% fsk_lib_demo.m % Uncoded FSK modem demo fsk_lib; % set up waveform function [states M bits_per_frame] = modem_init(Rs,Fs,df) M = 4; states = fsk_init(Fs,Rs,M,P=8,nsym=100); bits_per_frame = 512; states.tx_real = 0; % complex signal states.tx_tone_separation = 250; states.ftx = -2.5*states.tx_tone_separation + states.tx_tone_separation*(1:M); states.fest_fmin = -Fs/2; states.fest_fmax = +Fs/2; states.fest_min_spacing = Rs/2; states.df = df; states.ber_valid_thresh = 0.1; states.ber_invalid_thresh = 0.2; end % Run a complete modem (freq and timing estimators running) at a % single Eb/No point. At low Eb/No the estimators occasionally fall % over so we get complete junk, we consider that case a packet error % and exclude it from the BER estimation. function [states ber per] = modem_run_test(EbNodB = 10, num_frames=10, Fs=8000, Rs=100, df=0, plots=0) randn('state',1); rand('state',1); [states M bits_per_frame] = modem_init(Rs, Fs, df); N = states.N; if plots; states.verbose = 0x4; end EbNo = 10^(EbNodB/10); variance = states.Fs/(states.Rs*EbNo*states.bitspersymbol); nbits = bits_per_frame*num_frames; test_frame = round(rand(1,bits_per_frame)); tx_bits = []; for f=1:num_frames tx_bits = [tx_bits test_frame]; end tx = fsk_mod(states, tx_bits); noise = sqrt(variance/2)*randn(length(tx),1) + j*sqrt(variance/2)*randn(length(tx),1); rx = tx + noise; run_frames = floor(length(rx)/N)-1; st = 1; f_log = []; f_log2 = []; rx_bits = []; rx_bits2 = []; for f=1:run_frames % extract nin samples from input stream nin = states.nin; en = st + states.nin - 1; % due to nin variations it's possible to overrun buffer if en < length(rx) sf = rx(st:en); states = est_freq(states, sf, states.M); states.f = states.f2; [arx_bits states] = fsk_demod(states, sf); rx_bits = [rx_bits arx_bits]; f_log = [f_log; states.f]; st += nin; end end num_frames=floor(length(rx_bits)/bits_per_frame); log_nerrs = []; num_frames_rx = 0; for f=1:num_frames-1 st = (f-1)*bits_per_frame + 1; en = (f+1)*bits_per_frame; states = ber_counter(states, test_frame, rx_bits(st:en)); log_nerrs = [log_nerrs states.nerr]; if states.ber_state; num_frames_rx++; end end if states.Terrs printf("Fs: %d Rs: %d df % 3.2f EbNo: %4.2f ftx: %3d frx: %3d nbits: %4d nerrs: %3d ber: %4.3f\n", Fs, Rs, df, EbNodB, num_frames, num_frames_rx, states.Tbits, states.Terrs, states.Terrs/states.Tbits); ber = states.Terrs/states.Tbits; else ber = 0.5; end if plots figure(1); clf; ideal=ones(length(f_log),1)*states.ftx; plot((1:length(f_log)),ideal(:,1),'bk;ideal;') hold on; plot((1:length(f_log)),ideal(:,2:states.M),'bk'); hold off; hold on; plot(f_log(:,1), 'linewidth', 2, 'b;peak;'); plot(f_log(:,2:states.M), 'linewidth', 2, 'b'); hold off; xlabel('Time (frames)'); ylabel('Frequency (Hz)'); figure(2); clf; plot(log_nerrs); title('Errors per frame'); end per = 1 - num_frames_rx/num_frames; end [states ber per] = modem_run_test(EbNodB=6); BER_theory=0.01579; % for Eb/No = 6dB if ber < 1.5*BER_theory printf("PASS\n"); end