MonoCon/mmdetection3d-0.14.0/tests/test_utils/test_points.py

1088 lines
49 KiB
Python

import numpy as np
import pytest
import torch
from mmdet3d.core.points import (BasePoints, CameraPoints, DepthPoints,
LiDARPoints)
def test_base_points():
# test empty initialization
empty_boxes = []
points = BasePoints(empty_boxes)
assert points.tensor.shape[0] == 0
assert points.tensor.shape[1] == 3
# Test init with origin
points_np = np.array([[-5.24223238e+00, 4.00209696e+01, 2.97570381e-01],
[-2.66751588e+01, 5.59499564e+00, -9.14345860e-01],
[-5.80979675e+00, 3.54092357e+01, 2.00889888e-01],
[-3.13086877e+01, 1.09007628e+00, -1.94612112e-01]],
dtype=np.float32)
base_points = BasePoints(points_np, points_dim=3)
assert base_points.tensor.shape[0] == 4
# Test init with color and height
points_np = np.array([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00, -9.14345860e-01,
0.1502, 0.3707, 0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01, 2.00889888e-01,
0.6565, 0.6248, 0.6954, 0.2538
],
[
-3.13086877e+01, 1.09007628e+00, -1.94612112e-01,
0.2803, 0.0258, 0.4896, 0.3269
]],
dtype=np.float32)
base_points = BasePoints(
points_np,
points_dim=7,
attribute_dims=dict(color=[3, 4, 5], height=6))
expected_tensor = torch.tensor([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00,
-9.14345860e-01, 0.1502, 0.3707,
0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01,
2.00889888e-01, 0.6565, 0.6248, 0.6954,
0.2538
],
[
-3.13086877e+01, 1.09007628e+00,
-1.94612112e-01, 0.2803, 0.0258,
0.4896, 0.3269
]])
assert torch.allclose(expected_tensor, base_points.tensor)
assert torch.allclose(expected_tensor[:, :3], base_points.coord)
assert torch.allclose(expected_tensor[:, 3:6], base_points.color)
assert torch.allclose(expected_tensor[:, 6], base_points.height)
# test points clone
new_base_points = base_points.clone()
assert torch.allclose(new_base_points.tensor, base_points.tensor)
# test points shuffle
new_base_points.shuffle()
assert new_base_points.tensor.shape == torch.Size([4, 7])
# test points rotation
rot_mat = torch.tensor([[0.93629336, -0.27509585, 0.21835066],
[0.28962948, 0.95642509, -0.03695701],
[-0.19866933, 0.0978434, 0.97517033]])
base_points.rotate(rot_mat)
expected_tensor = torch.tensor([[
6.6239e+00, 3.9748e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.3174e+01, 1.2600e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
4.7760e+00, 3.5484e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8960e+01, 9.6364e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, base_points.tensor, 1e-3)
new_base_points = base_points.clone()
new_base_points.rotate(0.1, axis=2)
expected_tensor = torch.tensor([[
2.6226e+00, 4.0211e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.4316e+01, 1.0224e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
1.2096e+00, 3.5784e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.9777e+01, 6.6971e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, new_base_points.tensor, 1e-3)
# test points translation
translation_vector = torch.tensor([0.93629336, -0.27509585, 0.21835066])
base_points.translate(translation_vector)
expected_tensor = torch.tensor([[
7.5602e+00, 3.9473e+01, -2.1152e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.2237e+01, 1.2325e+01, -6.7046e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
5.7123e+00, 3.5209e+01, -2.1629e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8023e+01, 9.3613e+00, -6.8480e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, base_points.tensor, 1e-4)
# test points filter
point_range = [-10, -40, -10, 10, 40, 10]
in_range_flags = base_points.in_range_3d(point_range)
expected_flags = torch.tensor([True, False, True, False])
assert torch.all(in_range_flags == expected_flags)
# test points scale
base_points.scale(1.2)
expected_tensor = torch.tensor([[
9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.6685e+01, 1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
6.8547e+00, 4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-3.3628e+01, 1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, base_points.tensor, 1e-3)
# test get_item
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297]])
assert torch.allclose(expected_tensor, base_points[1].tensor, 1e-4)
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, base_points[1:3].tensor, 1e-4)
mask = torch.tensor([True, False, True, False])
expected_tensor = torch.tensor(
[[9.0722, 47.3678, -2.5382, 0.6666, 0.1956, 0.4974, 0.9409],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, base_points[mask].tensor, 1e-4)
# test length
assert len(base_points) == 4
# test repr
expected_repr = 'BasePoints(\n '\
'tensor([[ 9.0722e+00, 4.7368e+01, -2.5382e+00, '\
'6.6660e-01, 1.9560e-01,\n 4.9740e-01, '\
'9.4090e-01],\n '\
'[-2.6685e+01, 1.4790e+01, -8.0455e+00, 1.5020e-01, '\
'3.7070e-01,\n '\
'1.0860e-01, 6.2970e-01],\n '\
'[ 6.8547e+00, 4.2251e+01, -2.5955e+00, 6.5650e-01, '\
'6.2480e-01,\n '\
'6.9540e-01, 2.5380e-01],\n '\
'[-3.3628e+01, 1.1234e+01, -8.2176e+00, 2.8030e-01, '\
'2.5800e-02,\n '\
'4.8960e-01, 3.2690e-01]]))'
assert expected_repr == str(base_points)
# test concatenate
base_points_clone = base_points.clone()
cat_points = BasePoints.cat([base_points, base_points_clone])
assert torch.allclose(cat_points.tensor[:len(base_points)],
base_points.tensor)
# test iteration
for i, point in enumerate(base_points):
assert torch.allclose(point, base_points.tensor[i])
# test new_point
new_points = base_points.new_point([[1, 2, 3, 4, 5, 6, 7]])
assert torch.allclose(
new_points.tensor,
torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=base_points.tensor.dtype))
# test BasePoint indexing
base_points = BasePoints(
points_np,
points_dim=7,
attribute_dims=dict(height=3, color=[4, 5, 6]))
assert torch.all(base_points[:, 3:].tensor == torch.tensor(points_np[:,
3:]))
# test set and get function for BasePoint color and height
base_points = BasePoints(points_np[:, :3])
assert base_points.attribute_dims is None
base_points.height = points_np[:, 3]
assert base_points.attribute_dims == dict(height=3)
base_points.color = points_np[:, 4:]
assert base_points.attribute_dims == dict(height=3, color=[4, 5, 6])
assert torch.allclose(base_points.height,
torch.tensor([0.6666, 0.1502, 0.6565, 0.2803]))
assert torch.allclose(
base_points.color,
torch.tensor([[0.1956, 0.4974, 0.9409], [0.3707, 0.1086, 0.6297],
[0.6248, 0.6954, 0.2538], [0.0258, 0.4896, 0.3269]]))
# values to be set should have correct shape (e.g. number of points)
with pytest.raises(ValueError):
base_points.coord = np.random.rand(5, 3)
with pytest.raises(ValueError):
base_points.height = np.random.rand(3)
with pytest.raises(ValueError):
base_points.color = np.random.rand(4, 2)
base_points.coord = points_np[:, [1, 2, 3]]
base_points.height = points_np[:, 0]
base_points.color = points_np[:, [4, 5, 6]]
assert np.allclose(base_points.coord, points_np[:, 1:4])
assert np.allclose(base_points.height, points_np[:, 0])
assert np.allclose(base_points.color, points_np[:, 4:])
def test_cam_points():
# test empty initialization
empty_boxes = []
points = CameraPoints(empty_boxes)
assert points.tensor.shape[0] == 0
assert points.tensor.shape[1] == 3
# Test init with origin
points_np = np.array([[-5.24223238e+00, 4.00209696e+01, 2.97570381e-01],
[-2.66751588e+01, 5.59499564e+00, -9.14345860e-01],
[-5.80979675e+00, 3.54092357e+01, 2.00889888e-01],
[-3.13086877e+01, 1.09007628e+00, -1.94612112e-01]],
dtype=np.float32)
cam_points = CameraPoints(points_np, points_dim=3)
assert cam_points.tensor.shape[0] == 4
# Test init with color and height
points_np = np.array([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00, -9.14345860e-01,
0.1502, 0.3707, 0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01, 2.00889888e-01,
0.6565, 0.6248, 0.6954, 0.2538
],
[
-3.13086877e+01, 1.09007628e+00, -1.94612112e-01,
0.2803, 0.0258, 0.4896, 0.3269
]],
dtype=np.float32)
cam_points = CameraPoints(
points_np,
points_dim=7,
attribute_dims=dict(color=[3, 4, 5], height=6))
expected_tensor = torch.tensor([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00,
-9.14345860e-01, 0.1502, 0.3707,
0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01,
2.00889888e-01, 0.6565, 0.6248, 0.6954,
0.2538
],
[
-3.13086877e+01, 1.09007628e+00,
-1.94612112e-01, 0.2803, 0.0258,
0.4896, 0.3269
]])
assert torch.allclose(expected_tensor, cam_points.tensor)
assert torch.allclose(expected_tensor[:, :3], cam_points.coord)
assert torch.allclose(expected_tensor[:, 3:6], cam_points.color)
assert torch.allclose(expected_tensor[:, 6], cam_points.height)
# test points clone
new_cam_points = cam_points.clone()
assert torch.allclose(new_cam_points.tensor, cam_points.tensor)
# test points shuffle
new_cam_points.shuffle()
assert new_cam_points.tensor.shape == torch.Size([4, 7])
# test points rotation
rot_mat = torch.tensor([[0.93629336, -0.27509585, 0.21835066],
[0.28962948, 0.95642509, -0.03695701],
[-0.19866933, 0.0978434, 0.97517033]])
cam_points.rotate(rot_mat)
expected_tensor = torch.tensor([[
6.6239e+00, 3.9748e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.3174e+01, 1.2600e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
4.7760e+00, 3.5484e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8960e+01, 9.6364e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, cam_points.tensor, 1e-3)
new_cam_points = cam_points.clone()
new_cam_points.rotate(0.1, axis=2)
expected_tensor = torch.tensor([[
2.6226e+00, 4.0211e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.4316e+01, 1.0224e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
1.2096e+00, 3.5784e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.9777e+01, 6.6971e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, new_cam_points.tensor, 1e-3)
# test points translation
translation_vector = torch.tensor([0.93629336, -0.27509585, 0.21835066])
cam_points.translate(translation_vector)
expected_tensor = torch.tensor([[
7.5602e+00, 3.9473e+01, -2.1152e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.2237e+01, 1.2325e+01, -6.7046e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
5.7123e+00, 3.5209e+01, -2.1629e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8023e+01, 9.3613e+00, -6.8480e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, cam_points.tensor, 1e-4)
# test points filter
point_range = [-10, -40, -10, 10, 40, 10]
in_range_flags = cam_points.in_range_3d(point_range)
expected_flags = torch.tensor([True, False, True, False])
assert torch.all(in_range_flags == expected_flags)
# test points scale
cam_points.scale(1.2)
expected_tensor = torch.tensor([[
9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.6685e+01, 1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
6.8547e+00, 4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-3.3628e+01, 1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, cam_points.tensor, 1e-3)
# test get_item
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297]])
assert torch.allclose(expected_tensor, cam_points[1].tensor, 1e-4)
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, cam_points[1:3].tensor, 1e-4)
mask = torch.tensor([True, False, True, False])
expected_tensor = torch.tensor(
[[9.0722, 47.3678, -2.5382, 0.6666, 0.1956, 0.4974, 0.9409],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, cam_points[mask].tensor, 1e-4)
# test length
assert len(cam_points) == 4
# test repr
expected_repr = 'CameraPoints(\n '\
'tensor([[ 9.0722e+00, 4.7368e+01, -2.5382e+00, '\
'6.6660e-01, 1.9560e-01,\n 4.9740e-01, '\
'9.4090e-01],\n '\
'[-2.6685e+01, 1.4790e+01, -8.0455e+00, 1.5020e-01, '\
'3.7070e-01,\n '\
'1.0860e-01, 6.2970e-01],\n '\
'[ 6.8547e+00, 4.2251e+01, -2.5955e+00, 6.5650e-01, '\
'6.2480e-01,\n '\
'6.9540e-01, 2.5380e-01],\n '\
'[-3.3628e+01, 1.1234e+01, -8.2176e+00, 2.8030e-01, '\
'2.5800e-02,\n '\
'4.8960e-01, 3.2690e-01]]))'
assert expected_repr == str(cam_points)
# test concatenate
cam_points_clone = cam_points.clone()
cat_points = CameraPoints.cat([cam_points, cam_points_clone])
assert torch.allclose(cat_points.tensor[:len(cam_points)],
cam_points.tensor)
# test iteration
for i, point in enumerate(cam_points):
assert torch.allclose(point, cam_points.tensor[i])
# test new_point
new_points = cam_points.new_point([[1, 2, 3, 4, 5, 6, 7]])
assert torch.allclose(
new_points.tensor,
torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=cam_points.tensor.dtype))
# test in_range_bev
point_bev_range = [-10, -10, 10, 10]
in_range_flags = cam_points.in_range_bev(point_bev_range)
expected_flags = torch.tensor([True, False, True, False])
assert torch.all(in_range_flags == expected_flags)
# test flip
cam_points.flip(bev_direction='horizontal')
expected_tensor = torch.tensor([[
-9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
2.6685e+01, 1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
-6.8547e+00, 4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
3.3628e+01, 1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, cam_points.tensor, 1e-4)
cam_points.flip(bev_direction='vertical')
expected_tensor = torch.tensor([[
-9.0722e+00, 4.7368e+01, 2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
2.6685e+01, 1.4790e+01, 8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
-6.8547e+00, 4.2251e+01, 2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
3.3628e+01, 1.1234e+01, 8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, cam_points.tensor, 1e-4)
def test_lidar_points():
# test empty initialization
empty_boxes = []
points = LiDARPoints(empty_boxes)
assert points.tensor.shape[0] == 0
assert points.tensor.shape[1] == 3
# Test init with origin
points_np = np.array([[-5.24223238e+00, 4.00209696e+01, 2.97570381e-01],
[-2.66751588e+01, 5.59499564e+00, -9.14345860e-01],
[-5.80979675e+00, 3.54092357e+01, 2.00889888e-01],
[-3.13086877e+01, 1.09007628e+00, -1.94612112e-01]],
dtype=np.float32)
lidar_points = LiDARPoints(points_np, points_dim=3)
assert lidar_points.tensor.shape[0] == 4
# Test init with color and height
points_np = np.array([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00, -9.14345860e-01,
0.1502, 0.3707, 0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01, 2.00889888e-01,
0.6565, 0.6248, 0.6954, 0.2538
],
[
-3.13086877e+01, 1.09007628e+00, -1.94612112e-01,
0.2803, 0.0258, 0.4896, 0.3269
]],
dtype=np.float32)
lidar_points = LiDARPoints(
points_np,
points_dim=7,
attribute_dims=dict(color=[3, 4, 5], height=6))
expected_tensor = torch.tensor([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00,
-9.14345860e-01, 0.1502, 0.3707,
0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01,
2.00889888e-01, 0.6565, 0.6248, 0.6954,
0.2538
],
[
-3.13086877e+01, 1.09007628e+00,
-1.94612112e-01, 0.2803, 0.0258,
0.4896, 0.3269
]])
assert torch.allclose(expected_tensor, lidar_points.tensor)
assert torch.allclose(expected_tensor[:, :3], lidar_points.coord)
assert torch.allclose(expected_tensor[:, 3:6], lidar_points.color)
assert torch.allclose(expected_tensor[:, 6], lidar_points.height)
# test points clone
new_lidar_points = lidar_points.clone()
assert torch.allclose(new_lidar_points.tensor, lidar_points.tensor)
# test points shuffle
new_lidar_points.shuffle()
assert new_lidar_points.tensor.shape == torch.Size([4, 7])
# test points rotation
rot_mat = torch.tensor([[0.93629336, -0.27509585, 0.21835066],
[0.28962948, 0.95642509, -0.03695701],
[-0.19866933, 0.0978434, 0.97517033]])
lidar_points.rotate(rot_mat)
expected_tensor = torch.tensor([[
6.6239e+00, 3.9748e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.3174e+01, 1.2600e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
4.7760e+00, 3.5484e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8960e+01, 9.6364e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, lidar_points.tensor, 1e-3)
new_lidar_points = lidar_points.clone()
new_lidar_points.rotate(0.1, axis=2)
expected_tensor = torch.tensor([[
2.6226e+00, 4.0211e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.4316e+01, 1.0224e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
1.2096e+00, 3.5784e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.9777e+01, 6.6971e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, new_lidar_points.tensor, 1e-3)
# test points translation
translation_vector = torch.tensor([0.93629336, -0.27509585, 0.21835066])
lidar_points.translate(translation_vector)
expected_tensor = torch.tensor([[
7.5602e+00, 3.9473e+01, -2.1152e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.2237e+01, 1.2325e+01, -6.7046e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
5.7123e+00, 3.5209e+01, -2.1629e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8023e+01, 9.3613e+00, -6.8480e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, lidar_points.tensor, 1e-4)
# test points filter
point_range = [-10, -40, -10, 10, 40, 10]
in_range_flags = lidar_points.in_range_3d(point_range)
expected_flags = torch.tensor([True, False, True, False])
assert torch.all(in_range_flags == expected_flags)
# test points scale
lidar_points.scale(1.2)
expected_tensor = torch.tensor([[
9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.6685e+01, 1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
6.8547e+00, 4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-3.3628e+01, 1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, lidar_points.tensor, 1e-3)
# test get_item
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297]])
assert torch.allclose(expected_tensor, lidar_points[1].tensor, 1e-4)
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, lidar_points[1:3].tensor, 1e-4)
mask = torch.tensor([True, False, True, False])
expected_tensor = torch.tensor(
[[9.0722, 47.3678, -2.5382, 0.6666, 0.1956, 0.4974, 0.9409],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, lidar_points[mask].tensor, 1e-4)
# test length
assert len(lidar_points) == 4
# test repr
expected_repr = 'LiDARPoints(\n '\
'tensor([[ 9.0722e+00, 4.7368e+01, -2.5382e+00, '\
'6.6660e-01, 1.9560e-01,\n 4.9740e-01, '\
'9.4090e-01],\n '\
'[-2.6685e+01, 1.4790e+01, -8.0455e+00, 1.5020e-01, '\
'3.7070e-01,\n '\
'1.0860e-01, 6.2970e-01],\n '\
'[ 6.8547e+00, 4.2251e+01, -2.5955e+00, 6.5650e-01, '\
'6.2480e-01,\n '\
'6.9540e-01, 2.5380e-01],\n '\
'[-3.3628e+01, 1.1234e+01, -8.2176e+00, 2.8030e-01, '\
'2.5800e-02,\n '\
'4.8960e-01, 3.2690e-01]]))'
assert expected_repr == str(lidar_points)
# test concatenate
lidar_points_clone = lidar_points.clone()
cat_points = LiDARPoints.cat([lidar_points, lidar_points_clone])
assert torch.allclose(cat_points.tensor[:len(lidar_points)],
lidar_points.tensor)
# test iteration
for i, point in enumerate(lidar_points):
assert torch.allclose(point, lidar_points.tensor[i])
# test new_point
new_points = lidar_points.new_point([[1, 2, 3, 4, 5, 6, 7]])
assert torch.allclose(
new_points.tensor,
torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=lidar_points.tensor.dtype))
# test in_range_bev
point_bev_range = [-30, -40, 30, 40]
in_range_flags = lidar_points.in_range_bev(point_bev_range)
expected_flags = torch.tensor([False, True, False, False])
assert torch.all(in_range_flags == expected_flags)
# test flip
lidar_points.flip(bev_direction='horizontal')
expected_tensor = torch.tensor([[
9.0722e+00, -4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.6685e+01, -1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
6.8547e+00, -4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-3.3628e+01, -1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, lidar_points.tensor, 1e-4)
lidar_points.flip(bev_direction='vertical')
expected_tensor = torch.tensor([[
-9.0722e+00, -4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
2.6685e+01, -1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
-6.8547e+00, -4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
3.3628e+01, -1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, lidar_points.tensor, 1e-4)
def test_depth_points():
# test empty initialization
empty_boxes = []
points = DepthPoints(empty_boxes)
assert points.tensor.shape[0] == 0
assert points.tensor.shape[1] == 3
# Test init with origin
points_np = np.array([[-5.24223238e+00, 4.00209696e+01, 2.97570381e-01],
[-2.66751588e+01, 5.59499564e+00, -9.14345860e-01],
[-5.80979675e+00, 3.54092357e+01, 2.00889888e-01],
[-3.13086877e+01, 1.09007628e+00, -1.94612112e-01]],
dtype=np.float32)
depth_points = DepthPoints(points_np, points_dim=3)
assert depth_points.tensor.shape[0] == 4
# Test init with color and height
points_np = np.array([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00, -9.14345860e-01,
0.1502, 0.3707, 0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01, 2.00889888e-01,
0.6565, 0.6248, 0.6954, 0.2538
],
[
-3.13086877e+01, 1.09007628e+00, -1.94612112e-01,
0.2803, 0.0258, 0.4896, 0.3269
]],
dtype=np.float32)
depth_points = DepthPoints(
points_np,
points_dim=7,
attribute_dims=dict(color=[3, 4, 5], height=6))
expected_tensor = torch.tensor([[
-5.24223238e+00, 4.00209696e+01, 2.97570381e-01, 0.6666, 0.1956,
0.4974, 0.9409
],
[
-2.66751588e+01, 5.59499564e+00,
-9.14345860e-01, 0.1502, 0.3707,
0.1086, 0.6297
],
[
-5.80979675e+00, 3.54092357e+01,
2.00889888e-01, 0.6565, 0.6248, 0.6954,
0.2538
],
[
-3.13086877e+01, 1.09007628e+00,
-1.94612112e-01, 0.2803, 0.0258,
0.4896, 0.3269
]])
assert torch.allclose(expected_tensor, depth_points.tensor)
assert torch.allclose(expected_tensor[:, :3], depth_points.coord)
assert torch.allclose(expected_tensor[:, 3:6], depth_points.color)
assert torch.allclose(expected_tensor[:, 6], depth_points.height)
# test points clone
new_depth_points = depth_points.clone()
assert torch.allclose(new_depth_points.tensor, depth_points.tensor)
# test points shuffle
new_depth_points.shuffle()
assert new_depth_points.tensor.shape == torch.Size([4, 7])
# test points rotation
rot_mat = torch.tensor([[0.93629336, -0.27509585, 0.21835066],
[0.28962948, 0.95642509, -0.03695701],
[-0.19866933, 0.0978434, 0.97517033]])
depth_points.rotate(rot_mat)
expected_tensor = torch.tensor([[
6.6239e+00, 3.9748e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.3174e+01, 1.2600e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
4.7760e+00, 3.5484e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8960e+01, 9.6364e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, depth_points.tensor, 1e-3)
new_depth_points = depth_points.clone()
new_depth_points.rotate(0.1, axis=2)
expected_tensor = torch.tensor([[
2.6226e+00, 4.0211e+01, -2.3335e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.4316e+01, 1.0224e+01, -6.9230e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
1.2096e+00, 3.5784e+01, -2.3813e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.9777e+01, 6.6971e+00, -7.0663e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, new_depth_points.tensor, 1e-3)
# test points translation
translation_vector = torch.tensor([0.93629336, -0.27509585, 0.21835066])
depth_points.translate(translation_vector)
expected_tensor = torch.tensor([[
7.5602e+00, 3.9473e+01, -2.1152e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.2237e+01, 1.2325e+01, -6.7046e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
5.7123e+00, 3.5209e+01, -2.1629e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-2.8023e+01, 9.3613e+00, -6.8480e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)
# test points filter
point_range = [-10, -40, -10, 10, 40, 10]
in_range_flags = depth_points.in_range_3d(point_range)
expected_flags = torch.tensor([True, False, True, False])
assert torch.all(in_range_flags == expected_flags)
# test points scale
depth_points.scale(1.2)
expected_tensor = torch.tensor([[
9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
-2.6685e+01, 1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
6.8547e+00, 4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
-3.3628e+01, 1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, depth_points.tensor, 1e-3)
# test get_item
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297]])
assert torch.allclose(expected_tensor, depth_points[1].tensor, 1e-4)
expected_tensor = torch.tensor(
[[-26.6848, 14.7898, -8.0455, 0.1502, 0.3707, 0.1086, 0.6297],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, depth_points[1:3].tensor, 1e-4)
mask = torch.tensor([True, False, True, False])
expected_tensor = torch.tensor(
[[9.0722, 47.3678, -2.5382, 0.6666, 0.1956, 0.4974, 0.9409],
[6.8547, 42.2509, -2.5955, 0.6565, 0.6248, 0.6954, 0.2538]])
assert torch.allclose(expected_tensor, depth_points[mask].tensor, 1e-4)
# test length
assert len(depth_points) == 4
# test repr
expected_repr = 'DepthPoints(\n '\
'tensor([[ 9.0722e+00, 4.7368e+01, -2.5382e+00, '\
'6.6660e-01, 1.9560e-01,\n 4.9740e-01, '\
'9.4090e-01],\n '\
'[-2.6685e+01, 1.4790e+01, -8.0455e+00, 1.5020e-01, '\
'3.7070e-01,\n '\
'1.0860e-01, 6.2970e-01],\n '\
'[ 6.8547e+00, 4.2251e+01, -2.5955e+00, 6.5650e-01, '\
'6.2480e-01,\n '\
'6.9540e-01, 2.5380e-01],\n '\
'[-3.3628e+01, 1.1234e+01, -8.2176e+00, 2.8030e-01, '\
'2.5800e-02,\n '\
'4.8960e-01, 3.2690e-01]]))'
assert expected_repr == str(depth_points)
# test concatenate
depth_points_clone = depth_points.clone()
cat_points = DepthPoints.cat([depth_points, depth_points_clone])
assert torch.allclose(cat_points.tensor[:len(depth_points)],
depth_points.tensor)
# test iteration
for i, point in enumerate(depth_points):
assert torch.allclose(point, depth_points.tensor[i])
# test new_point
new_points = depth_points.new_point([[1, 2, 3, 4, 5, 6, 7]])
assert torch.allclose(
new_points.tensor,
torch.tensor([[1, 2, 3, 4, 5, 6, 7]], dtype=depth_points.tensor.dtype))
# test in_range_bev
point_bev_range = [-30, -40, 30, 40]
in_range_flags = depth_points.in_range_bev(point_bev_range)
expected_flags = torch.tensor([False, True, False, False])
assert torch.all(in_range_flags == expected_flags)
# test flip
depth_points.flip(bev_direction='horizontal')
expected_tensor = torch.tensor([[
-9.0722e+00, 4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
2.6685e+01, 1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
-6.8547e+00, 4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
3.3628e+01, 1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)
depth_points.flip(bev_direction='vertical')
expected_tensor = torch.tensor([[
-9.0722e+00, -4.7368e+01, -2.5382e+00, 6.6660e-01, 1.9560e-01,
4.9740e-01, 9.4090e-01
],
[
2.6685e+01, -1.4790e+01, -8.0455e+00,
1.5020e-01, 3.7070e-01, 1.0860e-01,
6.2970e-01
],
[
-6.8547e+00, -4.2251e+01, -2.5955e+00,
6.5650e-01, 6.2480e-01, 6.9540e-01,
2.5380e-01
],
[
3.3628e+01, -1.1234e+01, -8.2176e+00,
2.8030e-01, 2.5800e-02, 4.8960e-01,
3.2690e-01
]])
assert torch.allclose(expected_tensor, depth_points.tensor, 1e-4)