commit
a485562c59
17
README.md
17
README.md
|
@ -538,27 +538,36 @@ _Deep Learning Methods_
|
|||
:camera::space_invader: <b>MarrNet: 3D Shape Reconstruction via 2.5D Sketches (2017)</b> [[Paper]](http://marrnet.csail.mit.edu/)
|
||||
<p align="center"><img width="50%" src="http://marrnet.csail.mit.edu/images/model.jpg" /></p>
|
||||
|
||||
:game_die: <b>PU-Net: Point Cloud Upsampling Network (2018)</b> [[Paper]](https://arxiv.org/pdf/1801.06761.pdf) [[Code]](https://github.com/yulequan/PU-Net)
|
||||
<p align="center"><img width="50%" src="http://appsrv.cse.cuhk.edu.hk/~lqyu/indexpics/Pu-Net.png" /></p>
|
||||
|
||||
:camera::space_invader::game_die: <b>Learning a Multi-View Stereo Machine (2017 NIPS)</b> [[Paper]](http://bair.berkeley.edu/blog/2017/09/05/unified-3d/)
|
||||
<p align="center"><img width="50%" src="http://bair.berkeley.edu/static/blog/unified-3d/Network.png" /></p>
|
||||
|
||||
:space_invader: <b>3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions (2017)</b> [[Paper]](http://3dmatch.cs.princeton.edu/)
|
||||
<p align="center"><img width="50%" src="http://3dmatch.cs.princeton.edu/img/overview.jpg" /></p>
|
||||
|
||||
:space_invader: <b>Scaling CNNs for High Resolution Volumetric Reconstruction from a Single Image (2017)</b> [[Paper]](https://ieeexplore.ieee.org/document/8265323/)
|
||||
<p align="center"><img width="50%" src="https://github.com/frankhjwx/3D-Machine-Learning/blob/master/imgs/Scaling%20CNN%20Reconstruction.png" /></p>
|
||||
|
||||
:game_die: <b>PU-Net: Point Cloud Upsampling Network (2018)</b> [[Paper]](https://arxiv.org/pdf/1801.06761.pdf) [[Code]](https://github.com/yulequan/PU-Net)
|
||||
<p align="center"><img width="50%" src="http://appsrv.cse.cuhk.edu.hk/~lqyu/indexpics/Pu-Net.png" /></p>
|
||||
|
||||
:camera::space_invader: <b>Multi-view Consistency as Supervisory Signal for Learning Shape and Pose Prediction (2018 CVPR)</b> [[Paper]](https://shubhtuls.github.io/mvcSnP/)
|
||||
<p align="center"><img width="50%" src="https://shubhtuls.github.io/mvcSnP/resources/images/teaser.png" /></p>
|
||||
|
||||
:camera::game_die: <b>Object-Centric Photometric Bundle Adjustment with Deep Shape Prior (2018)</b> [[Paper]](http://ci2cv.net/media/papers/WACV18.pdf)
|
||||
<p align="center"><img width="50%" src="https://chenhsuanlin.bitbucket.io/images/rp/r06.png" /></p>
|
||||
|
||||
:camera::game_die: <b>Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction (AAAI 2018)</b> [[Paper]](https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation/)
|
||||
:camera::game_die: <b>Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction (2018 AAAI)</b> [[Paper]](https://chenhsuanlin.bitbucket.io/3D-point-cloud-generation/)
|
||||
<p align="center"><img width="50%" src="https://chenhsuanlin.bitbucket.io/images/rp/r05.png" /></p>
|
||||
|
||||
:gem: <b>Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images (2018)</b> [[Paper]](http://bigvid.fudan.edu.cn/pixel2mesh/)
|
||||
<p align="center"><img width="50%" src="http://bigvid.fudan.edu.cn/pixel2mesh/eccv2018/pipeline_01.jpg" /></p>
|
||||
|
||||
:gem: <b>AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation (2018 CVPR)</b> [[Paper]](http://imagine.enpc.fr/~groueixt/atlasnet/) [[Code]](https://github.com/ThibaultGROUEIX/AtlasNet)
|
||||
<p align="center"><img width="50%" src="http://imagine.enpc.fr/~groueixt/atlasnet/imgs/teaser.small.png" /></p>
|
||||
|
||||
:space_invader::gem: <b>Deep Marching Cubes: Learning Explicit Surface Representations (2018 CVPR)</b> [[Paper]](http://www.cvlibs.net/publications/Liao2018CVPR.pdf)
|
||||
<p align="center"><img width="50%" src="https://github.com/frankhjwx/3D-Machine-Learning/blob/master/imgs/Deep%20Marching%20Cubes.png" /></p>
|
||||
|
||||
<a name="style_transfer" />
|
||||
|
||||
## Style Transfer
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 54 KiB |
Binary file not shown.
After Width: | Height: | Size: 192 KiB |
Loading…
Reference in New Issue