MonoCon/mmdetection3d-0.14.0/tests/test_runtime/test_config.py

275 lines
10 KiB
Python

from os.path import dirname, exists, join, relpath
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmdetection3d repo
repo_dpath = dirname(dirname(dirname(__file__)))
except NameError:
# For IPython development when this __file__ is not defined
import mmdet3d
repo_dpath = dirname(dirname(mmdet3d.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def test_config_build_model():
"""Test that all detection models defined in the configs can be
initialized."""
from mmcv import Config
from mmdet3d.models import build_model
config_dpath = _get_config_directory()
print('Found config_dpath = {!r}'.format(config_dpath))
import glob
config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
config_names = [relpath(p, config_dpath) for p in config_fpaths]
print('Using {} config files'.format(len(config_names)))
for config_fname in config_names:
config_fpath = join(config_dpath, config_fname)
config_mod = Config.fromfile(config_fpath)
config_mod.model
config_mod.model.train_cfg
config_mod.model.test_cfg
print('Building detector, config_fpath = {!r}'.format(config_fpath))
# Remove pretrained keys to allow for testing in an offline environment
if 'pretrained' in config_mod.model:
config_mod.model['pretrained'] = None
detector = build_model(config_mod.model)
assert detector is not None
if 'roi_head' in config_mod.model.keys():
# for two stage detector
# detectors must have bbox head
assert detector.roi_head.with_bbox and detector.with_bbox
assert detector.roi_head.with_mask == detector.with_mask
head_config = config_mod.model['roi_head']
if head_config.type == 'PartAggregationROIHead':
check_parta2_roi_head(head_config, detector.roi_head)
elif head_config.type == 'H3DRoIHead':
check_h3d_roi_head(head_config, detector.roi_head)
else:
_check_roi_head(head_config, detector.roi_head)
# else:
# # for single stage detector
# # detectors must have bbox head
# # assert detector.with_bbox
# head_config = config_mod.model['bbox_head']
# _check_bbox_head(head_config, detector.bbox_head)
def test_config_build_pipeline():
"""Test that all detection models defined in the configs can be
initialized."""
from mmcv import Config
from mmdet3d.datasets.pipelines import Compose
config_dpath = _get_config_directory()
print('Found config_dpath = {!r}'.format(config_dpath))
# Other configs needs database sampler.
config_names = [
'pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py',
]
print('Using {} config files'.format(len(config_names)))
for config_fname in config_names:
config_fpath = join(config_dpath, config_fname)
config_mod = Config.fromfile(config_fpath)
# build train_pipeline
train_pipeline = Compose(config_mod.train_pipeline)
test_pipeline = Compose(config_mod.test_pipeline)
assert train_pipeline is not None
assert test_pipeline is not None
def _check_roi_head(config, head):
# check consistency between head_config and roi_head
assert config['type'] == head.__class__.__name__
# check roi_align
bbox_roi_cfg = config.bbox_roi_extractor
bbox_roi_extractor = head.bbox_roi_extractor
_check_roi_extractor(bbox_roi_cfg, bbox_roi_extractor)
# check bbox head infos
bbox_cfg = config.bbox_head
bbox_head = head.bbox_head
_check_bbox_head(bbox_cfg, bbox_head)
if head.with_mask:
# check roi_align
if config.mask_roi_extractor:
mask_roi_cfg = config.mask_roi_extractor
mask_roi_extractor = head.mask_roi_extractor
_check_roi_extractor(mask_roi_cfg, mask_roi_extractor,
bbox_roi_extractor)
# check mask head infos
mask_head = head.mask_head
mask_cfg = config.mask_head
_check_mask_head(mask_cfg, mask_head)
def _check_roi_extractor(config, roi_extractor, prev_roi_extractor=None):
from torch import nn as nn
if isinstance(roi_extractor, nn.ModuleList):
if prev_roi_extractor:
prev_roi_extractor = prev_roi_extractor[0]
roi_extractor = roi_extractor[0]
assert (len(config.featmap_strides) == len(roi_extractor.roi_layers))
assert (config.out_channels == roi_extractor.out_channels)
from torch.nn.modules.utils import _pair
assert (_pair(config.roi_layer.output_size) ==
roi_extractor.roi_layers[0].output_size)
if 'use_torchvision' in config.roi_layer:
assert (config.roi_layer.use_torchvision ==
roi_extractor.roi_layers[0].use_torchvision)
elif 'aligned' in config.roi_layer:
assert (
config.roi_layer.aligned == roi_extractor.roi_layers[0].aligned)
if prev_roi_extractor:
assert (roi_extractor.roi_layers[0].aligned ==
prev_roi_extractor.roi_layers[0].aligned)
assert (roi_extractor.roi_layers[0].use_torchvision ==
prev_roi_extractor.roi_layers[0].use_torchvision)
def _check_mask_head(mask_cfg, mask_head):
from torch import nn as nn
if isinstance(mask_cfg, list):
for single_mask_cfg, single_mask_head in zip(mask_cfg, mask_head):
_check_mask_head(single_mask_cfg, single_mask_head)
elif isinstance(mask_head, nn.ModuleList):
for single_mask_head in mask_head:
_check_mask_head(mask_cfg, single_mask_head)
else:
assert mask_cfg['type'] == mask_head.__class__.__name__
assert mask_cfg.in_channels == mask_head.in_channels
assert (
mask_cfg.conv_out_channels == mask_head.conv_logits.in_channels)
class_agnostic = mask_cfg.get('class_agnostic', False)
out_dim = (1 if class_agnostic else mask_cfg.num_classes)
assert mask_head.conv_logits.out_channels == out_dim
def _check_bbox_head(bbox_cfg, bbox_head):
from torch import nn as nn
if isinstance(bbox_cfg, list):
for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
_check_bbox_head(single_bbox_cfg, single_bbox_head)
elif isinstance(bbox_head, nn.ModuleList):
for single_bbox_head in bbox_head:
_check_bbox_head(bbox_cfg, single_bbox_head)
else:
assert bbox_cfg['type'] == bbox_head.__class__.__name__
assert bbox_cfg.in_channels == bbox_head.in_channels
with_cls = bbox_cfg.get('with_cls', True)
if with_cls:
fc_out_channels = bbox_cfg.get('fc_out_channels', 2048)
assert (fc_out_channels == bbox_head.fc_cls.in_features)
assert bbox_cfg.num_classes + 1 == bbox_head.fc_cls.out_features
with_reg = bbox_cfg.get('with_reg', True)
if with_reg:
out_dim = (4 if bbox_cfg.reg_class_agnostic else 4 *
bbox_cfg.num_classes)
assert bbox_head.fc_reg.out_features == out_dim
def check_parta2_roi_head(config, head):
assert config['type'] == head.__class__.__name__
# check seg_roi_extractor
seg_roi_cfg = config.seg_roi_extractor
seg_roi_extractor = head.seg_roi_extractor
_check_parta2_roi_extractor(seg_roi_cfg, seg_roi_extractor)
# check part_roi_extractor
part_roi_cfg = config.part_roi_extractor
part_roi_extractor = head.part_roi_extractor
_check_parta2_roi_extractor(part_roi_cfg, part_roi_extractor)
# check bbox head infos
bbox_cfg = config.bbox_head
bbox_head = head.bbox_head
_check_parta2_bbox_head(bbox_cfg, bbox_head)
def _check_parta2_roi_extractor(config, roi_extractor):
assert config['type'] == roi_extractor.__class__.__name__
assert (config.roi_layer.out_size == roi_extractor.roi_layer.out_size)
assert (config.roi_layer.max_pts_per_voxel ==
roi_extractor.roi_layer.max_pts_per_voxel)
def _check_parta2_bbox_head(bbox_cfg, bbox_head):
from torch import nn as nn
if isinstance(bbox_cfg, list):
for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
_check_bbox_head(single_bbox_cfg, single_bbox_head)
elif isinstance(bbox_head, nn.ModuleList):
for single_bbox_head in bbox_head:
_check_bbox_head(bbox_cfg, single_bbox_head)
else:
assert bbox_cfg['type'] == bbox_head.__class__.__name__
assert bbox_cfg.seg_in_channels == bbox_head.seg_conv[0][0].in_channels
assert bbox_cfg.part_in_channels == bbox_head.part_conv[0][
0].in_channels
def check_h3d_roi_head(config, head):
assert config['type'] == head.__class__.__name__
# check seg_roi_extractor
primitive_z_cfg = config.primitive_list[0]
primitive_z_extractor = head.primitive_z
_check_primitive_extractor(primitive_z_cfg, primitive_z_extractor)
primitive_xy_cfg = config.primitive_list[1]
primitive_xy_extractor = head.primitive_xy
_check_primitive_extractor(primitive_xy_cfg, primitive_xy_extractor)
primitive_line_cfg = config.primitive_list[2]
primitive_line_extractor = head.primitive_line
_check_primitive_extractor(primitive_line_cfg, primitive_line_extractor)
# check bbox head infos
bbox_cfg = config.bbox_head
bbox_head = head.bbox_head
_check_h3d_bbox_head(bbox_cfg, bbox_head)
def _check_primitive_extractor(config, primitive_extractor):
assert config['type'] == primitive_extractor.__class__.__name__
assert (config.num_dims == primitive_extractor.num_dims)
assert (config.num_classes == primitive_extractor.num_classes)
def _check_h3d_bbox_head(bbox_cfg, bbox_head):
assert bbox_cfg['type'] == bbox_head.__class__.__name__
assert bbox_cfg.num_proposal * \
6 == bbox_head.surface_center_matcher.num_point[0]
assert bbox_cfg.num_proposal * \
12 == bbox_head.line_center_matcher.num_point[0]
assert bbox_cfg.suface_matching_cfg.mlp_channels[-1] * \
18 == bbox_head.bbox_pred[0].in_channels