update config

pull/30/head
xianpeng 2022-03-16 09:12:44 -04:00
parent c37261b9d1
commit c3254266e1
1 changed files with 109 additions and 0 deletions

View File

@ -0,0 +1,109 @@
# dataset settings
dataset_type = 'KittiMonoDatasetMonoCon'
data_root = 'data/kitti/'
class_names = ['Car']
input_modality = dict(
use_lidar=False,
use_camera=True,
use_radar=False,
use_map=False,
use_external=False)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFileMono3D', to_float32=True, color_type='color'),
dict(
type='LoadAnnotations3DMonoCon',
with_bbox=True,
with_2D_kpts=True,
with_label=True,
with_attr_label=False,
with_bbox_3d=True,
with_label_3d=True,
with_bbox_depth=True),
dict(
type='PhotoMetricDistortion',
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
dict(type='RandomShiftMonoCon', shift_ratio=0.5, max_shift_px=32),
dict(type='RandomFlipMonoCon', flip_ratio_bev_horizontal=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
# Note: keys ['gt_kpts_2d', 'gt_kpts_valid_mask'] is hard coded in DefaultFormatBundle
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(
type='Collect3D',
keys=[
'img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_ignore', 'gt_bboxes_3d',
'gt_labels_3d', 'centers2d', 'depths', 'gt_kpts_2d', 'gt_kpts_valid_mask',
],
meta_keys=('filename', 'ori_shape', 'img_shape', 'lidar2img',
'pad_shape', 'scale_factor', 'flip',
'cam_intrinsic', 'pcd_horizontal_flip',
'pcd_vertical_flip', 'box_mode_3d', 'box_type_3d',
'img_norm_cfg', 'rect', 'Trv2c', 'P2', 'pcd_trans',
'sample_idx', 'pcd_scale_factor', 'pcd_rotation',
'pts_filename', 'transformation_3d_flow', 'cam_intrinsic_p0',)
),
]
test_pipeline = [
dict(type='LoadImageFromFileMono3D'),
dict(
type='MultiScaleFlipAugMonoCon',
scale_factor=1.0,
flip=False,
transforms=[
dict(type='RandomFlipMonoCon'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['img']),
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_train_mono3d.coco.json',
info_file=data_root + 'kitti_infos_train.pkl',
img_prefix=data_root,
classes=class_names,
pipeline=train_pipeline,
modality=input_modality,
min_height=25,
min_depth=2,
max_depth=65,
max_truncation=0.5,
max_occlusion=2,
box_type_3d='Camera'),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_val_mono3d.coco.json',
info_file=data_root + 'kitti_infos_val.pkl',
img_prefix=data_root,
classes=class_names,
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
box_type_3d='Camera'),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'kitti_infos_val_mono3d.coco.json',
info_file=data_root + 'kitti_infos_val.pkl',
img_prefix=data_root,
classes=class_names,
pipeline=test_pipeline,
modality=input_modality,
test_mode=True,
box_type_3d='Camera'))
evaluation = dict(interval=5)