From 6ebeeb68ae735ab3b27692380aac7a03260e319f Mon Sep 17 00:00:00 2001 From: Or Litany Date: Sat, 7 Sep 2019 12:42:46 -0700 Subject: [PATCH] shape completion moved deformable shape completion from mode-based to deep learning based methods. --- README.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index e4cc564..6d7741a 100644 --- a/README.md +++ b/README.md @@ -462,10 +462,6 @@ Dense 3D Reconstructions from a Single Image (2017) [[Paper]](http://ci2cv.n :gem: Variational Autoencoders for Deforming 3D Mesh Models(2018 CVPR) [[Paper]](http://qytan.com/publication/vae/)

-:gem: -Deformable Shape Completion with Graph Convolutional Autoencoders (2018 CVPR) [[Paper]](https://arxiv.org/pdf/1712.00268v1.pdf) -

- :gem: Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images (2018 CVPR) [[Paper]](http://files.is.tue.mpg.de/black/papers/zuffiCVPR2018.pdf)

@@ -702,6 +698,10 @@ _Deep Learning Methods_ :space_invader: Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers (2018 CVPR) [[Paper]](https://arxiv.org/pdf/1804.10975.pdf)

+:gem: +Deformable Shape Completion with Graph Convolutional Autoencoders (2018 CVPR) [[Paper]](https://arxiv.org/pdf/1712.00268v1.pdf) +

+ :space_invader: Global-to-Local Generative Model for 3D Shapes (SIGGRAPH Asia 2018) [[Paper]](http://vcc.szu.edu.cn/research/2018/G2L)[[Code]](https://github.com/Hao-HUST/G2LGAN)