MonoCon/mmdetection3d-0.14.0/tests/test_data/test_datasets/test_kitti_dataset.py

446 lines
18 KiB
Python

import numpy as np
import os
import pytest
import tempfile
import torch
from mmdet3d.core.bbox import LiDARInstance3DBoxes
from mmdet3d.datasets import KittiDataset
def _generate_kitti_dataset_config():
data_root = 'tests/data/kitti'
ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
classes = ['Pedestrian', 'Cyclist', 'Car']
pts_prefix = 'velodyne_reduced'
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=dict(backend='disk')),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1.0, 1.0],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='DefaultFormatBundle3D',
class_names=classes,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
]
modality = dict(use_lidar=True, use_camera=False)
split = 'training'
return data_root, ann_file, classes, pts_prefix, pipeline, modality, split
def _generate_kitti_multi_modality_dataset_config():
data_root = 'tests/data/kitti'
ann_file = 'tests/data/kitti/kitti_infos_train.pkl'
classes = ['Pedestrian', 'Cyclist', 'Car']
pts_prefix = 'velodyne_reduced'
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=dict(backend='disk')),
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(type='Resize', multiscale_mode='value', keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='DefaultFormatBundle3D',
class_names=classes,
with_label=False),
dict(type='Collect3D', keys=['points', 'img'])
])
]
modality = dict(use_lidar=True, use_camera=True)
split = 'training'
return data_root, ann_file, classes, pts_prefix, pipeline, modality, split
def test_getitem():
np.random.seed(0)
data_root, ann_file, classes, pts_prefix, \
_, modality, split = _generate_kitti_dataset_config()
pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4,
file_client_args=dict(backend='disk')),
dict(
type='LoadAnnotations3D',
with_bbox_3d=True,
with_label_3d=True,
file_client_args=dict(backend='disk')),
dict(
type='ObjectSample',
db_sampler=dict(
data_root='tests/data/kitti/',
info_path='tests/data/kitti/kitti_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(Pedestrian=10)),
classes=['Pedestrian', 'Cyclist', 'Car'],
sample_groups=dict(Pedestrian=6))),
dict(
type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(
type='PointsRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(
type='ObjectRangeFilter',
point_cloud_range=[0, -40, -3, 70.4, 40, 1]),
dict(type='PointShuffle'),
dict(
type='DefaultFormatBundle3D',
class_names=['Pedestrian', 'Cyclist', 'Car']),
dict(
type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
pipeline, classes, modality)
data = kitti_dataset[0]
points = data['points']._data
gt_bboxes_3d = data['gt_bboxes_3d']._data
gt_labels_3d = data['gt_labels_3d']._data
expected_gt_bboxes_3d = torch.tensor(
[[9.5081, -5.2269, -1.1370, 0.4915, 1.2288, 1.9353, -2.7136]])
expected_gt_labels_3d = torch.tensor([0])
assert points.shape == (780, 4)
assert torch.allclose(
gt_bboxes_3d.tensor, expected_gt_bboxes_3d, atol=1e-4)
assert torch.all(gt_labels_3d == expected_gt_labels_3d)
# test multi-modality KITTI dataset
np.random.seed(0)
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
img_norm_cfg = dict(
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
multi_modality_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4),
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='Resize',
img_scale=[(640, 192), (2560, 768)],
multiscale_mode='range',
keep_ratio=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05],
translation_std=[0.2, 0.2, 0.2]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle3D', class_names=classes),
dict(
type='Collect3D',
keys=['points', 'img', 'gt_bboxes_3d', 'gt_labels_3d']),
]
modality = dict(use_lidar=True, use_camera=True)
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
multi_modality_pipeline, classes, modality)
data = kitti_dataset[0]
img = data['img']._data
lidar2img = data['img_metas']._data['lidar2img']
expected_lidar2img = np.array(
[[6.02943726e+02, -7.07913330e+02, -1.22748432e+01, -1.70942719e+02],
[1.76777252e+02, 8.80879879e+00, -7.07936157e+02, -1.02568634e+02],
[9.99984801e-01, -1.52826728e-03, -5.29071223e-03, -3.27567995e-01],
[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
assert img.shape[:] == (3, 416, 1344)
assert np.allclose(lidar2img, expected_lidar2img)
def test_evaluate():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
data_root, ann_file, classes, pts_prefix, \
pipeline, modality, split = _generate_kitti_dataset_config()
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
pipeline, classes, modality)
boxes_3d = LiDARInstance3DBoxes(
torch.tensor(
[[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
labels_3d = torch.tensor([
0,
])
scores_3d = torch.tensor([0.5])
metric = ['mAP']
result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
ap_dict = kitti_dataset.evaluate([result], metric)
assert np.isclose(ap_dict['KITTI/Overall_3D_easy'], 3.0303030303030307)
assert np.isclose(ap_dict['KITTI/Overall_3D_moderate'], 3.0303030303030307)
assert np.isclose(ap_dict['KITTI/Overall_3D_hard'], 3.0303030303030307)
def test_show():
import mmcv
from os import path as osp
from mmdet3d.core.bbox import LiDARInstance3DBoxes
tmp_dir = tempfile.TemporaryDirectory()
temp_dir = tmp_dir.name
data_root, ann_file, classes, pts_prefix, \
pipeline, modality, split = _generate_kitti_dataset_config()
kitti_dataset = KittiDataset(
data_root, ann_file, split=split, modality=modality, pipeline=pipeline)
boxes_3d = LiDARInstance3DBoxes(
torch.tensor(
[[46.1218, -4.6496, -0.9275, 0.5316, 1.4442, 1.7450, 1.1749],
[33.3189, 0.1981, 0.3136, 0.5656, 1.2301, 1.7985, 1.5723],
[46.1366, -4.6404, -0.9510, 0.5162, 1.6501, 1.7540, 1.3778],
[33.2646, 0.2297, 0.3446, 0.5746, 1.3365, 1.7947, 1.5430],
[58.9079, 16.6272, -1.5829, 1.5656, 3.9313, 1.4899, 1.5505]]))
scores_3d = torch.tensor([0.1815, 0.1663, 0.5792, 0.2194, 0.2780])
labels_3d = torch.tensor([0, 0, 1, 1, 2])
result = dict(boxes_3d=boxes_3d, scores_3d=scores_3d, labels_3d=labels_3d)
results = [result]
kitti_dataset.show(results, temp_dir, show=False)
pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
mmcv.check_file_exist(pts_file_path)
mmcv.check_file_exist(gt_file_path)
mmcv.check_file_exist(pred_file_path)
tmp_dir.cleanup()
# test show with pipeline
eval_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4),
dict(
type='DefaultFormatBundle3D',
class_names=classes,
with_label=False),
dict(type='Collect3D', keys=['points'])
]
tmp_dir = tempfile.TemporaryDirectory()
temp_dir = tmp_dir.name
kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
mmcv.check_file_exist(pts_file_path)
mmcv.check_file_exist(gt_file_path)
mmcv.check_file_exist(pred_file_path)
tmp_dir.cleanup()
# test multi-modality show
tmp_dir = tempfile.TemporaryDirectory()
temp_dir = tmp_dir.name
_, _, _, _, multi_modality_pipeline, modality, _ = \
_generate_kitti_multi_modality_dataset_config()
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
multi_modality_pipeline, classes, modality)
kitti_dataset.show(results, temp_dir, show=False)
pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
mmcv.check_file_exist(pts_file_path)
mmcv.check_file_exist(gt_file_path)
mmcv.check_file_exist(pred_file_path)
mmcv.check_file_exist(img_file_path)
mmcv.check_file_exist(img_pred_path)
mmcv.check_file_exist(img_gt_file)
tmp_dir.cleanup()
# test multi-modality show with pipeline
eval_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4,
use_dim=4),
dict(type='LoadImageFromFile'),
dict(
type='DefaultFormatBundle3D',
class_names=classes,
with_label=False),
dict(type='Collect3D', keys=['points', 'img'])
]
tmp_dir = tempfile.TemporaryDirectory()
temp_dir = tmp_dir.name
kitti_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline)
pts_file_path = osp.join(temp_dir, '000000', '000000_points.obj')
gt_file_path = osp.join(temp_dir, '000000', '000000_gt.obj')
pred_file_path = osp.join(temp_dir, '000000', '000000_pred.obj')
img_file_path = osp.join(temp_dir, '000000', '000000_img.png')
img_pred_path = osp.join(temp_dir, '000000', '000000_pred.png')
img_gt_file = osp.join(temp_dir, '000000', '000000_gt.png')
mmcv.check_file_exist(pts_file_path)
mmcv.check_file_exist(gt_file_path)
mmcv.check_file_exist(pred_file_path)
mmcv.check_file_exist(img_file_path)
mmcv.check_file_exist(img_pred_path)
mmcv.check_file_exist(img_gt_file)
tmp_dir.cleanup()
def test_format_results():
from mmdet3d.core.bbox import LiDARInstance3DBoxes
data_root, ann_file, classes, pts_prefix, \
pipeline, modality, split = _generate_kitti_dataset_config()
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
pipeline, classes, modality)
boxes_3d = LiDARInstance3DBoxes(
torch.tensor(
[[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
labels_3d = torch.tensor([
0,
])
scores_3d = torch.tensor([0.5])
result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
results = [result]
result_files, tmp_dir = kitti_dataset.format_results(results)
expected_name = np.array(['Pedestrian'])
expected_truncated = np.array([0.])
expected_occluded = np.array([0])
expected_alpha = np.array([-3.3410306])
expected_bbox = np.array([[710.443, 144.00221, 820.29114, 307.58667]])
expected_dimensions = np.array([[1.2, 1.89, 0.48]])
expected_location = np.array([[1.8399826, 1.4700007, 8.410018]])
expected_rotation_y = np.array([-3.1315928])
expected_score = np.array([0.5])
expected_sample_idx = np.array([0])
assert np.all(result_files[0]['name'] == expected_name)
assert np.allclose(result_files[0]['truncated'], expected_truncated)
assert np.all(result_files[0]['occluded'] == expected_occluded)
assert np.allclose(result_files[0]['alpha'], expected_alpha)
assert np.allclose(result_files[0]['bbox'], expected_bbox)
assert np.allclose(result_files[0]['dimensions'], expected_dimensions)
assert np.allclose(result_files[0]['location'], expected_location)
assert np.allclose(result_files[0]['rotation_y'], expected_rotation_y)
assert np.allclose(result_files[0]['score'], expected_score)
assert np.allclose(result_files[0]['sample_idx'], expected_sample_idx)
tmp_dir.cleanup()
def test_bbox2result_kitti():
data_root, ann_file, classes, pts_prefix, \
pipeline, modality, split = _generate_kitti_dataset_config()
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
pipeline, classes, modality)
boxes_3d = LiDARInstance3DBoxes(
torch.tensor(
[[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
labels_3d = torch.tensor([
0,
])
scores_3d = torch.tensor([0.5])
result = dict(boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
results = [result]
tmp_dir = tempfile.TemporaryDirectory()
temp_kitti_result_dir = tmp_dir.name
det_annos = kitti_dataset.bbox2result_kitti(
results, classes, submission_prefix=temp_kitti_result_dir)
expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
expected_name = np.array(['Pedestrian'])
expected_dimensions = np.array([1.2000, 1.8900, 0.4800])
expected_rotation_y = np.array([0.0100]) - np.pi
expected_score = np.array([0.5])
assert np.all(det_annos[0]['name'] == expected_name)
assert np.allclose(det_annos[0]['rotation_y'], expected_rotation_y)
assert np.allclose(det_annos[0]['score'], expected_score)
assert np.allclose(det_annos[0]['dimensions'], expected_dimensions)
assert os.path.exists(expected_file_path)
tmp_dir.cleanup()
tmp_dir = tempfile.TemporaryDirectory()
temp_kitti_result_dir = tmp_dir.name
boxes_3d = LiDARInstance3DBoxes(torch.tensor([]))
labels_3d = torch.tensor([])
scores_3d = torch.tensor([])
empty_result = dict(
boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d)
results = [empty_result]
det_annos = kitti_dataset.bbox2result_kitti(
results, classes, submission_prefix=temp_kitti_result_dir)
expected_file_path = os.path.join(temp_kitti_result_dir, '000000.txt')
assert os.path.exists(expected_file_path)
tmp_dir.cleanup()
def test_bbox2result_kitti2d():
data_root, ann_file, classes, pts_prefix, \
pipeline, modality, split = _generate_kitti_dataset_config()
kitti_dataset = KittiDataset(data_root, ann_file, split, pts_prefix,
pipeline, classes, modality)
bboxes = np.array([[[46.1218, -4.6496, -0.9275, 0.5316, 0.5],
[33.3189, 0.1981, 0.3136, 0.5656, 0.5]],
[[46.1366, -4.6404, -0.9510, 0.5162, 0.5],
[33.2646, 0.2297, 0.3446, 0.5746, 0.5]]])
det_annos = kitti_dataset.bbox2result_kitti2d([bboxes], classes)
expected_name = np.array(
['Pedestrian', 'Pedestrian', 'Cyclist', 'Cyclist'])
expected_bbox = np.array([[46.1218, -4.6496, -0.9275, 0.5316],
[33.3189, 0.1981, 0.3136, 0.5656],
[46.1366, -4.6404, -0.951, 0.5162],
[33.2646, 0.2297, 0.3446, 0.5746]])
expected_score = np.array([0.5, 0.5, 0.5, 0.5])
assert np.all(det_annos[0]['name'] == expected_name)
assert np.allclose(det_annos[0]['bbox'], expected_bbox)
assert np.allclose(det_annos[0]['score'], expected_score)