mirror of https://github.com/drowe67/phasenn.git
restored to original NN model
parent
d2039fd4b7
commit
628dca7638
|
@ -84,20 +84,19 @@ for i in range(0,nb_samples-dec,dec):
|
|||
nv += 1
|
||||
print(inputs.shape, outputs.shape)
|
||||
|
||||
nn = 0
|
||||
nn = 1
|
||||
if nn:
|
||||
# our model
|
||||
model = models.Sequential()
|
||||
model.add(layers.Dense(3*newamp1_K, input_dim=2*newamp1_K))
|
||||
#model.add(layers.Dense(3*newamp1_K, activation='relu', input_dim=2*newamp1_K))
|
||||
#model.add(layers.Dense(3*newamp1_K, activation='relu'))
|
||||
#model.add(layers.Dense(3*newamp1_K))
|
||||
model.add(layers.Dense(3*newamp1_K, activation='tanh', input_dim=2*newamp1_K))
|
||||
model.add(layers.Dense(3*newamp1_K, activation='tanh'))
|
||||
model.add(layers.Dense(3*newamp1_K))
|
||||
model.summary()
|
||||
|
||||
# fit the model
|
||||
from keras import optimizers
|
||||
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
|
||||
model.compile(loss='mse', optimizer=sgd)
|
||||
#sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
|
||||
model.compile(loss='mse', optimizer="adam")
|
||||
history = model.fit(inputs, outputs, batch_size=nb_batch, epochs=args.epochs, validation_split=0.1)
|
||||
|
||||
# test the model on the training data
|
||||
|
@ -114,7 +113,8 @@ if nn:
|
|||
# plot results over all frames
|
||||
var_lin = np.var(20*outputs-20*outputs_lin)
|
||||
var_linpf = np.var(20*outputs-20*outputs_linpf)
|
||||
print("var_lin: %3.2f var_linpf: %3.2f" % (var_lin, var_linpf))
|
||||
var_nnest = np.var(20*outputs-20*outputs_nnest)
|
||||
print("var_lin: %3.2f var_linpf: %3.2f var_nnest: %3.2f" % (var_lin, var_linpf, var_nnest))
|
||||
|
||||
# plot results for a few frames
|
||||
|
||||
|
@ -137,16 +137,20 @@ while loop:
|
|||
st = (d-1)*newamp1_K
|
||||
plt.plot(outputs[frame,st:st+newamp1_K],'g')
|
||||
plt.plot(outputs_lin[frame,st:st+newamp1_K],'b')
|
||||
plt.plot(outputs_linpf[frame,st:st+newamp1_K],'r')
|
||||
if nn:
|
||||
plt.plot(outputs_nnest[frame,st:st+newamp1_K],'r')
|
||||
else:
|
||||
plt.plot(outputs_linpf[frame,st:st+newamp1_K],'r')
|
||||
plt.ylim((-1,4))
|
||||
var_lin = np.var(20*outputs[frame,:]-20*outputs_lin[frame,:])
|
||||
var_linpf = np.var(20*outputs[frame,:]-20*outputs_linpf[frame,:])
|
||||
print("frame: %d var_lin: %3.2f var_linpf: %3.2f" % (frame,var_lin, var_linpf), end='')
|
||||
print("frame: %d var_lin: %3.2f " % (frame,var_lin), end='')
|
||||
if nn:
|
||||
var_nnest = np.var(20*outputs[frame,:]-20*outputs_est[frame,:])
|
||||
print("var_nn-est: %3.2f" % (var_nnest))
|
||||
var_nnest = np.var(20*outputs[frame,:]-20*outputs_nnest[frame,:])
|
||||
print("var_nnest: %3.2f" % (var_nnest), end='')
|
||||
else:
|
||||
print("var_linpf: %3.2f" % (var_linpf), end='')
|
||||
|
||||
print(flush=True)
|
||||
plt.show(block=False)
|
||||
|
||||
|
|
Loading…
Reference in New Issue