mirror of https://github.com/drowe67/phasenn.git
building up test91, still some bugs
parent
2850ede820
commit
e921bc8f1e
|
@ -0,0 +1,210 @@
|
|||
#!/usr/bin/python3
|
||||
# phasenn_test9.py
|
||||
#
|
||||
# David Rowe Nov 2019
|
||||
|
||||
# Estimate an impulse position from the phase spectra of a 2nd order system excited by an impulse
|
||||
#
|
||||
# periodic impulse train Wo at time offset n0 -> 2nd order system -> discrete phase specta -> NN -> n0
|
||||
|
||||
|
||||
import numpy as np
|
||||
import sys
|
||||
from keras.layers import Dense, Lambda
|
||||
from keras import models,layers
|
||||
from keras import initializers
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy import signal
|
||||
from keras import backend as K
|
||||
|
||||
# constants
|
||||
|
||||
Fs = 8000 # sample rate
|
||||
N = 80 # number of time domain samples in frame
|
||||
nb_samples = 10
|
||||
nb_batch = 2
|
||||
nb_epochs = 1
|
||||
width = 256
|
||||
pairs = 2*width
|
||||
fo_min = 50
|
||||
fo_max = 400
|
||||
P_max = Fs/fo_min
|
||||
|
||||
# Generate training data
|
||||
|
||||
amp = np.zeros((nb_samples, width))
|
||||
# phase as an angle
|
||||
phase = np.zeros((nb_samples, width))
|
||||
# phase encoded as cos,sin pairs:
|
||||
phase_rect = np.zeros((nb_samples, pairs))
|
||||
Wo = np.zeros(nb_samples)
|
||||
L = np.zeros(nb_samples, dtype=int)
|
||||
n0 = np.zeros(nb_samples, dtype=int)
|
||||
e_rect = np.zeros((nb_samples, pairs))
|
||||
|
||||
for i in range(nb_samples):
|
||||
|
||||
# distribute fo randomly on a log scale, gives us more training
|
||||
# data with low freq frames which have more harmonics and are
|
||||
# harder to match
|
||||
r = np.random.rand(1)
|
||||
log_fo = np.log10(fo_min) + (np.log10(fo_max)-np.log10(fo_min))*r[0]
|
||||
fo = 10 ** log_fo
|
||||
Wo[i] = fo*2*np.pi/Fs
|
||||
L[i] = int(np.floor(np.pi/Wo[i]))
|
||||
# pitch period in samples
|
||||
P = 2*L[i]
|
||||
|
||||
r = np.random.rand(3)
|
||||
|
||||
# sample 2nd order IIR filter with random peak freq (alpha) and peak amplitude (gamma)
|
||||
alpha = 0.1*np.pi + 0.4*np.pi*r[0]
|
||||
gamma = 0.9 + 0.09*r[1]
|
||||
w,h = signal.freqz(1, [1, -2*gamma*np.cos(alpha), gamma*gamma], range(1,L[i])*Wo[i])
|
||||
|
||||
# select n0 between 0...P-1 (it's periodic)
|
||||
n0[i] = r[2]*P
|
||||
e = np.exp(-1j*n0[i]*range(1,L[i])*Wo[i])
|
||||
|
||||
for m in range(1,L[i]):
|
||||
bin = int(np.round(m*Wo[i]*width/np.pi))
|
||||
mWo = bin*np.pi/width
|
||||
|
||||
amp[i,bin] = np.log10(abs(h[m-1]))
|
||||
phase[i,bin] = np.angle(h[m-1]*e[m-1])
|
||||
phase_rect[i,2*bin] = np.cos(phase[i,bin])
|
||||
phase_rect[i,2*bin+1] = np.sin(phase[i,bin])
|
||||
|
||||
# target is freq domain version of n0 in rec coords, not cos() and sin() terms
|
||||
# are in first and second half, rather than paired, to maintain compatability
|
||||
# with the custom layer
|
||||
e_rect[i,bin] = e[m-1].real
|
||||
e_rect[i,width+bin] = e[m-1].imag
|
||||
|
||||
# custom layer to compute a vector of DFT samples of an impulse, from
|
||||
# n0. We know how to do this with standard signal processing so we
|
||||
# don't need to train layer
|
||||
def n0_dft(n0):
|
||||
n0 = K.print_tensor(n0, "x is: ")
|
||||
# note n0 scaled by n0/P_max when represented in NN, too keep it in 0..1 range
|
||||
N=width
|
||||
cos_term = K.cos(n0*P_max*K.cast(K.arange(0,N), dtype='float32')*np.pi/N)
|
||||
sin_term = K.sin(-n0*P_max*K.cast(K.arange(0,N), dtype='float32')*np.pi/N)
|
||||
return K.concatenate([cos_term,sin_term], axis=-1)
|
||||
|
||||
# testing custom layer against numpy implementation
|
||||
a = layers.Input(shape=(None,))
|
||||
custom_layer = K.Function([a], [n0_dft(a)])
|
||||
e_test = np.array(custom_layer([[[1/P_max],[2/P_max]]]))
|
||||
print(e_test)
|
||||
print(e_rect)
|
||||
print(e_test.shape)
|
||||
#e_targ = np.exp(-1j*n0_test*np.arange(width)*np.pi/width)
|
||||
#e_targ = e_targ.reshape(1,width)
|
||||
#err_real = np.sum(np.abs(e_test[:,:width] - e_targ.real))
|
||||
#err_imag = np.sum(np.abs(e_test[:,width:] - e_targ.imag))
|
||||
#assert(err_real < 1E-3)
|
||||
#assert(err_imag < 1E-3)
|
||||
|
||||
# custom loss function
|
||||
def sparse_loss(y_true, y_pred):
|
||||
mask = K.cast( K.not_equal(y_true, 0), dtype='float32')
|
||||
n = K.sum(mask)
|
||||
return K.sum(K.square((y_pred - y_true)*mask))/n
|
||||
|
||||
# testing custom loss function
|
||||
x = layers.Input(shape=(None,))
|
||||
y = layers.Input(shape=(None,))
|
||||
loss_func = K.Function([x, y], [sparse_loss(x, y)])
|
||||
assert loss_func([[[1,1,1]], [[0,2,0]]]) == np.array([1])
|
||||
assert loss_func([[[0,1,0]], [[0,2,0]]]) == np.array([1])
|
||||
|
||||
# the actual NN
|
||||
model = models.Sequential()
|
||||
model.add(layers.Dense(pairs, activation='relu', input_dim=pairs))
|
||||
model.add(layers.Dense(128, activation='relu'))
|
||||
model.add(layers.Dense(1))
|
||||
model.add(Lambda(n0_dft))
|
||||
model.summary()
|
||||
|
||||
from keras import optimizers
|
||||
sgd = optimizers.SGD(lr=0.08, decay=1e-6, momentum=0.9, nesterov=True)
|
||||
model.compile(loss=sparse_loss, optimizer=sgd)
|
||||
history = model.fit(phase_rect, e_rect, batch_size=nb_batch, epochs=nb_epochs)
|
||||
|
||||
# measure error in rectangular coordinates over all samples
|
||||
|
||||
target_est = model.predict(phase_rect)
|
||||
print(target_est)
|
||||
print(e_rect)
|
||||
quit()
|
||||
err = e_rect - target_est
|
||||
var = np.var(err)
|
||||
std = np.std(err)
|
||||
print("var: %f std: %f" % (var,std))
|
||||
|
||||
def sample_freq(r):
|
||||
phase_L = np.zeros(L[r], dtype=complex)
|
||||
amp_L = np.zeros(L[r])
|
||||
|
||||
for m in range(1,L[r]):
|
||||
wm = m*Wo[r]
|
||||
bin = int(np.round(wm*width/np.pi))
|
||||
phase_L[m] = phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1]
|
||||
amp_L[m] = amp[r,bin]
|
||||
return phase_L, amp_L
|
||||
|
||||
# synthesise time domain signal
|
||||
def sample_time(r):
|
||||
s = np.zeros(2*N);
|
||||
|
||||
for m in range(1,L[r]):
|
||||
wm = m*Wo[r]
|
||||
bin = int(np.round(wm*width/np.pi))
|
||||
Am = 10 ** amp[r,bin]
|
||||
phi_m = np.angle(phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1])
|
||||
s = s + Am*np.cos(wm*(range(2*N)) + phi_m)
|
||||
return s
|
||||
|
||||
plot_en = 1;
|
||||
if plot_en:
|
||||
plt.figure(1)
|
||||
plt.plot(history.history['loss'])
|
||||
plt.title('model loss')
|
||||
plt.xlabel('epoch')
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(2)
|
||||
plt.hist(err, bins=20)
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(3)
|
||||
plt.plot(target[:12],'b')
|
||||
plt.plot(target_est[:12],'g')
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(4)
|
||||
plt.title('Freq Domain')
|
||||
for r in range(12):
|
||||
plt.subplot(3,4,r+1)
|
||||
phase_L, amp_L = sample_freq(r)
|
||||
plt.plot(20*amp_L,'g')
|
||||
plt.ylim(-20,20)
|
||||
plt.show(block=False)
|
||||
|
||||
plt.figure(5)
|
||||
plt.title('Time Domain')
|
||||
for r in range(12):
|
||||
plt.subplot(3,4,r+1)
|
||||
s = sample_time(r)
|
||||
n0_ = target_est[r]*P_max
|
||||
print("F0: %5.1f P: %3d L: %3d n0: %3d n0_est: %5.1f" % (Wo[r]*(Fs/2)/np.pi, P, L[r], n0[r], n0_))
|
||||
plt.plot(s,'g')
|
||||
plt.plot([n0[r],n0[r]], [-25,25],'r')
|
||||
plt.plot([n0_,n0_], [-25,25],'b')
|
||||
plt.ylim(-50,50)
|
||||
plt.show(block=False)
|
||||
|
||||
# click on last figure to close all and finish
|
||||
plt.waitforbuttonpress(0)
|
||||
plt.close()
|
Loading…
Reference in New Issue