_est_gain*freq_err_hz; end % OK - now channel for each carrier and correct phase ---------------------------------- achannel_est_rect = zeros(1,Nc+2); aamp_est_pilot = zeros(1,Nc+2); for c=2:Nc+1 % estimate channel for this carrier using an average of 12 pilots % in a rect 2D window centred on this carrier % PPP <-- frame-1 % --- % PPP <-- you are here % DDD % DDD % PPP <-- frame+1 % --- % PPP <-- frame+2 if isfield(states, "phase_est_bandwidth") phase_est_bandwidth = states.phase_est_bandwidth; else phase_est_bandwidth = "low"; end if strcmp(phase_est_bandwidth, "high") % Only use pilots at start and end of this frame to track quickly changes in phase % present. Useful for initial sync where freq offset est may be a bit off, and % for high Doppler channels. As less pilots are averaged, low SNR performance % will be poorer. achannel_est_rect(c) = rx_sym(2,c)*pilots(c)'; % frame achannel_est_rect(c) += rx_sym(2+Ns,c)*pilots(c)'; % frame+1 aamp_est_pilot(c) = abs(rx_sym(2,c)) + abs(rx_sym(2+Ns,c)); elseif strcmp(phase_est_bandwidth, "low") % Average over a bunch of pilots in adjacent carriers, and past and future frames, good % low SNR performance, but will fall over with high Doppler or freq offset. cr = c-1:c+1; achannel_est_rect(c) = rx_sym(2,cr)*pilots(cr)'; % frame achannel_est_rect(c) += rx_sym(2+Ns,cr)*pilots(cr)'; % frame+1 aamp_est_pilot(c) = sum(abs(rx_sym(2,cr))); aamp_est_pilot(c) += sum(abs(rx_sym(2+Ns,cr))); % use next step of pilots in past and future achannel_est_rect(c) += rx_sym(1,cr)*pilots(cr)'; % frame-1 achannel_est_rect(c) += rx_sym(2+Ns+1,cr)*pilots(cr)'; % frame+2 aamp_est_pilot(c) += sum(abs(rx_sym(1,cr))); aamp_est_pilot(c) += sum(abs(rx_sym(2+Ns+1,cr))); end end % pilots are estimated over 12 pilot symbols, so find average if strcmp(phase_est_bandwidth, "high") achannel_est_rect /= 2; aamp_est_pilot /= 2; elseif strcmp(phase_est_bandwidth, "low") achannel_est_rect /= 12; aamp_est_pilot /= 12; end aphase_est_pilot = angle(achannel_est_rect); if states.amp_est_mode == 0 % legacy 700D/2020 ampl estimator for compatibility with current C code aamp_est_pilot = abs(achannel_est_rect); end achannel_est_rect = aamp_est_pilot.*exp(j*aphase_est_pilot); % correct phase offset using phase estimate, and demodulate % bits, separate loop as it runs across cols (carriers) to get % frame bit ordering correct rx_bits = []; rx_np = []; rx_amp = []; achannel_est_rect_log = []; for rr=1:Ns-1 for c=2:Nc+1 if phase_est_en if states.dpsk rx_corr = rx_sym(rr+2,c) * rx_sym(rr+1,c)'; else rx_corr = rx_sym(rr+2,c) * exp(-j*aphase_est_pilot(c)); end else rx_corr = rx_sym(rr+2,c); end rx_np = [rx_np rx_corr]; rx_amp = [rx_amp aamp_est_pilot(c)]; % hard decision demod if bps == 1 abit = real(rx_corr) > 0; end if bps == 2 abit = qpsk_demod(rx_corr); end if bps == 4 abit = qam16_demod(states.qam16, rx_corr, max(1E-12,aamp_est_pilot(c))); end rx_bits = [rx_bits abit]; end % c=2:Nc+1 achannel_est_rect_log = [achannel_est_rect_log; achannel_est_rect(2:Nc+1)]; end % Adjust nin to take care of sample clock offset. When debugong or exploring how timing loop works % it's a good idea to comment out this code to "open the loop". nin = Nsamperframe; if timing_en && timing_valid states.clock_offset_est = 0.9*states.clock_offset_est + 0.1*abs(states.timing_est - timing_est)/Nsamperframe; thresh = (M+Ncp)/8; tshift = (M+Ncp)/4; if timing_est > thresh nin = Nsamperframe+tshift; timing_est -= tshift; sample_point -= tshift; end if timing_est < -thresh nin = Nsamperframe-tshift; timing_est += tshift; sample_point += tshift; end end % use internal rxbuf samples if they are available rxbufst_next = rxbufst + nin; %printf("\nrxbufst: %d rxbufst_next: %d nin: %d Nrxbufmin: %d rqd: %d Nrxbuf: %d\n", % rxbufst, rxbufst_next, nin, Nrxbufmin, rxbufst_next + Nrxbufmin, Nrxbuf); if rxbufst_next + Nrxbufmin <= Nrxbuf % printf("Can maybe use rxbufst!\n"); rxbufst = rxbufst_next; nin = 0; end % maintain mean amp estimate for LDPC decoder states.mean_amp = 0.9*states.mean_amp + 0.1*mean(rx_amp); states.rx_sym = rx_sym; states.rxbuf = rxbuf; states.nin = nin; states.rxbufst = rxbufst; states.timing_valid = timing_valid; states.timing_mx = timing_mx; states.timing_est = timing_est; states.sample_point = sample_point; states.delta_t = delta_t; states.foff_est_hz = foff_est_hz; states.coarse_foff_est_hz = coarse_foff_est_hz; % just used for tofdm endfunction function SNR3kdB = snr_from_esno(states, EsNodB) ofdm_load_const; % We integrate over M samples to get the received symbols. Additional signal power % is used for the cyclic prefix samples. cyclic_power = 10*log10((Ncp+M)/M); % Es is the energy for each symbol. To get signal power lets % multiply by symbols/second, and calculate noise power in 3000 Hz. SNR3kdB = EsNodB + 10*log10(Nc*Rs/3000) + cyclic_power; endfunction % ---------------------------------------------------------------------------------- % assemble_modem_packet - assemble modem packet from UW, payload, and txt bits % ---------------------------------------------------------------------------------- function modem_frame = assemble_modem_packet(states, payload_bits, txt_bits) ofdm_load_const; # Due to the operation of the FEC encoder or interleaver, Tx data # usually comes in "packet size" chunks, so assembly operates on an # entire packet (multiple modem frames if Np>1) p = 1; u = 1; modem_frame = zeros(1,Nbitsperpacket); for b=1:Nbitsperpacket-Ntxtbits; if (u <= Nuwbits) && (b == uw_ind(u)) modem_frame(b) = tx_uw(u++); else modem_frame(b) = payload_bits(p++); end end t = 1; for b=Nbitsperpacket-Ntxtbits+1:Nbitsperpacket modem_frame(b) = txt_bits(t++); end assert(u == (Nuwbits+1)); assert(p = (length(payload_bits)+1)); endfunction % ---------------------------------------------------------------------------------- % assemble_modem_packet_symbols - assemble modem packet from UW, payload, and txt bits % ---------------------------------------------------------------------------------- function modem_frame = assemble_modem_packet_symbols(states, payload_syms, txt_syms) ofdm_load_const; Nsymsperpacket = Nbitsperpacket/bps; Nuwsyms = Nuwbits/bps; Ntxtsyms = Ntxtbits/bps; modem_frame = zeros(1,Nsymsperpacket); p = 1; u = 1; for s=1:Nsymsperpacket-Ntxtsyms; if (u <= Nuwsyms) && (s == uw_ind_sym(u)) modem_frame(s) = states.tx_uw_syms(u++); else modem_frame(s) = payload_syms(p++); end end t = 1; for s=Nsymsperpacket-Ntxtsyms+1:Nsymsperpacket modem_frame(s) = txt_syms(t++); end assert(u == (Nuwsyms+1)); assert(p = (length(payload_syms)+1)); endfunction % ------------------------------------------------------------------------------------------------ % extract_uw - extract just the UW from the first few frames of a packet, to check UW % during acquisition % ------------------------------------------------------------------------------------------------- function rx_uw = extract_uw(states, rx_syms, rx_amps) ofdm_load_const; Nsymsperframe = Nbitsperframe/bps; assert(length(rx_syms) == Nuwframes*Nsymsperframe); Nuwsyms = Nuwbits/bps; rx_uw_syms = zeros(1,Nuwsyms); rx_uw_amps = zeros(1,Nuwsyms); u = 1; for s=1:Nuwframes*Nsymsperframe if (u <= Nuwsyms) && (s == uw_ind_sym(u)) rx_uw_syms(u) = rx_syms(s); rx_uw_amps(u) = rx_amps(s); u++; end end assert(u == (Nuwsyms+1)); % now demodulate UW bits rx_uw = zeros(1,Nuwbits); for s=1:Nuwsyms if bps == 2 rx_uw(bps*(s-1)+1:bps*s) = qpsk_demod(rx_uw_syms(s)); elseif bps == 4 rx_uw(bps*(s-1)+1:bps*s) = qam16_demod(states.qam16,rx_uw_syms(s), max(1E-12,rx_amps(s))); end end endfunction % ------------------------------------------------------------------------------------------------ % disassemble_modem_packet - extract UW, txt bits, and payload symbols from a packet of symbols % ------------------------------------------------------------------------------------------------- function [rx_uw payload_syms payload_amps txt_bits] = disassemble_modem_packet(states, modem_frame_syms, modem_frame_amps) ofdm_load_const; Nsymsperpacket = Nbitsperpacket/bps; Nuwsyms = Nuwbits/bps; Ntxtsyms = Ntxtbits/bps; payload_syms = zeros(1,Nsymsperpacket-Nuwsyms-Ntxtsyms); payload_amps = zeros(1,Nsymsperpacket-Nuwsyms-Ntxtsyms); rx_uw_syms = zeros(1,Nuwsyms); rx_uw_amps = zeros(1,Nuwsyms); txt_syms = zeros(1,Ntxtsyms); p = 1; u = 1; for s=1:Nsymsperpacket-Ntxtsyms; if (u <= Nuwsyms) && (s == uw_ind_sym(u)) rx_uw_syms(u) = modem_frame_syms(s); rx_uw_amps(u) = modem_frame_amps(s); u++; else payload_syms(p) = modem_frame_syms(s); payload_amps(p++) = modem_frame_amps(s); end end t = 1; for s=Nsymsperpacket-Ntxtsyms+1:Nsymsperpacket txt_syms(t++) = modem_frame_syms(s); end assert(u == (Nuwsyms+1)); assert(p = (Nsymsperpacket+1)); % now demodulate UW and txt bits rx_uw = zeros(1,Nuwbits); txt_bits = zeros(1,Ntxtbits); for s=1:Nuwsyms if bps == 2 rx_uw(bps*(s-1)+1:bps*s) = qpsk_demod(rx_uw_syms(s)); elseif bps == 4 rx_uw(bps*(s-1)+1:bps*s) = qam16_demod(states.qam16,rx_uw_syms(s),rx_uw_amps(s)); end end for s=1:Ntxtsyms txt_bits(2*s-1:2*s) = qpsk_demod(txt_syms(s)); end endfunction %----------------------------------------------------------------------- % ofdm_rand - a psuedo-random number generator that we can implement % in C with identical results to Octave. Returns an unsigned % int between 0 and 32767 %----------------------------------------------------------------------- function r = ofdm_rand(n, seed=1) r = zeros(1,n); for i=1:n seed = mod(1103515245 * seed + 12345, 32768); r(i) = seed; end endfunction % build a single modem frame preamble vector for reliable single frame acquisition % on data modes function tx_preamble = ofdm_generate_preamble(states, seed=2) tmp_states = states; % tweak local copy of states so we can generate a 1 modem-frame packet tmp_states.Np = 1; tmp_states.Nbitsperpacket = tmp_states.Nbitsperframe; preamble_bits = ofdm_rand(tmp_states.Nbitsperframe, seed) > 16384; tx_preamble = ofdm_mod(tmp_states, preamble_bits); endfunction % ------------------------------------------------------------------------------ % Handle FEC encoding/decoding % ------------------------------------------------------------------------------ function [frame_bits bits_per_frame] = fec_encode(states, code_param, mode, payload_bits) ofdm_load_const; if code_param.data_bits_per_frame != code_param.ldpc_data_bits_per_frame % optionally lower the code rate by "one stuffing" - setting Nunused data bits to 1 Nunused = code_param.ldpc_data_bits_per_frame - code_param.data_bits_per_frame; frame_bits = LdpcEncode([payload_bits ones(1,Nunused)], code_param.H_rows, code_param.P_matrix); % remove unused data bits from codeword, as they are known to the receiver and don't need to be transmitted frame_bits = [ frame_bits(1:code_param.data_bits_per_frame) frame_bits(code_param.ldpc_data_bits_per_frame+1:end) ]; else frame_bits = LdpcEncode(payload_bits, code_param.H_rows, code_param.P_matrix); end bits_per_frame = length(frame_bits); endfunction function [rx_bits paritychecks] = fec_decode(states, code_param, ... payload_syms_de, payload_amps_de, ... mean_amp, EsNo) ofdm_load_const; % note ldpc_dec() handles optional lower code rate zero-stuffing [rx_codeword paritychecks] = ldpc_dec(code_param, mx_iter=100, demod=0, dec=0, ... payload_syms_de/mean_amp, EsNo, payload_amps_de/mean_amp); rx_bits = rx_codeword(1:code_param.data_bits_per_frame); endfunction function [tx nclipped] = ofdm_clip(states, tx, threshold_level, plot_en=0) ofdm_load_const; tx_ = tx; ind = find(abs(tx) > threshold_level); nclipped = length(ind); tx(ind) = threshold_level*exp(j*angle(tx(ind))); if plot_en figure(2); clf; plot(abs(tx_(1:5*M))); hold on; plot(abs(tx(1:5*M))); hold off; endif end % two stage Hilbert clipper to improve PAPR function tx = ofdm_hilbert_clipper(states, tx, tx_clip_en) tx *= states.amp_scale; % optional compressor to improve PAPR nclipped = 0; if tx_clip_en if states.verbose printf("%f %f\n", states.clip_gain1, states.clip_gain2); end [tx nclipped] = ofdm_clip(states, tx*states.clip_gain1, states.ofdm_peak); cutoff_norm = states.txbpf_width_Hz/states.Fs; w_centre = mean(states.w); centre_norm = w_centre/(2*pi); tx = ofdm_complex_bandpass_filter(cutoff_norm, centre_norm,100,tx); % filter messes up peak levels use this to get us back to approx 16384 tx *= states.clip_gain2; end % Hilbert Clipper 2 - remove any really low probability outliers after clipping/filtering % even on vanilla Tx [tx tmp] = ofdm_clip(states, tx, states.ofdm_peak); % note this is PAPR of complex signal, PAPR of real signal will be 3dB-ish larger peak = max(abs(tx)); RMS = sqrt(mean(abs(tx).^2)); cpapr = 10*log10((peak.^2)/(RMS.^2)); if states.verbose printf("Peak: %4.2f RMS: %5.2f CPAPR: %4.2f clipped: %5.2f%%\n", peak, RMS, cpapr, nclipped*100/length(tx)); end endfunction % Complex bandpass filter built from low pass prototype as per src/filter.c, % cutoff_freq and center_freq are normalised such that cutoff_freq = 0.5 is Fs/2 function out = ofdm_complex_bandpass_filter(cutoff_freq,center_freq,n_coeffs,in) lowpass_coeff = fir1(n_coeffs-1, cutoff_freq); k = (0:n_coeffs-1); bandpass_coeff = lowpass_coeff .* exp(j*2*pi*center_freq*k); out = filter(bandpass_coeff,1,in); endfunction % Complex bandpass filter for Rx - just used on the very low SNR modes to help % with acquisition function [rx delay_samples] = ofdm_rx_filter(states, mode, rx) delay_samples = 0; if strcmp(mode,"datac4") || strcmp(mode,"datac13") w_centre = mean(states.w); centre_norm = w_centre/(2*pi); n_coeffs = 100; cutoff_Hz = 400; cutoff_norm = cutoff_Hz/states.Fs; rx = ofdm_complex_bandpass_filter(cutoff_norm,centre_norm,n_coeffs,rx); delay_samples = n_coeffs/2; end endfunction % returns an unpacked CRC16 (array of 16 bits) calculated from an array of unpacked bits function unpacked_crc16 = crc16_unpacked(unpacked_bits) % pack into bytes mod(length(unpacked_bits),8); assert(mod(length(unpacked_bits),8) == 0); nbytes = length(unpacked_bits)/8; mask = 2 .^ (7:-1:0); for i=1:nbytes st = (i-1)*8 + 1; en = st+7; bytes(i) = sum(mask .* unpacked_bits(st:en)); end crc16_hex = crc16(bytes); crc16_dec = [hex2dec(crc16_hex(1:2)) hex2dec(crc16_hex(3:4)) ]; unpacked_crc16 = []; for b=1:length(crc16_dec) unpacked_crc16 = [unpacked_crc16 bitand(crc16_dec(b), mask) > 0]; end endfunction