diff --git a/phasenn_test9b.py b/phasenn_test9b.py new file mode 100755 index 0000000..865dd4e --- /dev/null +++ b/phasenn_test9b.py @@ -0,0 +1,170 @@ +#!/usr/bin/python3 +# phasenn_test9.py +# +# David Rowe Nov 2019 + +# Estimate an impulse position from the phase spectra of a 2nd order system excited by an impulse +# +# periodic impulse train Wo at time offset n0 -> 2nd order system -> discrete phase specta -> NN -> n0 + + +import numpy as np +import sys +from keras.layers import Dense +from keras import models,layers +from keras import initializers +import matplotlib.pyplot as plt +from scipy import signal +from keras import backend as K +# make tensorflow less verbose .... +import os +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' + +# constants + +Fs = 8000 +N = 80 # number of time domain samples in frame +nb_samples = 10000 +nb_batch = 32 +nb_epochs = 30 +width = 256 +pairs = 2*width +fo_min = 50 +fo_max = 400 +P_max = Fs/fo_min + +# Generate training data + +amp = np.zeros((nb_samples, width)) +# phase as an angle +phase = np.zeros((nb_samples, width)) +# phase encoded as cos,sin pairs: +phase_rect = np.zeros((nb_samples, pairs)) +Wo = np.zeros(nb_samples) +L = np.zeros(nb_samples, dtype=int) +n0 = np.zeros(nb_samples, dtype=int) +target = np.zeros((nb_samples,1)) +e_rect = np.zeros((nb_samples, pairs)) + +for i in range(nb_samples): + + # distribute fo randomly on a log scale, gives us more training + # data with low freq frames which have more harmonics and are + # harder to match + r = np.random.rand(1) + log_fo = np.log10(fo_min) + (np.log10(fo_max)-np.log10(fo_min))*r[0] + fo = 10 ** log_fo + Wo[i] = fo*2*np.pi/Fs + L[i] = int(np.floor(np.pi/Wo[i])) + # pitch period in samples + P = 2*L[i] + + r = np.random.rand(3) + + # sample 2nd order IIR filter with random peak freq (alpha) and peak amplitude (gamma) + alpha = 0.1*np.pi + 0.4*np.pi*r[0] + gamma = 0.9 + 0.09*r[1] + w,h = signal.freqz(1, [1, -2*gamma*np.cos(alpha), gamma*gamma], range(1,L[i])*Wo[i]) + + # select n0 between 0...P-1 (it's periodic) + n0[i] = r[2]*P + e = np.exp(-1j*n0[i]*range(1,width)*np.pi/width) + + for m in range(1,L[i]): + bin = int(np.round(m*Wo[i]*width/np.pi)) + mWo = bin*np.pi/width + + amp[i,bin] = np.log10(abs(h[m-1])) + phase[i,bin] = np.angle(h[m-1]*e[bin]) + phase_rect[i,2*bin] = np.cos(phase[i,bin]) + phase_rect[i,2*bin+1] = np.sin(phase[i,bin]) + + # target is n0 in rec coords + target[i] = n0[i]/P_max + e_rect[i,2*bin] = e[bin].real + e_rect[i,2*bin+1] = e[bin].imag + +model = models.Sequential() +model.add(layers.Dense(pairs, activation='relu', input_dim=pairs)) +model.add(layers.Dense(128, activation='relu')) +model.add(layers.Dense(1)) +model.summary() + +from keras import optimizers +sgd = optimizers.SGD(lr=0.08, decay=1e-6, momentum=0.9, nesterov=True) +model.compile(loss="mse", optimizer=sgd) +history = model.fit(e_rect, target, batch_size=nb_batch, epochs=nb_epochs) + +# measure error in rectangular coordinates over all samples + +target_est = model.predict(e_rect) +err = target - target_est +var = np.var(err) +std = np.std(err) +print("var: %f std: %f" % (var,std)) + +def sample_freq(r): + phase_L = np.zeros(L[r], dtype=complex) + amp_L = np.zeros(L[r]) + + for m in range(1,L[r]): + wm = m*Wo[r] + bin = int(np.round(wm*width/np.pi)) + phase_L[m] = phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1] + amp_L[m] = amp[r,bin] + return phase_L, amp_L + +# synthesise time domain signal +def sample_time(r): + s = np.zeros(2*N); + + for m in range(1,L[r]): + wm = m*Wo[r] + bin = int(np.round(wm*width/np.pi)) + Am = 10 ** amp[r,bin] + phi_m = np.angle(phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1]) + s = s + Am*np.cos(wm*(range(2*N)) + phi_m) + return s + +plot_en = 1; +if plot_en: + plt.figure(1) + plt.plot(history.history['loss']) + plt.title('model loss') + plt.xlabel('epoch') + plt.show(block=False) + + plt.figure(2) + plt.hist(err, bins=20) + plt.show(block=False) + + plt.figure(3) + plt.plot(target[:12],'b') + plt.plot(target_est[:12],'g') + plt.show(block=False) + + plt.figure(4) + plt.title('Freq Domain') + for r in range(12): + plt.subplot(3,4,r+1) + phase_L, amp_L = sample_freq(r) + plt.plot(20*amp_L,'g') + plt.ylim(-20,20) + plt.show(block=False) + + plt.figure(5) + plt.title('Time Domain') + for r in range(12): + plt.subplot(3,4,r+1) + s = sample_time(r) + n0_ = target_est[r]*P_max + print("F0: %5.1f P: %3d L: %3d n0: %3d n0_est: %5.1f" % (Wo[r]*(Fs/2)/np.pi, 2*L[r], L[r], n0[r], n0_)) + plt.plot(s,'g') + plt.plot([n0[r],n0[r]], [-25,25],'r') + plt.plot([n0_,n0_], [-25,25],'b') + plt.ylim(-50,50) + plt.show(block=False) + + # click on last figure to close all and finish + plt.waitforbuttonpress(0) + plt.close()