#!/usr/bin/python3 # phasenn_test9.py # # David Rowe Nov 2019 # Estimate an impulse position from the phase spectra of a 2nd order system excited by an impulse # # periodic impulse train Wo at time offset n0 -> 2nd order system -> discrete phase specta -> NN -> n0 import numpy as np import sys from keras.layers import Dense, Lambda from keras import models,layers from keras import initializers import matplotlib.pyplot as plt from scipy import signal from keras import backend as K # make tensorflow less verbose .... import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # constants Fs = 8000 N = 80 # number of time domain samples in frame nb_samples = 10000 nb_batch = 32 nb_epochs = 10 width = 256 pairs = 2*width fo_min = 50 fo_max = 400 P_max = Fs/fo_min # Generate training data amp = np.zeros((nb_samples, width)) # phase as an angle phase = np.zeros((nb_samples, width)) # phase encoded as cos,sin pairs: phase_rect = np.zeros((nb_samples, pairs)) Wo = np.zeros(nb_samples) L = np.zeros(nb_samples, dtype=int) n0 = np.zeros(nb_samples, dtype=int) target = np.zeros((nb_samples,1)) e_rect = np.zeros((nb_samples, pairs)) for i in range(nb_samples): # distribute fo randomly on a log scale, gives us more training # data with low freq frames which have more harmonics and are # harder to match r = np.random.rand(1) log_fo = np.log10(fo_min) + (np.log10(fo_max)-np.log10(fo_min))*r[0] fo = 10 ** log_fo Wo[i] = fo*2*np.pi/Fs L[i] = int(np.floor(np.pi/Wo[i])) # pitch period in samples P = 2*L[i] r = np.random.rand(3) # sample 2nd order IIR filter with random peak freq (alpha) and peak amplitude (gamma) alpha = 0.1*np.pi + 0.4*np.pi*r[0] gamma = 0.9 + 0.09*r[1] w,h = signal.freqz(1, [1, -2*gamma*np.cos(alpha), gamma*gamma], range(1,L[i])*Wo[i]) # select n0 between 0...P-1 (it's periodic) n0[i] = r[2]*P e = np.exp(-1j*n0[i]*range(width)*np.pi/width) for m in range(1,L[i]): bin = int(np.round(m*Wo[i]*width/np.pi)) mWo = bin*np.pi/width amp[i,bin] = np.log10(abs(h[m-1])) phase[i,bin] = np.angle(h[m-1]*e[bin]) phase_rect[i,2*bin] = np.cos(phase[i,bin]) phase_rect[i,2*bin+1] = np.sin(phase[i,bin]) # target is n0 in rec coords target[i] = n0[i]/P_max e_rect[i,bin] = e[bin].real e_rect[i,width+bin] = e[bin].imag def n0_dft(n0_scaled): #n0_scaled = K.print_tensor(n0_scaled, "n0_scaled is: ") n0 = n0_scaled*P_max #n0 = K.print_tensor(n0, "n0 is: ") #note n0_scaled = n0/P_max such that n0_scaled stays betwen [0..1] N=width cos_term = K.cos( n0*K.cast(K.arange(N), dtype='float32')*np.pi/N) sin_term = K.sin(-n0*K.cast(K.arange(N), dtype='float32')*np.pi/N) return K.concatenate([cos_term,sin_term], axis=-1) # custom loss function def sparse_loss(y_true, y_pred): mask = K.cast( K.not_equal(y_true, 0), dtype='float32') #mask = K.print_tensor(mask, "mask is: ") n = K.sum(mask) return K.sum(K.square((y_pred - y_true)*mask))/n model = models.Sequential() model.add(layers.Dense(pairs, activation='relu', input_dim=pairs)) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(1)) model.add(Lambda(n0_dft)) model.summary() from keras import optimizers sgd = optimizers.SGD(lr=1E-4, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss=sparse_loss, optimizer=sgd) history = model.fit(e_rect, e_rect, batch_size=nb_batch, epochs=nb_epochs) quit() # measure error in rectangular coordinates over all samples target_est = model.predict(e_rect) err = target - target_est var = np.var(err) std = np.std(err) print("var: %f std: %f" % (var,std)) def sample_freq(r): phase_L = np.zeros(L[r], dtype=complex) amp_L = np.zeros(L[r]) for m in range(1,L[r]): wm = m*Wo[r] bin = int(np.round(wm*width/np.pi)) phase_L[m] = phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1] amp_L[m] = amp[r,bin] return phase_L, amp_L # synthesise time domain signal def sample_time(r): s = np.zeros(2*N); for m in range(1,L[r]): wm = m*Wo[r] bin = int(np.round(wm*width/np.pi)) Am = 10 ** amp[r,bin] phi_m = np.angle(phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1]) s = s + Am*np.cos(wm*(range(2*N)) + phi_m) return s plot_en = 1; if plot_en: plt.figure(1) plt.plot(history.history['loss']) plt.title('model loss') plt.xlabel('epoch') plt.show(block=False) plt.figure(2) plt.hist(err, bins=20) plt.show(block=False) plt.figure(3) plt.plot(target[:12],'b') plt.plot(target_est[:12],'g') plt.show(block=False) plt.figure(4) plt.title('Freq Domain') for r in range(12): plt.subplot(3,4,r+1) phase_L, amp_L = sample_freq(r) plt.plot(20*amp_L,'g') plt.ylim(-20,20) plt.show(block=False) plt.figure(5) plt.title('Time Domain') for r in range(12): plt.subplot(3,4,r+1) s = sample_time(r) n0_ = target_est[r]*P_max print("F0: %5.1f P: %3d L: %3d n0: %3d n0_est: %5.1f" % (Wo[r]*(Fs/2)/np.pi, 2*L[r], L[r], n0[r], n0_)) plt.plot(s,'g') plt.plot([n0[r],n0[r]], [-25,25],'r') plt.plot([n0_,n0_], [-25,25],'b') plt.ylim(-50,50) plt.show(block=False) # click on last figure to close all and finish plt.waitforbuttonpress(0) plt.close()