#!/usr/bin/python3 # phasenn_test9a.py # # David Rowe Nov 2019 # Estimate an impulse position from the phase spectra of a 2nd order system excited by an impulse # # periodic impulse train Wo at time offset n0 -> # 2nd order system -> # discrete phase specta -> # NN -> single n0 output -> # lamba layer to generate phase spectra -> # spare loss function to compare at discrete points import numpy as np import sys from keras.layers import Dense, Lambda from keras import models,layers from keras import initializers import matplotlib.pyplot as plt from scipy import signal from keras import backend as K import os # be quiet tensorflow .... os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # constants Fs = 8000 # sample rate N = 80 # number of time domain samples in frame nb_samples = 10000 nb_batch = 32 nb_epochs = 10 width = 256 pairs = 2*width fo_min = 50 fo_max = 400 P_max = Fs/fo_min gain = 2 # Generate training data amp = np.zeros((nb_samples, width)) # phase as an angle phase = np.zeros((nb_samples, width)) # phase encoded as cos,sin pairs: phase_rect = np.zeros((nb_samples, pairs)) Wo = np.zeros(nb_samples) L = np.zeros(nb_samples, dtype=int) n0 = np.zeros(nb_samples, dtype=int) e_rect = np.zeros((nb_samples, pairs)) target = np.zeros(nb_samples) for i in range(nb_samples): # distribute fo randomly on a log scale, gives us more training # data with low freq frames which have more harmonics and are # harder to match r = np.random.rand(1) log_fo = np.log10(fo_min) + (np.log10(fo_max)-np.log10(fo_min))*r[0] fo = 10 ** log_fo #fo = fo_max Wo[i] = fo*2*np.pi/Fs L[i] = int(np.floor(np.pi/Wo[i])) # pitch period in samples P = 2*L[i] r = np.random.rand(3) # sample 2nd order IIR filter with random peak freq (alpha) and peak amplitude (gamma) alpha = 0.1*np.pi + 0.4*np.pi*r[0] gamma = 0.9 + 0.09*r[1] w,h = signal.freqz(1, [1, -2*gamma*np.cos(alpha), gamma*gamma], range(1,L[i])*Wo[i]) # select n0 between 0...P-1 (it's periodic) n0[i] = r[2]*P n0[i] = 2 e = np.exp(-1j*n0[i]*range(width)*np.pi/width) for m in range(1,L[i]): bin = int(np.round(m*Wo[i]*width/np.pi)) mWo = bin*np.pi/width amp[i,bin] = np.log10(abs(h[m-1])) phase[i,bin] = np.angle(h[m-1]*e[bin]) phase_rect[i,2*bin] = np.cos(phase[i,bin]) phase_rect[i,2*bin+1] = np.sin(phase[i,bin]) # target is freq domain version of n0 in rec coords, not cos() and sin() terms # are in first and second half, rather than paired, to maintain compatability # with the custom layer e_rect[i,bin] = e[bin].real e_rect[i,width+bin] = e[bin].imag target[i] = n0[i]/P_max print("training data created") # custom layer to compute a vector of DFT samples of an impulse, from # n0. We know how to do this with standard signal processing so we # don't need to train layer. However it is difficult to write signal processing # code in "Keras backend" language def n0_dft(n0_scaled): n0_scaled = K.print_tensor(n0_scaled, "n0_scaled is: ") n0 = n0_scaled*gain #*P_max n0 = K.print_tensor(n0, "n0 is: ") #note n0_scaled = n0/P_max such that n0_scaled stays betwen [0..1] N=width cos_term = K.cos( n0*K.cast(K.arange(N), dtype='float32')*np.pi/N) sin_term = K.sin(-n0*K.cast(K.arange(N), dtype='float32')*np.pi/N) return K.concatenate([cos_term,sin_term], axis=-1) # testing custom layer against numpy implementation a = layers.Input(shape=(None,)) custom_layer = K.Function([a], [n0_dft(a)]) for i in range(10): e_test = np.array(custom_layer([[[n0[i]/gain]]])) # so e_test is continuous, we just want to sample at nonzero harmonic points ind = np.nonzero(e_rect[i,:]) err = (e_rect[i,ind] - e_test[0,0,ind]) # there will be a small error as the GPU and Host don't always agree print(i,L[i],n0[i],err.shape, np.std(err)) assert(np.mean(np.std(err)) < 1E-4) print("n0_dft custom layer tested") # custom loss function def sparse_loss(y_true, y_pred): mask = K.cast( K.not_equal(y_pred, 0), dtype='float32') #mask = K.print_tensor(mask, "mask is: ") n = K.sum(mask) return K.sum(K.square((y_pred - y_true)*mask))/n # testing custom loss function x = layers.Input(shape=(None,)) y = layers.Input(shape=(None,)) loss_func = K.Function([x, y], [sparse_loss(x, y)]) #assert loss_func([[[0,1,0]], [[2,2,2]]]) == np.array([1]) #assert loss_func([[[1,1,0]], [[3,3,2]]]) == np.array([4]) print("sparse loss function tested") # the actual NN model = models.Sequential() model.add(layers.Dense(pairs, activation='relu', input_dim=pairs)) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(1, use_bias=False)) model.add(Lambda(n0_dft)) model.summary() from keras import optimizers #sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) sgd = optimizers.SGD(lr=0.001) model.compile(loss="mse", optimizer=sgd) history = model.fit(e_rect, target, batch_size=nb_batch, epochs=nb_epochs) #print(model.layers[2].get_weights()[0]) ind = np.nonzero(e_rect[0,:]) target_est = model.predict(e_rect) print(target[:10]) print(target_est[:10]) #print(L[0],e_rect.shape, target_est.shape) #print(e_rect[0,ind]) #print(target_est[0,ind]) quit() # measure error in rectangular coordinates over all samples target_est = model.predict(phase_rect) #print(target_est) #print(e_rect) err = e_rect - target_est var = np.var(err) std = np.std(err) print("var: %f std: %f" % (var,std)) def sample_freq(r): phase_L = np.zeros(L[r], dtype=complex) amp_L = np.zeros(L[r]) for m in range(1,L[r]): wm = m*Wo[r] bin = int(np.round(wm*width/np.pi)) phase_L[m] = phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1] amp_L[m] = amp[r,bin] return phase_L, amp_L # synthesise time domain signal def sample_time(r): s = np.zeros(2*N); for m in range(1,L[r]): wm = m*Wo[r] bin = int(np.round(wm*width/np.pi)) Am = 10 ** amp[r,bin] phi_m = np.angle(phase_rect[r,2*bin] + 1j*phase_rect[r,2*bin+1]) s = s + Am*np.cos(wm*(range(2*N)) + phi_m) return s plot_en = 1; if plot_en: plt.figure(1) plt.plot(history.history['loss']) plt.title('model loss') plt.xlabel('epoch') plt.show(block=False) plt.figure(2) plt.hist(err, bins=20) plt.show(block=False) plt.figure(3) plt.plot(target[:12],'b') plt.plot(target_est[:12],'g') plt.show(block=False) plt.figure(4) plt.title('Freq Domain') for r in range(12): plt.subplot(3,4,r+1) phase_L, amp_L = sample_freq(r) plt.plot(20*amp_L,'g') plt.ylim(-20,20) plt.show(block=False) plt.figure(5) plt.title('Time Domain') for r in range(12): plt.subplot(3,4,r+1) s = sample_time(r) n0_ = target_est[r]*P_max print("F0: %5.1f P: %3d L: %3d n0: %3d n0_est: %5.1f" % (Wo[r]*(Fs/2)/np.pi, P, L[r], n0[r], n0_)) plt.plot(s,'g') plt.plot([n0[r],n0[r]], [-25,25],'r') plt.plot([n0_,n0_], [-25,25],'b') plt.ylim(-50,50) plt.show(block=False) # click on last figure to close all and finish plt.waitforbuttonpress(0) plt.close()