freedv-gui/codec2-1.2.0/octave/fsk_lib.m

470 lines
15 KiB
Matlab

% fsk_lib.m
% David Rowe Oct 2015 - present
%
% mFSK modem, started out life as RTTY demodulator for Project
% Horus High Altitude Ballon (HAB) telemetry, also used for:
%
% FreeDV 2400A: 4FSK UHF/UHF digital voice
% Wenet.......: 100 kbit/s HAB High Def image telemetry
%
% Handles frequency offsets, performance right on ideal, C implementation
% in codec2/src
1;
function states = fsk_init(Fs, Rs, M=2, P=8, nsym=50)
states.M = M;
states.bitspersymbol = log2(M);
states.Fs = Fs;
states.Rs = Rs;
states.nsym = nsym; % Number of symbols processed by demodulator in each call, also
% the timing estimator window
Ts = states.Ts = Fs/Rs; % number of samples per symbol
assert(Ts == floor(Ts), "Fs/Rs must be an integer");
N = states.N = Ts*states.nsym; % processing buffer size, nice big window for timing est
bin_width_Hz = 0.1*Rs; % we want enough DFT bins to get within 10% of the tones centre
Ndft = Fs/bin_width_Hz;
states.Ndft = 2.^ceil(log2(Ndft)); % round to nearest power of 2 for efficient FFT
states.Sf = zeros(states.Ndft,1); % current memory of dft mag samples
states.tc = 0.1; % average DFT over longtime window, accurate at low Eb/No, but slow
states.nbit = states.nsym*states.bitspersymbol; % number of bits per processing frame
Nmem = states.Nmem = N+2*Ts; % two symbol memory in down converted signals to allow for timing adj
states.f_dc = zeros(M,Nmem);
states.P = P; % oversample rate out of filter
assert(Ts/states.P == floor(Ts/states.P), "Ts/P must be an integer");
states.tx_tone_separation = 2*Rs;
states.nin = N; % can be N +/- Ts/P samples to adjust for sample clock offsets
states.verbose = 0;
states.phi = zeros(1, M); % keep down converter osc phase continuous
% BER stats
states.ber_state = 0;
states.ber_valid_thresh = 0.05; states.ber_invalid_thresh = 0.1;
states.Tbits = 0;
states.Terrs = 0;
states.nerr_log = 0;
% extra simulation parameters
states.tx_real = 1;
states.dA(1:M) = 1;
states.df(1:M) = 0;
states.f(1:M) = 0;
states.norm_rx_timing = 0;
states.ppm = 0;
states.prev_pkt = [];
% Freq. estimator limits
states.fest_fmax = Fs;
states.fest_fmin = 0;
states.fest_min_spacing = 0.75*Rs;
states.freq_est_type = 'peak';
%printf("Octave: M: %d Fs: %d Rs: %d Ts: %d nsym: %d nbit: %d N: %d Ndft: %d fmin: %d fmax: %d\n",
% states.M, states.Fs, states.Rs, states.Ts, states.nsym, states.nbit, states.N, states.Ndft, states.fest_fmin, states.fest_fmax);
endfunction
% modulator function
function tx = fsk_mod(states, tx_bits)
M = states.M;
Ts = states.Ts;
Fs = states.Fs;
ftx = states.ftx;
df = states.df; % tone freq change in Hz/s
dA = states.dA; % amplitude of each tone
num_bits = length(tx_bits);
num_symbols = num_bits/states.bitspersymbol;
tx = zeros(states.Ts*num_symbols,1);
tx_phase = 0;
s = 1;
for i=1:states.bitspersymbol:num_bits
% map bits to FSK symbol (tone number)
K = states.bitspersymbol;
tone = tx_bits(i:i+(K-1)) * (2.^(K-1:-1:0))' + 1;
tx_phase_vec = tx_phase + (1:Ts)*2*pi*ftx(tone)/Fs;
tx_phase = tx_phase_vec(Ts) - floor(tx_phase_vec(Ts)/(2*pi))*2*pi;
if states.tx_real
tx((s-1)*Ts+1:s*Ts) = dA(tone)*2.0*cos(tx_phase_vec);
else
tx((s-1)*Ts+1:s*Ts) = dA(tone)*exp(j*tx_phase_vec);
end
s++;
% freq drift
ftx += df*Ts/Fs;
end
states.ftx = ftx;
endfunction
% Estimate the frequency of the FSK tones. In some applications (such
% as balloon telemetry) these may not be well controlled by the
% transmitter, so we have to try to estimate them.
function states = est_freq(states, sf, ntones)
N = states.N;
Ndft = states.Ndft;
Fs = states.Fs;
% This assumption is OK for balloon telemetry but may not be true in
% general
min_tone_spacing = states.fest_min_spacing;
% set some limits to search range, which will mean some manual re-tuning
fmin = states.fest_fmin;
fmax = states.fest_fmax;
% note 0 Hz is mapped to Ndft/2+1 via fftshift
st = floor(fmin*Ndft/Fs) + Ndft/2; st = max(1,st);
en = floor(fmax*Ndft/Fs) + Ndft/2; en = min(Ndft,en);
#printf("Fs: %f Ndft: %d fmin: %f fmax: %f st: %d en: %d\n",Fs, Ndft, fmin, fmax, st, en)
% Update mag DFT ---------------------------------------------
% we break up input buffer to a series of overlapping Ndft sequences
numffts = floor(length(sf)/(Ndft/2)) - 1;
h = hanning(Ndft);
for i=1:numffts
a = (i-1)*Ndft/2+1; b = a + Ndft - 1;
Sf = abs(fftshift(fft(sf(a:b) .* h, Ndft)));
% Smooth DFT mag spectrum, slower to respond to changes but more
% accurate. Single order IIR filter is an exponentially weighted
% moving average. This means the freq est window is wider than
% timing est window
tc = states.tc; states.Sf = (1-tc)*states.Sf + tc*Sf;
end
% Search for each tone method 1 - peak pick each tone location ----------------------------------
f = []; a = [];
Sf = states.Sf;
for m=1:ntones
[tone_amp tone_index] = max(Sf(st:en));
tone_index += st - 1;
f = [f (tone_index-1-Ndft/2)*Fs/Ndft];
a = [a tone_amp];
% zero out region min_tone_spacing either side of max so we can find next highest peak
% closest spacing for non-coh mFSK is Rs
stz = tone_index - floor((min_tone_spacing)*Ndft/Fs);
stz = max(1,stz);
enz = tone_index + floor((min_tone_spacing)*Ndft/Fs);
enz = min(Ndft,enz);
Sf(stz:enz) = 0;
end
states.f = sort(f);
% Search for each tone method 2 - correlate with mask with non-zero entries at tone spacings -----
% Create a mask with non-zero entries at tone spacing. Might be
% smarter to use the DFT of a hanning window as mask
mask = zeros(1,Ndft);
mask(1:3) = 1;
for m=1:ntones-1
bin = round(m*states.tx_tone_separation*Ndft/Fs);
mask(bin:bin+2) = 1;
end
mask = mask(1:bin+2);
states.mask = mask;
% drag mask over Sf, looking for peak in correlation
b_max = st; corr_max = 0;
Sf = states.Sf; corr_log = [];
for b=st:en-length(mask)
corr = mask * Sf(b:b+length(mask)-1);
corr_log = [corr_log corr];
if corr > corr_max
corr_max = corr;
b_max = b;
end
end
foff = ((b_max-1)-Ndft/2)*Fs/Ndft;
if bitand(states.verbose, 0x8)
% enable this to single step through frames
figure(1); clf; subplot(211); plot(Sf,'b;sf;');
hold on; plot(max(Sf)*[zeros(1,b_max) mask],'g;mask;'); hold off;
subplot(212); plot(corr_log); ylabel('corr against f');
printf("foff: %4.0f\n", foff);
kbhit;
end
states.f2 = foff + (0:ntones-1)*states.tx_tone_separation;
end
% ------------------------------------------------------------------------------------
% Given a buffer of nin input Rs baud FSK samples, returns nsym bits.
%
% nin is the number of input samples required by demodulator. This is
% time varying. It will nominally be N (8000), and occasionally N +/-
% Ts/2 (e.g. 8080 or 7920). This is how we compensate for differences between the
% remote tx sample clock and our sample clock. This function always returns
% N/Ts (e.g. 50) demodulated bits. Variable number of input samples, constant number
% of output bits.
function [rx_bits states] = fsk_demod(states, sf)
M = states.M;
N = states.N;
Ndft = states.Ndft;
Fs = states.Fs;
Rs = states.Rs;
Ts = states.Ts;
nsym = states.nsym;
P = states.P;
nin = states.nin;
verbose = states.verbose;
Nmem = states.Nmem;
f = states.f;
assert(length(sf) == nin);
% down convert and filter at rate P ------------------------------
% update filter (integrator) memory by shifting in nin samples
nold = Nmem-nin; % number of old samples we retain
f_dc = states.f_dc;
f_dc(:,1:nold) = f_dc(:,Nmem-nold+1:Nmem);
% freq shift down to around DC, ensuring continuous phase from last frame, as nin may vary
for m=1:M
phi_vec = states.phi(m) + (1:nin)*2*pi*f(m)/Fs;
f_dc(m,nold+1:Nmem) = sf .* exp(j*phi_vec)';
states.phi(m) = phi_vec(nin);
states.phi(m) -= 2*pi*floor(states.phi(m)/(2*pi));
end
% save filter (integrator) memory for next time
states.f_dc = f_dc;
% integrate over symbol period, which is effectively a LPF, removing
% the -2Fc frequency image. Can also be interpreted as an ideal
% integrate and dump, non-coherent demod. We run the integrator at
% rate P*Rs (1/P symbol offsets) to get outputs at a range of
% different fine timing offsets. We calculate integrator output
% over nsym+1 symbols so we have extra samples for the fine timing
% re-sampler at either end of the array.
f_int = zeros(M,(nsym+1)*P);
for i=1:(nsym+1)*P
st = 1 + (i-1)*Ts/P;
en = st+Ts-1;
for m=1:M
f_int(m,i) = sum(f_dc(m,st:en));
end
end
states.f_int = f_int;
% fine timing estimation -----------------------------------------------
% Non linearity has a spectral line at Rs, with a phase
% related to the fine timing offset. See:
% http://www.rowetel.com/blog/?p=3573
% We have sampled the integrator output at Fs=P samples/symbol, so
% lets do a single point DFT at w = 2*pi*f/Fs = 2*pi*Rs/(P*Rs)
%
% Note timing non-linearity derived by experiment. Not quite sure what I'm doing here.....
% but it gives 0dB impl loss for 2FSK Eb/No=9dB, testmode 1:
% Fs: 8000 Rs: 50 Ts: 160 nsym: 50
% frames: 200 Tbits: 9700 Terrs: 93 BER 0.010
Np = length(f_int(1,:));
w = 2*pi*(Rs)/(P*Rs);
timing_nl = sum(abs(f_int(:,:)).^2);
x = timing_nl * exp(-j*w*(0:Np-1))';
norm_rx_timing = angle(x)/(2*pi);
rx_timing = norm_rx_timing*P;
states.x = x;
states.timing_nl = timing_nl;
states.rx_timing = rx_timing;
prev_norm_rx_timing = states.norm_rx_timing;
states.norm_rx_timing = norm_rx_timing;
% estimate sample clock offset in ppm
% d_norm_timing is fraction of symbol period shift over nsym symbols
d_norm_rx_timing = norm_rx_timing - prev_norm_rx_timing;
% filter out big jumps due to nin changes
if abs(d_norm_rx_timing) < 0.2
appm = 1E6*d_norm_rx_timing/nsym;
states.ppm = 0.9*states.ppm + 0.1*appm;
end
% work out how many input samples we need on the next call. The aim
% is to keep angle(x) away from the -pi/pi (+/- 0.5 fine timing
% offset) discontinuity. The side effect is to track sample clock
% offsets
next_nin = N;
if norm_rx_timing > 0.25
next_nin += Ts/4;
end
if norm_rx_timing < -0.25;
next_nin -= Ts/4;
end
states.nin = next_nin;
% Now we know the correct fine timing offset, Re-sample integrator
% outputs using fine timing estimate and linear interpolation, then
% extract the demodulated bits
low_sample = floor(rx_timing);
fract = rx_timing - low_sample;
high_sample = ceil(rx_timing);
if bitand(verbose,0x2)
printf("rx_timing: %3.2f low_sample: %d high_sample: %d fract: %3.3f nin_next: %d\n", rx_timing, low_sample, high_sample, fract, next_nin);
end
f_int_resample = zeros(M,nsym);
rx_bits = zeros(1,nsym*states.bitspersymbol);
tone_max = zeros(1,nsym);
rx_nse_pow = 1E-12; rx_sig_pow = 0.0;
for i=1:nsym
st = i*P+1;
f_int_resample(:,i) = f_int(:,st+low_sample)*(1-fract) + f_int(:,st+high_sample)*fract;
% Hard decision decoding, Largest amplitude tone is the winner.
% Map this FSK "symbol" back to bits, depending on M
[tone_max(i) tone_index] = max(f_int_resample(:,i));
st = (i-1)*states.bitspersymbol + 1;
en = st + states.bitspersymbol-1;
arx_bits = dec2bin(tone_index - 1, states.bitspersymbol) - '0';
rx_bits(st:en) = arx_bits;
% each filter is the DFT of a chunk of spectrum. If there is no tone in the
% filter it can be considered an estimate of noise in that bandwidth
rx_pows = f_int_resample(:,i) .* conj(f_int_resample(:,i));
rx_sig_pow += rx_pows(tone_index);
rx_nse_pow += (sum(rx_pows) - rx_pows(tone_index))/(M-1);
end
states.f_int_resample = f_int_resample;
% Eb/No estimation (todo: this needs some work, like calibration, low Eb/No perf, work for all M)
tone_max = abs(tone_max);
states.EbNodB = -6 + 20*log10(1E-6+mean(tone_max)/(1E-6+std(tone_max)));
% Estimators for LDPC decoder, might be a bit rough if nsym is small
rx_sig_pow = rx_sig_pow/nsym;
rx_nse_pow = rx_nse_pow/nsym;
states.v_est = sqrt(rx_sig_pow-rx_nse_pow);
states.SNRest = rx_sig_pow/rx_nse_pow;
endfunction
% BER counter and test frame sync logic -------------------------------------------
% We look for test_frame in rx_bits_buf, rx_bits_buf must be twice as long as test_frame
function states = ber_counter(states, test_frame, rx_bits_buf)
nbit = length(test_frame);
assert (length(rx_bits_buf) == 2*nbit);
state = states.ber_state;
next_state = state;
if state == 0
% try to sync up with test frame
nerrs_min = nbit;
for i=1:nbit
error_positions = xor(rx_bits_buf(i:nbit+i-1), test_frame);
nerrs = sum(error_positions);
if nerrs < nerrs_min
nerrs_min = nerrs;
states.coarse_offset = i;
end
end
if nerrs_min/nbit < states.ber_valid_thresh
next_state = 1;
end
if bitand(states.verbose,0x4)
printf("coarse offset: %d nerrs_min: %d next_state: %d\n", states.coarse_offset, nerrs_min, next_state);
end
states.nerr = nerrs_min;
end
if state == 1
% we're synced up, lets measure bit errors
error_positions = xor(rx_bits_buf(states.coarse_offset:states.coarse_offset+nbit-1), test_frame);
nerrs = sum(error_positions);
if nerrs/nbit > states.ber_invalid_thresh
next_state = 0;
if bitand(states.verbose,0x4)
printf("coarse offset: %d nerrs: %d next_state: %d\n", states.coarse_offset, nerrs, next_state);
end
else
states.Terrs += nerrs;
states.Tbits += nbit;
states.nerr_log = [states.nerr_log nerrs];
end
states.nerr = nerrs;
end
states.ber_state = next_state;
endfunction
% Alternative stateless BER counter that works on packets that may have gaps between them
function states = ber_counter_packet(states, test_frame, rx_bits_buf)
ntestframebits = states.ntestframebits;
nbit = states.nbit;
% look for offset with min errors
nerrs_min = ntestframebits; coarse_offset = 1;
for i=1:nbit
error_positions = xor(rx_bits_buf(i:ntestframebits+i-1), test_frame);
nerrs = sum(error_positions);
%printf("i: %d nerrs: %d\n", i, nerrs);
if nerrs < nerrs_min
nerrs_min = nerrs;
coarse_offset = i;
end
end
% if less than threshold count errors
if nerrs_min/ntestframebits < 0.05
states.Terrs += nerrs_min;
states.Tbits += ntestframebits;
states.nerr_log = [states.nerr_log nerrs_min];
if bitand(states.verbose, 0x4)
printf("coarse_offset: %d nerrs_min: %d\n", coarse_offset, nerrs_min);
end
end
endfunction