phasenn/phasenn_test7a.py

118 lines
3.3 KiB
Python
Executable File

#!/usr/bin/python3
# phasenn_test7.py
#
# David Rowe Oct 2019
# Keras model for testing phase modelling using NNs. Here we try
# estimating the phase of a 2nd order system from it's amplitudes.
# This models the dispersive component of speech phase spectra, up
# until now we have been testing with the linear phase component.
# This script emulates a Hilbert Transform, note however in practice
# speech is not minimum phase so HTs have there limitations for real
# speech signals.
import numpy as np
from scipy import signal
import sys
from keras.layers import Dense
from keras import models,layers
from keras import initializers
import keras.backend as K
import matplotlib.pyplot as plt
# constants
N = 80 # number of time domain samples in frame
nb_samples = 10000
nb_batch = 64
nb_epochs = 10
width = 256
pairs = 2*width
fo_min = 50
fo_max = 400
Fs = 8000
# Generate training data. Sparse log magnitude spectrum is input,
# phase spectrum of 2nd order system the output/target
mag = np.zeros((nb_samples, width))
phase = np.zeros((nb_samples, pairs))
for i in range(nb_samples):
# choose a random fo
r = np.random.rand(1)
fo = fo_min + (fo_max-fo_min)*r[0]
Wo = fo*2*np.pi/Fs
L = int(np.floor(np.pi/Wo))
# sample 2nd order IIR filter with random peak freq and amplitude
r = np.random.rand(2)
alpha = 0.1*np.pi + 0.8*np.pi*r[0]
gamma = r[1]
w,h = signal.freqz(1, [1, -2*gamma*np.cos(alpha), gamma*gamma], range(1,L)*Wo)
# map to sparse input and output arrays
for m in range(1,L):
bin = int(np.floor(m*Wo*width/np.pi))
mag[i,bin] = np.log10(np.abs(h[m-1]))
phase_rect = h[m-1]/np.abs(h[m-1])
phase[i,2*bin] = phase_rect.real
phase[i,2*bin+1] = phase_rect.imag
print(mag.shape)
print(phase.shape)
model = models.Sequential()
model.add(layers.Dense(pairs, activation='relu', input_dim=width))
model.add(layers.Dense(pairs, input_dim=pairs))
model.summary()
# Compile and fit our model
from keras import optimizers
sgd = optimizers.SGD(lr=0.04, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mse', optimizer=sgd)
history = model.fit(mag, phase, batch_size=nb_batch, epochs=nb_epochs)
# measure error in rectangular coordinates over all samples
phase_est = model.predict(mag)
err = (phase_est - phase)
var = np.var(err)
std = np.std(err)
print("rect var: %f std: %f" % (var,std))
err_angle = np.arctan2(err[:,1], 1)
print(err_angle.shape)
var = np.var(err_angle)
std = np.std(err_angle)
print("angle var: %4.2f std: %4.2f rads" % (var,std))
print("angle var: %4.2f std: %4.2f degs" % (var*180/np.pi,std*180/np.pi))
plot_en = 1;
if plot_en:
plt.figure(1)
plt.plot(history.history['loss'])
plt.title('model loss')
plt.xlabel('epoch')
plt.figure(2)
plt.hist(err_angle*180/np.pi, bins=20)
plt.title('phase angle error (deg)')
fig = plt.figure(3)
ax1 = fig.add_subplot(111)
plt.plot(20*mag[1,:])
ax2 = ax1.twinx()
phase = np.unwrap(np.arctan2(phase[1::2], phase[::2]))
plt.plot(phase, 'g')
phase_est = np.unwrap(np.arctan2(phase_est[1::2], phase_est[::2]))
plt.plot(phase, 'r')
plt.show()