MA7

Wojciech Kaczmarski SP5SWWP et al.

M17 Protocol Specification
February 26, 2025

Version 1.5

KTXversion compiled by Steve Miller KC1AWV

Contents

[Revision History]|
[Licenses|
[L_Physical Layer|

(1.1 4-level Frequency-shift Keying Modulation (4FSK)|

1.2 Dibit, Symbol, and Frequency-shift|0 0.
[L3 4FSKGenerationl o it i e

[1.4.2 Synchronization Burst (SyncBurst)|

[1.4.3 Payload| e
4.4 Randomizemnl. o o i v i i e e e e e e

1.4.5 End of Transmission marker (EoT)[.
1.4.6 Carrier-sense Multiple Access (CSMA)[.

(1.5 Physical Layer Flow Summary|.

[2Data Link Layer|

[2.2 Forward Error Correction (FEC)|

[2.4 Synchronization Burst (SyncBurst)|. o ..

[2.5 Link Setup Data and Frame (LSDandLSF)[.

[2.5.1 LinkSetupData] e

[2.5.2 LinkSetupFrame|. e

2.6 CRCl

[2.9.2 Packet Superframes| e

[2.9.3 Net Throughput|

CONTENTS 2

(3 Application Layer| 29
[3.1 M17 Amateur Radio Voice Application] oo vt v i e 29
5 D 53 29

BLZ TYPE . .t ottt e e e e e e e e 30

[3.1.3 Encryption Types|. o o i i i i e e e e e e e e e 31

[3.1.4 Channel Access Number (CAN)[. 36

B.1.5 StreamFrames| o .t i e e e e e 36

[3.1.6 Digital Signatures| o 37

3.2 Packet Application] v v i it e e e e e 37
............................ 37

[3.2.2 PacketDatal. e 38

[3.3 Useful Internet Packets| 38
[3.3.1 Stream Mode Packets| 38

[3.3.2 Packet ModeIP Packet|. 40

|A Address Encoding] 41
[A.1 TheMIl17aphabet|. e 41
[A.2 CallsignEncoding| e 41
[A.3 Encoded Addresses|. e e e e 42
[A.4 Encoder Example|. e e e e e 43
[A.5 Decoder Example|. e 44

B Randomizer Sequence| 45
[C_Convolutional Encoder| 46
D Golay Encoder] 47
[E Code Puncturing| 49
F Interleaving] 51
F.I _References i i e e 54
[G_BERT Details| 55
[G.1 PRBSGeneration| o o o i e e e e e e e e 55
G.2 PRBSReceIVeHl o i it e e e e e e e e e e e e 56
[G.2.1 Synchronization| e 56

[G.2.2 Counting BitErrors|, 57

58

58

59

59

61

[B.COPYINGIN QUANTITY| o o o e e e e e e e e e e e e e e e e e e 61
..................................... 61

5. COMBINING DOCUMENTSI] o i it e e e e e e e e e e e e e e e e e e e 63

6. COLLECTIONS OF DOCUMENTS|. o o oo oo, 63

7. AGGREGATION WITH INDEPENDENT WORKS| 63

8. TRANSLATION| o e e e e e e e e e e e e e e e 64

O, TERMINATIONI o o it e 64
10, FUTURE REVISIONS OF THIS LICENSE 64

CONTENTS

IADDENDUM: How to use this License for your documents|

L

GNU General Public License, version 2|

List of Tables

(1.1 Dibit symbol mapping to 4FSK deviation|. 11
(1.2 Physical Layer Transmission| o v v i v v i it et e e e e 12
(1.3 Physical Layer Transmission with Multiple Synchronization Bursts| 12
RIFramel o oo e e 15
2.2 BitTypes| e e e e e 16
[2.3 Frame Specific SyncBursts| L L oo o 17
2.4 TinkSetupDataContents| v v v vttt et e e 17
[2.5 Link Setup Framecontents| 17
2.6 CRCTestVectors] o o i i i e e e e e e e e e 18
2.7 StreamMode] e 19
2.8 LinkInformation Channel Contentsl 20
(2.9 LICH CNTand LSFbits| i et i et oo 20
[2.10 Stream Contents| e 21
[2.11 STREAM Payload Examples| 21
(2.12 LICH and Stream Combined! 21
[2.13 Single Packet] e e 23
[2.14 Packet Model e e e e e e e e e 24
[2.15 Packet Contents| e e e e 24
[2.16 Packet Metadata Fieldwith EOF=0/ 24
[2.17 Packet Metadata Fieldwith EOF=1| 24
[2.18 Packet Model e e e e e e e e e 26
ZI9BERTCONTENTS - - « « ¢ ¢ v v oot e e e e e e e e e e e e e e e 27
[3.1 Link Setup Frame Contents| 29
(3.2 LSETYPElayout| e 30
[3.3 Packet/Stream indicator] e e e e 30
[3.4 Datatypel e e e e e e 30
3.5 Encryptiontype] e e e e e e e 30
[3.6 Keylengths for encryptionsubtypes| 31
3.7 _MI7Voice LSE TYPE definition] - - - - « « v v v v v e e e e e e e e e e e e e e 31
(3.8 Null encryption subtypebits|, 31
[3.10 GNSS Dataencoding] v v v v v i it i e e e e e e e e e e e 33
[3.11 Extended Callsign Dataencoding| 34
[3.12 Scrambling] e 34
[3.13 AESkeylengths|. 36
B.I4 AEScounterl. e e e e e e e 36
BAS LSFTYPETayout] v v ot e e e e e e e e e e e e 38
|3.16 Packet protocol identifiers|. e 38
3.17 Steaming Mode IP Packet, Single Packet Method| 39
[3.18 Stream Mode IP Packet, Two Packet Method, Header] 39

4

LIST OF TABLES 5

[3.19 Stream Mode IP Packet, Two Packet Method, Data| 39
[3.20 Packet Mode IP Packetl 40
[A.1 M17 Callsign Alphabet|. o 41
A2 MI7Addresses| e e e e 42
B.1 Randomizervalues| 45

List of Figures

[LI _4FSKGeneration] . . . « « v v v v v it e e e e e e e e e e e e e e e e 11
(1.2 Physical Layer Flow| 14
2.1 Transmit Contentsto Payload|. 16
[2.2 Receive Payloadto Contents| 16
2.3 LSFCONSTIUCHON] « « « « « « v v e e e e e e e e e e e e e e e e 19
2.4 Stream Frame Construction| o . 22
[2.5 Stream Superframes| e e e e e e e 23
2.6 Packet Frame Constructionlt 25
[2.7 Packet Mode Net Throughput| 26
2.8 BERT Frame Construction| 28
[3.1 8-bit LESRtaps| o i it e e e e e e e e e e e e e e 35
(3.2 16-bit LEFSRtaps| e 35
[3.3 24-Dit LFSRtaps| o i i e e e e e e e 35
[C.1 Convolutionalencoder, 46
[G.1 Traditionalform LESRI o e 55
G2 MITLIESRl . . o o o e et e e e e e e e e e e e e e e e 55
(G.3 MI17PRBSYGenerator] v v v i i it e e e e e e e e e e e 56
G.4 MI7PRBS9 Synchronization| 56
G5 MIZPRBSOVAldation] . - « - « « v v v v e e e e e e e e e e e 57

Revision History

Rev

1.2

1.3

1.4

1.5

Date

09 Sep 2024

17 Oct 2024

01 Jan 2025

11 Feb 2025

Author(s)

N7TAE,
SPSWWP

N7TAE,
SPSWWP

SP5SWWP

N7TAE,
VK7XT

Description

Removed Definitions and Control Packets sections, rewrote
Callsign Encoding appendix using examples in C.

Introduced new LSD data type to clarify and correct discus-
sion around LICH, and LSF.

Removed the KISS appendix and created a separate KISS
specification document.

Rearranged the Data Link and Application Layer chapters for
better flow, removed IP Network chapter and File Type ap-
pendix, added more details to Packet Mode, 3 new IP packets
defined, and added new clarifying bit tables.

Licenses

M17 Protocol Specification Copyright © 2023-2025 M17 Project.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation License” or
at the following web page: https://www.gnu.org/licenses/fdl-1.3.en.html

M17 Project Software Copyright (C) 2024 M17 Project

Software included in the M17 Protocol Specification is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

https://www.gnu.org/licenses/fdl-1.3.en.html

Introduction

M17 is an RF protocol that is:

» Completely open: open specification, open source code, open source hardware, open al-
gorithms. Anyone must be able to build an M17 radio and interoperate with other M17
radios without having to pay anyone else for the right to do so.

« Optimized for amateur radio use.

» Simple to understand and implement.

» Capable of doing the things hams expect their digital protocols to do:
Voice (eg: DMR, D-Star, etc)

Point to point data (eg: Packet, D-Star, etc)

Broadcast telemetry (eg: APRS, etc)

Extensible, so more capabilities can be added over time.
To do this, the M17 protocol is broken down into three protocol layers, like a network:

1. Physical Layer: How to encode 1s and Os into RF. Specifies RF modulation, symbol rates,
bits per symbol, etc.

2. Data Link Layer: How to packetize those 1s and Os into usable data. Packet vs Stream
modes, headers, addressing, etc.

3. Application Layer: Accomplishing activities. Voice and data streams, control packets,
beacons, etc.

This document attempts to document these layers.

Glossary

Common terms used in M17
BER Bit Error Rate

ECC Error Correcting Code
FEC Forward Error Correction

Frame The individual components of a stream, each of which contains payload data inter-
leaved with frame signalling.

Link Setup Data (LSD) The SRC and DST callsign address fields, TYPE field and the META
data.

Link Setup Frame (LSF) The first data frame of any transmission. It contains an L.SD and a
CRC.

LICH Link Information Channel. The LICH carries all information of an M17 link. The first
frame of a transmission contains full link setup data, and subsequent frames each contain one
sixth of this data, so that late-joiners can obtain the full link setup data information.

Packet A single burst of data transmitted in Packet Mode.

Superframe A set of six consecutive frames in the stream mode which collectively contain
full LSD are grouped into a superframe.

10

Chapter 1

Physical Layer

This section describes the M17 standard radio physical layer suitable for use where a transmis-
sion bandwidth of 9 kHz is permitted.

1.1 4-level Frequency-shift Keying Modulation (4FSK)

The M17 standard uses 4FSK at 4800 symbols/s (9600 bits/s) with a deviation index h=1/3 for
transmission in a 9 kHz channel bandwidth. Minimum channel spacing is 12.5 kHz.

1.2 Dibit, Symbol, and Frequency-shift

Each of the 4-level frequency-shifts can be represented by dibits (2-bit values) or symbols, as
shown in Table 1 below.

In the case of dibits, the most significant bit is sent first. When four dibits are grouped into a
byte, the most significant dibit of the byte is sent first. For example, the four dibits contained
in the byte 0xB4 (0b 10 11 01 00) would be sent as the symbols (-1, -3, +3, +1).

Dibit
MSB | LSB

Symbol | Deviation

0 1 +3 +2.4 kHz
0 0 +1 +0.8 kHz
1 0 -1 -0.8 kHz
1 1 -3 -2.4 kHz

Table 1.1: Dibit symbol mapping to 4FSK deviation

1.3 4FSK Generation

. Dibit to . Frequency
Dibit Input — Symbol {Upsampler H RRC Filter J—* 4FSK Output

Figure 1.1: 4FSK Generation

11

CHAPTER 1. PHYSICAL LAYER 12

Dibits are converted to symbols. The symbol stream is upsampled to a series of impulses which
pass through a root-raised-cosine (alpha=0.5) shaping filter before frequency modulation at
the transmitter and again after frequency demodulation at the receiver.

Upsampling by a factor of 10 is recommended (48000 samples/s).

The root-raised-cosine filter should span at least 8 symbols (81 taps at the recommended up-
sample rate).

1.4 Transmission

A complete transmission shall consist of a Preamble, a Synchronization Burst, Payload, and an
End of Transmission marker.

PREAMBLE | SYNC BURST PAYLOAD EoT
40ms 16 bits Multiples of 2 bits 40ms

(192 symbols) (8 symbols) (multiples of 1 symbol) (192 symbols)

Table 1.2: Physical Layer Transmission

Transmissions may include more than one synchronization burst followed by a payload.

PREAMBLE | SYNC BURST | PAYLOAD : eee : SYNC BURST | PAYLOAD | EoT

Table 1.3: Physical Layer Transmission with Multiple Synchronization Bursts

1.4.1 Preamble

Every transmission shall start with a preamble, which shall consist of 40 ms (192 symbols)
of alternating outer symbols (+3, -3) or (-3, +3), see for details. To ensure a zero
crossing prior to a synchronization burst, the last symbol transmitted within the preamble shall
be opposite the first symbol transmitted in the synchronization burst.

1.4.2 Synchronization Burst (Sync Burst)

A sync burst of 16 bits (8 symbols) shall be sent immediately after the preamble. The sync burst
is constructed using only outer symbols, with codings based on Barker codes. Properly chosen
sync burst coding assists in symbol clocking and alignment. Different sync burst codes may
also be used by the Data Link Layer to identify the type of payload to follow.

1.4.3 Payload

Payload shall be transmitted in multiples of 2 bits (1 symbol).

1.4.4 Randomizer

To avoid transmitting long sequences of constant symbols (e.g. +3, +3, +3, ...), a simple ran-
domizing algorithm is used. At the transmitter, all payload bits shall be XORed with a pseu-
dorandom predefined sequence before being converted to symbols. At the receiver, the ran-

https://en.wikipedia.org/wiki/Barker_code

CHAPTER 1. PHYSICAL LAYER 13

domized payload symbols are converted to bits and are again passed through the same XOR
algorithm to obtain the original payload bits.

The pseudorandom sequence is composed of the 46 bytes (368 bits) found in the Randomizer
appendix table

Before each bit of payload is converted to symbols for transmission, it is XORed with a bit from
the pseudorandom sequence. The first payload bit is XORed with most significant bit (bit 7) of
sequence byte 0 (0xD6), second payload bit with bit 6 of sequence byte 0, continuing to the
eighth payload bit and bit 0 of sequence byte 0. The ninth payload bit is XORed with bit 7 of
sequence byte 1 (0xB5), tenth payload bit with bit 6 of sequence byte 1, etc.

When payload bits have XORed through sequence byte 45 (0xC3), the pseudorandom sequence
is restarted at sequence byte 0 (0xD6).

On the receive side, symbols are converted to randomized payload bits. Each randomized pay-
load bit is converted back to a payload bit by once again XORing each randomized bit with the
corresponding pseudorandom sequence bit.

1.4.5 End of Transmission marker (EoT)

Every transmission ends with a distinct symbol stream, which shall consist of 40 ms (192 sym-
bols) of a repeating (0x55) (0x5D) (+3, +3, +3, +3, +3, +3, -3, +3) pattern.

1.4.6 Carrier-sense Multiple Access (CSMA)

CSMA may be used to minimize collisions on a shared radio frequency by having the sender
ensure the frequency is clear before transmitting. Higher layers (Data Link and Application)
may require the use of CSMA, and may specify parameters other than the defaults.

P-persistent access is used with a default probability of p = 0.25 and default slot time of 40 ms.

https://en.wikipedia.org/wiki/Carrier-sense_multiple_access

CHAPTER 1. PHYSICAL LAYER

1.5 Physical Layer Flow Summary

Payload

A,
)

Randomizer

~—

ﬁ‘ﬁ
prepend
BURST

dibit to
symbol

A,
Y

upsampler

~
ﬁ‘ R
rrc filter
—
A

I
frequency
modulation
4FSK RF

Figure 1.2: Physical Layer Flow

Chapter 2

Data Link Layer

2.1 Frame

A Frame shall be composed of a frame type specific Synchronization Burst (Sync Burst) followed
by 368 bits (184 symbols) of Payload. The combination of Sync Burst plus Payload results in
a constant 384 bit (192 symbol) Frame. At the M17 data rate of 4800 symbols/s (9600 bits/s),
each Frame is exactly 40ms in duration.

There are four frame types each with their own specific Sync Burst: Link Setup Frames (LSF),
Bit Error Rate Test (BERT) Frames, Stream Frames, and Packet Frames.

SYNC BURST PAYLOAD
16 bits 368 bits
(8 symbols) (184 symbols)

Table 2.1: Frame

2.2 Forward Error Correction (FEC)

The Data Link Layer Contents of a specific frame are modified using various Error Correction
Code (ECC) methods. Applying these codes at the transmitter allows the receiver to correct
some amount of induced errors in a Forward Error Correction (FEC) process. It is this ECC/FEC
data that is inserted into the Payload portion of the Frame. The exact ECC/FEC techniques used
vary by frame type.

Applying ECC/FEC may be a multi-step process. To distinguish data bits at the various stages
of the process, Bit Types are defined as shown in the following table. It is important to note
that not all ECC/FEC processes utilize both Type 2 and Type 3 bits. Prior to decoding Data Link
Layer contents, a receiver would need to convert incoming bits from Type 4 back to Type 1
bits, which may also include conversion through Type 3 and/or Type 2 bits. The exact ECC/FEC
methods and Bit Types utilized will be indicated for each frame type.

15

CHAPTER 2. DATA LINK LAYER 16

Type Description

Type 1 Data link layer content bits

Type 2 Bits after appropriate encoding

Type 3 Bits after puncturing. described in
Type 4 Interleaved (re-ordered) bits

Table 2.2: Bit Types

ECC/FEC | Type 4 bits
—

Figure 2.1: Transmit Contents to Payload

Type 4 bits [gccC JFEC Type 1 bits Data Link
Payload Layer
Decode
Contents

Figure 2.2: Receive Payload to Contents

Data Link
Layer
Contents

2.3 Modes

The Data Link layer shall operate in one of three modes during a Transmission.

« Stream Mode Data are sent in a continuous stream for an indefinite amount of time, with
no break in physical layer output, until the stream ends. e.g. voice data, bulk data trans-
fers, etc. Stream Mode shall start with an LSF and is followed by one or more Stream
Frames.

» Packet Mode Data are sent in small bursts, up to 823 bytes at a time, after which the
physical layer stops sending data. e.g. messages, beacons, etc. Packet Mode shall start
with an LSF and is followed by one to 33 Packet Frames.

« BERT Mode PRBS9 is used to fill frames with a deterministic bit sequence. Frames are
sent in a continuous sequence. Bert Mode shall start with a BERT frame, and is followed
by one or more BERT Frames.

NOTE As is the convention with other networking protocols, all values and data
structures are encoded in big endian byte order.

2.4 Synchronization Burst (Sync Burst)
All frames shall be preceded by 16 bits (8 symbols) of Sync Burst. The Sync Burst definition
straddles both the Physical Layer and the Data Link Layer.

Only LSF and BERT Sync Bursts may immediately follow the Preamble, and each requires a
different Preamble symbol pattern as shown in the table below.

During a Transmission, only one LSF Sync Burst may be present, and if present, it shall imme-
diately follow the Preamble.

CHAPTER 2. DATA LINK LAYER 17

BERT Sync Bursts, if present, may only follow the Preamble or other BERT frames.

Multiple Stream or Packet Sync Bursts may be present during a Transmission, depending on
the mode.

Frame Type Preamble Sync Burst Bytes Sync Burst Symbols

LSF +3,-3 0x55 0xF7 +3, +3, +3, +3, -3, -3, +3, -3
BERT -3, +3 0xDF 0x55 -3, +3, -3, -3, +3, +3, +3, +3
Stream None O0xFF 0x5D -3,-3,-3,-3,+3,+3, -3, +3
Packet None 0x75 OxFF +3, -3, +3,+3, -3, -3, -3, -3

Table 2.3: Frame Specific Sync Bursts

2.5 Link Setup Data and Frame (LSD and LSF)

2.5.1 Link Setup Data

The Link Setup Data, LSD, is a data structure that is common to both Stream and Packet Mode
and contains information needed to establish a link. This data is a fundamental part of both RF
data streams and and any kind of internet protocol packets.

Field Length Description

DST 48 bits An encoded destination

SRC 48 bits An encoded source

TYPE 16bits Specifies all characteristic of the payload
META 112 bits Meta data

Table 2.4: Link Setup Data Contents

Total: 28 bytes, 224 Type 1 bits
» DST and SRC and typically encoded radio amateur callsigns or special identifiers.
» TYPE specifies all the characteristics of the payload.

» META data is suitable for cryptographic metadata like IVs or single-use numbers, or non-
crypto metadata like the sender’s GNSS position.
2.5.2 Link Setup Frame

The link Setup Frame, LSF, is an LSD followed immediately by a 16 bit cyclic redundancy check,
CRC. The LSF is the first data frame in a Stream Mode or Packet Mode transmission.

Field Length Description
LSD 224 bits Shown in the previous table
CRC 16Dbits CRC for the link setup data

Table 2.5: Link Setup Frame contents

Total: 30 bytes, 240 Type 1 bits

CHAPTER 2. DATA LINK LAYER 18

The CRC can be used to validate the integrity of the contained LSD and is described below.

2.6 CRC

M17 uses a non-standard version of 16-bit CRC with polynomial z'¢ + 214 + 212 + 21! + 28 +
25 + 2% 4 2% + 1 or 0x5935 and initial value of 0 xFFFF. This polynomial allows for detecting all
errors up to hamming distance of 5 with payloads up to 241 bits, which is less than the amount
of data in each frame.

As M17’s native bit order is most significant bit first, neither the input nor the output of the
CRC algorithm gets reflected.

The CRC field enables verification of the other 28 bytes forming the LSF: 6-byte DST, 6-byte
SRC, 2-byte TYPE, and 14-byte META fields. Data integrity of an LSF frame is established by
computing the CRC of the first 28 bytes and storing the resulting checksum in the trailing 2-byte
CRC field, which can be compared by a recipient after repeating the same checksum process.
Alternatively, a CRC computed over the entire 30-byte LSF frame, including a valid CRC field,
will always equal zero.

The test vectors in the following table are calculated by feeding the given message to the CRC
algorithm.

Message CRC Output
(empty string) OxFFFF
ASCII string “A” 0x206E
ASCII string “123456789” 0x772B
Bytes 0x00 to OxFF 0x1C31

Table 2.6: CRC Test Vectors

2.7 LSF Contents ECC/FEC

The 240 Type 1 bits of the Link Setup Frame Contents along with 4 flush bits are convolutionally
coded using a rate 1/2 coder with constraint K=5. 244 bits total are encoded resulting in 488
Type 2 bits.

Type 3 bits are computed by P, puncturing the Type 2 bits, resulting in 368 Type 3 bits.

Interleaving the Type 3 bits produces 368 Type 4 bits that are ready to be passed to the Physical
Layer. Interleaving is described in|Appendix F

Within the Physical Layer, the 368 Type 4 bits are randomized and combined with the 16-bit
LSF Sync Burst, which results in a complete frame of 384 bits (384 bits / 9600bps = 40 ms).

CHAPTER 2. DATA LINK LAYER 19

Data Link Layer

240 Type 1 bits

!
| add 4 flush bits |

!

| convolutional encoder |

|
488 Type 2 bits

368 Type 3 bits

interleaver

i

368 Type 4 bits

'
Physical Layer

randomizer

i

prepend LSF Sync Burst

384-bit Frame

!

Physical Layer Continues...

Figure 2.3: LSF Construction

Details of the convolutional encoder are in[Appendix C|

2.8 Stream Mode

In Stream Mode, an indefinite amount of data is sent continuously without breaks in the phys-
ical layer. Stream Mode shall always start with an LSF that has the LSF TYPE Packet/Stream
indicator bit set to 1 (Stream Mode). Other valid LSF TYPE parameters are selected per appli-
cation.

Following the LSF, one or more Stream Frames may be sent.

LSF Lsp | STREAM | qrppan i STREAM | qrppam
PREAMBLE | SYNC | - | SYNC | T8 iee ! SYNC | Do | EoT
BURST BURST | BURST

Table 2.7: Stream Mode

CHAPTER 2. DATA LINK LAYER 20

2.8.1 Stream Frames

Stream Frames are composed of frame signalling information contained within the Link Infor-
mation Channel (LICH) combined with Stream Contents. Both the LICH and Stream Contents
utilize different ECC/FEC mechanisms, and are combined at the bit level in a Frame Combiner.

Link Information Channel (LICH) The LICH allows for late listening and independent de-
coding to check destination address if the LSF for the current transmission was missed.

Each Stream Frame contains a 48-bit Link Information Channel (LICH). Each LICH within a
Stream Frame includes a 40-bit chunk of the 240-bit LSF frame that was used to establish the
stream. A 3-bit modulo 6 counter (LICH_CNT) is used to indicate which chunk of the LSF is
present in the current Stream Frame. LICH_CNT starts at 0, increments to 5, then wraps back
to 0.

Byte L 7 6 5 4 3 2 1 0
0

40-Dbit chunk of full LSF Contents (Type 1 bits)

LICH CNT Reserved

Table 2.8: Link Information Channel Contents

Total: 48 bits
The 40-bit chunks start from the beginning of the LSF.

LICH_CNT LSF bits
0:39
40:79
80:119
120:159
160:199
200:239

(2 ST G O I SN)

Table 2.9: LICH_CNT and LSF bits

LICH Contents ECC/FEC The 48-bit LICH Contents is partitioned into 4 12-bit parts and
encoded using Golay (24, 12) code. This produces 96 encoded Type 2 bits that are fed into the
Frame Combiner.

Stream Contents The LSD META field can change during a transmission and this will affect
bits 112:239 of the LSF, resulting in changes in the LICH channel with LICH_CNT 2 through 5.
In addition, the stream frames also contain the stream contents that has two fields that will
change with every frame.

CHAPTER 2. DATA LINK LAYER 21

Field Length Description
FN 16 bits Frame Number
STREAM 128 bits Stream data, can contain arbitrary data

Table 2.10: Stream Contents

Total: 144 Type 1 bits

The Frame Number (FN) starts from 0 and increments every frame to a maximum of 0x7fff
where it will then wrap back to 0. The most significant bit in the FN is used for transmission
end signaling. When transmitting the last frame, it shall be set to 1 (one), and 0 (zero) in all
other frames.

Stream data (STREAM) is obtained by extracting 128 bits at a time from the continuous stream
of application layer data. If the last frame will contain less than 128 bits of valid data, the
remaining bits should be set to zero. The stream may end at the frame boundary.

Mode Codec 2 rate Framet+0 Framet + 1...

Voice 3200 128 bits encoded speech 128 bits encoded speech

Voice + Data 1600 64 bits encoded speech + 64 64 bits encoded speech + 64
bits arbitrary data bits arbitrary data

Table 2.11: STREAM Payload Examples

Stream Contents ECC/FEC The 144 Type 1 bits of Stream Contents along with 4 flush bits
are convolutionally coded using a rate 1/2 coder with constraint K=5. 148 bits total are encoded
resulting in 296 Type 2 bits.

These bits are P, punctured to generate 272 Type 3 bits that are fed into the Frame Combiner.

Frame Combiner The 96 Type 2 bits of the ECC/FEC LICH Contents are concatenated with
272 Type 3 bits of the ECC/FEC Stream Contents resulting in 368 of combined Type 2/3 bits.

Field Length Description
LICH 96 bits ECC/FEC LICH Contents Type 2 bits
STREAM 272 bits ECC/FEC STREAM Contents Type 3 bits

Table 2.12: LICH and Stream Combined

Total: 368 Type 2/3 bits

Interleaving the Combined Type 2/3 bits produces 368 Type 4 bits that are ready to be passed
to the Physical Layer.

Within the Physical Layer, the 368 Type 4 bits are randomized and combined with the 16-bit
Stream Sync Burst, which results in a complete frame of 384 bits (384 bits / 9600bps = 40 ms).

CHAPTER 2. DATA LINK LAYER 22

Application Layer

Continuous data

i

Data Link Layer

| chunk 128 bits |
'

prepend frame number

|
144 Type 1 bits

| LSF Contents | !
I | add 4 flush bits |
| chunk 40 bits | I

| | convolutional encoder |
40 Type 1 bits |

| 296 Type 2 bits
| add LICH counter | '
|
Golay (24, 12)
. 272 Type 3 bits
96 Type 2 bits
yp ot -

| Frame Combiner |

|
96 Type 2 bits + 272 Type 3 bits = 368 Type 2/3 bits

interleaver

368 Type 4 bits

l

Physical Layer

prepend Stream Sync Burst

|
384-bit Frame

!

Physical Layer Continues...

Figure 2.4: Stream Frame Construction

2.8.2 Stream Superframes

Stream Frames are grouped into Stream Superframes, which is the group of 6 frames that con-
tain everything needed to rebuild the original LSF packet, so that the user who starts listening
in the middle of a stream (late-joiner) is eventually able to reconstruct the LSF message and

CHAPTER 2. DATA LINK LAYER 23

understand how to receive the in-progress stream.

PREAMBLE > 40 ms
LSF SYNC
LINK SETUP - 40 ms
LSF

FRAME SYNC

FRAME 0 - 40 ms
FRAME DATA
FRAME SYNC

FRAME 1 - 40 ms
FRAME DATA
FRAME SYNC

FRAME 2 - 40 ms
FRAME DATA

SUPERFRAME 1 -

FRAME SYNC

FRAME 3 ~ 40 ms
FRAME DATA
FRAME SYNC

FRAME 4 — 40 ms
FRAME DATA
FRAME SYNC

FRAME 5 — 40 ms
FRAME DATA
FRAME SYNC

FRAME 6 - 40 ms
FRAME DATA

Figure 2.5: Stream Superframes

2.9 Packet Mode

In Packet Mode, a Single Packet with up to 823 bytes of Application Packet Data along with an
appended two byte CRC may be sent over the physical layer during one Transmission. The total
number of bytes ranges from 25 to 825 (33%25) bytes in 25 byte increments.

Bytes Meaning

0..n-1 Application Packet Data
n..n+l CRC

Table 2.13: Single Packet

n is the number of bytes of the Application Packet Data. The CRC calculation used here is
described in Section 2.6

Packet Mode shall always start with an LSF that has the LSF TYPE Packet/Stream indicator bit
set to 0 (Packet Mode). Following the LSF, 1 to 33 Packet Frames may be sent.

CHAPTER 2. DATA LINK LAYER 24

LSF Packet : ' Packet
PREAMBLE | Sync LSE Sync | Packet .t gone | Packet i
Frame Frame 1 Frame
Burst Burst ! '+ Burst

Table 2.14: Packet Mode

2.9.1 Packet Frames

Packet Frames contain Packet Contents after ECC/FEC is applied.

Byte L 7 6 5 4 3 2 1 0
0

200-bit chunk of Single Packet

24

25 End of Packet Frame/Byte Counter -
Frame

Table 2.15: Packet Contents

Packet Contents Total: 206 Type 1 bits

The packet metadata field contains the 1-bit End of Frame (EOF) indicator, and the 5-bit Packet
Frame/Byte Counter. This is NOT to be confused with the LSF’s 112-bit metadata field.

Data starting with the first byte of the Packet Data, and ending with 2 computed and appended
CRC bytes (big-endian) is split in groups of 25 bytes (chunks). The CRC value is calculated over
the whole Packet Data, including the terminating null-byte in the case of text. Each Packet
Frame payload contains up to a 25-byte chunk of the Data. If fewer than 25 bytes can be ex-
tracted from the Data (i.e. for the last Packet Frame), the Data chunk is padded with null bytes
(after the terminating CRC) to reach 25 bytes total.

The Packet Frame Counter is reset to zero at the start of Packet Mode. For each Packet Frame
where there is at least 1 byte remaining in the Packet Data after removing a 25-byte chunk,
the EOF metadata bit is set to zero, the Packet Frame Counter value is inserted into the Packet
Frame/Byte Counter metadata field, and the Packet Frame Counter is incremented afterwards.

When there are no bytes remaining in the Packet Data after removing a 25-byte (or less) chunk,
the EOF bit is set to one, the Packet Byte Counter is set to the number of valid bytes present
in the current frame (1 to 25) and both fields are concatenated into the Packet Frame/Byte
Counter metadata field. This results in a minimum of 1 to a maximum of 33 Packet Frames per
transmission. Packet Mode is ended with an End of Transmission frame.

Byte L1 7 6 5 4 3 2 1 0
0 0 Frame number, 0..31

Table 2.16: Packet Metadata Field with EOF =0

Byte L 7 6 5 4 3 2 1 0
0 1 Number of bytes in frame, 1..25

Table 2.17: Packet Metadata Field with EOF = 1

CHAPTER 2. DATA LINK LAYER 25

Packet Contents ECC/FEC The 206 Type 1 bits of the Packet Contents along with 4 flush bits
are convolutionally coded using a rate 1/2 coder with constraint K=5. 210 bits total are encoded
resulting in 410 Type 2 bits.

These bits are P; punctured to generate 368 Type 3 bits.

Interleaving the Type 3 bits produces 368 Type 4 bits that are ready to be passed to the Physical
Layer.

Within the Physical Layer, the 368 Type 4 bits are randomized and combined with the 16-bit
Packet Sync Burst, which results in a complete frame of 384 bits (384 bits / 9600bps = 40 ms).

Application Layer

Y

Data Link Layer
| chunk 200 bits |

'

| add metadata |

206 Type 1 bits
'
| add 4 flush bits|
!

| convolutional encoder |

|
420 Type 2 bits

368 Type 3 bits

interleaver

[
368 Type 4 bits
v

Physical Layer

randomizer

prepend Stream Sync Burst

|
384-bit Frame

!

Physical Layer Continues...

)

Figure 2.6: Packet Frame Construction

CHAPTER 2. DATA LINK LAYER 26

2.9.2 Packet Superframes

A Packet Superframe consists of at least 1 and up to the 33 Packet Frames to reconstruct the
original Single Packet.

2.9.3 Net Throughput

Packet Mode achieves a base throughput of 5 kbps, and a net throughput of over 4.5 kbps can
be achieved for large payloads.

Below is a graph of the net throughput in bits/second vs. payload size in bytes.

5000
4500
4000
3500
3000
2500

2000

Net Throughput (bps)

1500
1000
500

0
0 100 200 300 400 500 600 700 800 900

Payload Size (bytes)
Figure 2.7: Packet Mode Net Throughput

2.10 BERT Mode

BERT mode is a standardized, interoperable mode for bit error rate testing. The preamble is
sent, followed by an indefinite sequence of BERT frames. Notably, an LSF is not sent in BERT

mode.
The primary purpose of defining a bit error rate testing standard for M17 is to enhance in-

teroperability testing across M17 hardware and software implementations, and to aid in the
configuration and tuning of ad hoc communications equipment common in amateur radio.

BERT Sync BERT Frame | ees | BERT Sync BERT Frame | EoT

PREAMBLE Burst | | Burst

Table 2.18: Packet Mode

2.10.1 BERT Frames
BERT Frames contain BERT Contents after ECC/FEC is applied.

CHAPTER 2. DATA LINK LAYER 27

BERT Contents The BERT Contents consists of 197 bits from a PRBS9 generator. This is
24 bytes and 5 bits of data. The next BERT Contents starts with the 198th bit from the PRBS9
generator. The same generator is used for each subsequent BERT Contents without being reset.
The number of bits pulled from the generator, 197, is a prime number. This will produce a
reasonably large number of unique frames even with a PRBS generator with a relatively short
period.

See for BERT generation and reception details.

Bits Meaning
0-196 BERT PRBS9 Payload

Table 2.19: BERT Contents
Total: 197 Type 1 bits

BERT Contents ECC/FEC The 197 Type 1 bits of the Packet Contents along with 4 flush bits
are convolutionally coded using a rate 1/2 coder with constraint K=5. 201 bits total are encoded
resulting in 402 Type 2 bits.

These bits are P, punctured to generate 368 Type 3 bits.

Interleaving the Type 3 bits produces 368 Type 4 bits that are ready to be passed to the Physical
Layer.

This provides the same error ECC/FEC used for Stream Frames.

Within the Physical Layer, the 368 Type 4 bits are randomized and combined with the 16-bit
BERT Sync Burst, which results in a complete frame of 384 bits (384 bits / 9600bps = 40 ms).

https://en.wikipedia.org/wiki/Pseudorandom_binary_sequence

CHAPTER 2. DATA LINK LAYER

Data Link Layer
| BERT PRBS9 Data |

!

| chunk 197 bits |

|
197 Type 1 bits

!
| add 4 flush bits |

'

| convolutional encoder |

|
402 Type 2 bits

368 Type 3 bits

interleaver

[
368 Type 4 bits
¥

Physical Layer

prepend BERT Sync Burst

384-bit Frame

!

Physical Layer Continues...

Figure 2.8: BERT Frame Construction

Chapter 3

Application Layer

3.1 M17 Amateur Radio Voice Application

This section defines the application layer parameters for an audio stream containing low bit
rate speech encoded using the open source Codec 2| codec. It is intended to be used over the
air by amateur radio operators worldwide. Implementation details for M17 clients, repeaters,
and gateways ensure that an M17 Amateur Radio Voice Application is legal under all licensing
regimes.

There are many applications and devices provided by various developers that support M17:
clients, repeaters and hot-spots, and reflectors. An updated list of third-party applications is
available here. The use of these applications are not discussed in this document but can be
found in various manuals and README files of those applications.

A Stream Mode Transmission begins with an Link Setup Frame, LSF.

3.1.1 LSF

Field Length Description

DST 48 bits Destination address

SRC 48 bits Source address

TYPE 16 bits Information about the incoming data stream
META 112 bits Metadata field

CRC 16 bits For a description, see Section|2.6

Table 3.1: Link Setup Frame Contents

Address fields Destination (DST) and source (SRC) addresses may be encoded amateur radio
callsigns, or special identifiers. See the Address Encoding[Appendix Al for details on how up to
9 characters of text can be encoded into the 6-byte address value.

The source address is always the callsign of the station transmitting, be it a client, repeater, or
gateway. This is not a problem for a client, but for a repeater/gateway this raises issues about
identifying the original source of a transmission. Having a repeater/gateway always use its own
callsign for the source field does ensure that there are no issues with licensing authorities. To
retain identification of the original source for a voice stream, an extended callsign data field
will be encoded in the LSF META field.

29

http://rowetel.com/codec2.html
https://m17project.org/get-started/software

CHAPTER 3. APPLICATION LAYER

The destination address used by a client may simply be a callsign or reflector designation for
a point to point contact, or may be a special identifier. Special identifiers are 6-byte addresses
than can’t be encoded in the standard way. For an explanation, see the Address Encoding Ap-
pendix.

TYPE field

3.1.2 TYPE

The TYPE field contains information about the frames to follow LSF. The Packet/Stream indi-
cator bit determines which mode (Packet or Stream) will be used during the transmission. The

remaining field meanings are defined by the specific mode and application.

BiY|

Byte 6 5 4 3 2 1 0

0 Reserved Signed Channel Access Number...

Stream
Encryption Encryption Packet/
1 Subtype Type Data Type Stream
Table 3.2: LSF TYPE layout
Value Mode
0 Packet mode
1 Stream mode
Table 3.3: Packet/Stream indicator
Value Content
00, Reserved
015 Data
104 Voice
114 Voice+Data
Table 3.4: Data type

Value Encryption
009 None
01, Scrambler
109 AES
119 Other/reserved

Table 3.5: Encryption type

For the encryption subtype, meaning of values depends on encryption type.

CHAPTER 3. APPLICATION LAYER 31

Value Scrambler AES

005 8-bit 128-bit
01, 16-bit 192-bit
109 24-bit 256-bit
11, reserved reserved

Table 3.6: Key lengths for encryption subtypes

Packet/Stream 1 = Stream Mode
Data Type 104 = Voice only (3200 bps)
Encryption Type 002 = None
01 = Scrambling
104 = AES
Encryption Subtype Depends on Encryption Type

Channel Access Number (CAN) 0..15

Table 3.7: M17 Voice LSF TYPE definition

This application requires Stream Mode.

The Voice only Data type indicator specifies voice data encoded at 3200 bps using Codec 2.

3.1.3 Encryption Types

Encryption is optional. The use of it may be restricted within some radio services and coun-
tries, and should only be used if legally permissible.

Null Encryption Encryption type = 005

When no encryption is used, the 14-byte (112-bit) META field of the LSF and corresponding
LICH of the stream can be used for transmitting relatively small amounts of extended data
without affecting the bandwidth available for the audio. The full 14 bytes of META extended
data is potentially decodable every six stream frames, at a 240 ms update rate. The extended
data is transmitted in a simple round robin manner, with the only exception being GPS data
which should be transmitted as soon as possible after the GPS data is received from its source.

The “Encryption subtype” bits in the Stream Type field indicate what extended data is stored
in the META field.

Encryption subtype bits LSF META data contents

002 Text Data

01, GNSS Position Data

104 Extended Callsign Data
119 Reserved

Table 3.8: Null encryption subtype bits

CHAPTER 3. APPLICATION LAYER 32

Text Data The first byte of the Text Data is a Control Byte. To maintain backward compati-
bility, a Control Byte of 0x00 indicates that no Text Data is included.

Up to four Text Data blocks compose a complete message with a maximum length of 52 bytes.
Each block may contain up to 13 bytes of UTF-8 encoded text, and is padded with space char-
acters to fill any unused space at the end of the last used Text Data block.

The Control Byte is split into two 4-bit fields. The most significant four bits are a bit map of
the message length indicating how many Text Data blocks are required for a complete message.
There is one bit per used Text Data block, with 00015 used for one block, 00115 for the two, 01115
for three, and 1111, for four.

The least significant four bits indicate which of the Text Data blocks this text corresponds to.
It is 00015 for the first, 0010, for the second, 01005 for the third, and 1000, for the fourth. Any
received Control Byte is OR-ed together by the receiving station, and once the most significant
and least significant four bits are the same, a complete message has been received.

It is up to the receiver to decide how to display this message. It may choose to wait for all of
the Text Data to be received, or display the parts as they are received. It is not expected that
the data in the text field changes during the course of a transmission.

GNSS Data Unlike Text and Extended Callsign Data, GNSS data is expected to be dynamic
during the course of a transmission and to be transmitted quickly after the GNSS data becomes
available. To stop the LSF/LICH data stream from being overrun with GNSS data relative to
other data types, a throttle on the amount of GNSS data transmitted is needed. It is recom-
mended that GNSS data be sent at an update rate no faster than once every five seconds.

The GNSS data fits within one 14-byte META field, which equates to six audio frames, and takes
240ms to transmit. This is a simple format of the GNSS data which does not require too much
work to convert into, and provides enough flexibility for most cases. This has been tested on-
air and successfully gated to APRS-IS, showing a location very close to the position reported
by the GPS receiver.

GNSS Position Data stores the 112 bit META field as follows:

CHAPTER 3. APPLICATION LAYER 33

Size in bits Format Contents
8 unsigned Data Source
integer
Used to modify the message added to the APRS message sent to
APRS-IS
0x00 : M17 Client
0x01 : OpenRTX
0x02..0xFE : reserved
OxFF : other data source
8 unsigned Station Type
integer
Translated into suitable APRS symbols when gated to APRS-IS
0x00 : Fixed Station
0x01 : Mobile Station
0x02 : Handheld
8 unsigned Whole number absolute value of degrees latitude
integer
16 unsigned Decimal degrees of latitude multiplied by 65535, MSB first
integer
8 unsigned Whole number absolute value of degrees longitude
integer
16 unsigned Decimal degrees of longitude multiplied by 65535, MSB first
integer
8 unsigned Latitude N/S, Longitude E/W, Altitude, Speed and Bearing bit fields
integer
zxxxrxr0y North Latitude
zxxrrxrrls South Latitude
zzxzxxxxOxy East Longitude
zzxzxxxxlry West Longitude
zxxxx0zxo Altitude data invalid
rxrxxlrrs Altitude data valid
zxxxOzxxy Speed and Bearing data invalid
zaxxrlrrxs Speed and Bearing data valid
16 unsigned Altitude above sea level in feet + 1500 (if valid), MSB first
integer
16 unsigned Whole number of bearing in degrees between 0 and 360 (if valid), MSB
integer first
8 unsigned Whole number of speed in miles per hour (if valid)
integer

Table 3.10: GNSS Data encoding

CHAPTER 3. APPLICATION LAYER 34

Extended Callsign Data Thisisonly transmitted from repeaters/gateways and not from clients,
who only receive and display this data. These fields should not appear over M17 Internet links
as they should only be used over the air from a repeater/gateway.

The META field is split into two callsign fields. The first is always present, and the second is
optional. The callsign data is encoded using the standard M17 callsign Address Encoding which
takes six bytes to encode a nine character callsign. Any unused space in the META field contains
0x00 bytes. The first callsign field starts at offset zero in the META field, and the second callsign
if present starts immediately after the first. There are two unused bytes at the end of the META
field.

The use of these two callsign fields is as follows:

Source Callsign Field 1 Callsign Field 2
Locally Repeated RF Originator Unused
ECHO Reply Originator Unused
Reflector Traffic Originator Reflector Name

Table 3.11: Extended Callsign Data encoding

The extended callsign data is not used under any other circumstances than the above currently.

It is not expected that the data in the extra callsign fields change during the course of a trans-
mission.

Scrambling Encryption type =015

Scrambling is an encryption by bit inversion using a bitwise exclusive-or (XOR) operation be-
tween the bit sequence of data and a pseudorandom bit sequence.

Pseudorandom bit sequence is generated using a Fibonacci-topology Linear- Feedback Shift
Register (LFSR). Three different LFSR sizes are available: 8, 16 and 24-bit. Each shift register
has an associated polynomial. The polynomials are listed in Table 7. The LFSR is initialized
with a seed value of the same length as the shift register. The seed value acts as an encryption
key for the scrambler algorithm. Figures 16 to 18 show block diagrams of the algorithm.

Encryption subtype LFSR polynomial Seed length Sequence period
00, 22 ab 4+t 41 8 bits 255

019 2 425 4B 4244+ 1 16 Dbits 65,535

104 22 428 422 421"+ 1 24 bits 16,777,215

Table 3.12: Scrambling

CHAPTER 3. APPLICATION LAYER 35

plaintext
D7 D5|D4|D3 DO |«
ciphertext
U
Figure 3.1: 8-bit LFSR taps
plaintext
D15|D14 D12 D3 DO |
ciphertext
N >
Figure 3.2: 16-bit LFSR taps
plaintext
D23|D22|D21 D16 DO |
ciphertext

o >0

Figure 3.3: 24-bit LFSR taps

Advanced Encryption Standard (AES) Encryption type = 10

This method uses AES block cipher in counter mode (AES-CTR), with a 112-bit nonce that
should never be used for more than one stream (transmission) and a 16-bit counter.

Key length is defined by the encryption subtype field.

CHAPTER 3. APPLICATION LAYER 36

Encryption subtype Key length
002 128 bits
01, 192 bits
109 256 bits
11, reserved

Table 3.13: AES key lengths

The 112-bit nonce value is stored in the META field. The FN (Frame Number) value is then used
to fill out the remaining 16 bits of the counter, totalling to 128 bits, and always starts from 0
(zero) in a new voice stream.

NOTE The effective capacity of the frame counter is 15 bits, as its most significant
bit is used for transmission end signalling. At 25 frames per second and 2'° frames,
the transmission can last up to 2'° frames / 25 frames per second = 1310 seconds,
or almost 22 minutes, without rolling over the counter.

The random part of the nonce value should be generated with a hardware random number
generator or any other cryptographicaly secure method of generating random values.

To combat replay attacks, a 32-bit timestamp shall be embedded into the cryptographic nonce
field. The field structure of the 128 bit counter is shown in Table 9. Timestamp is the number
of seconds that elapsed since January 1, 2020, 00:00:00 UTC, minus leap seconds.

128 bit counter structure FN field sets the most significant 16 bits of the counter, with the
32-bit least significant part holding the timestamp. The remaining 80-bit portion is filled with
random data, re-generated per transmission.

Timestamp Random Data FN
32 80 16

Table 3.14: AES counter

WARNING In CTR mode, AES encryption is malleable. That is, an attacker can
change the contents of the encrypted message without decrypting it. This means
that recipients of AES-encrypted data must not trust that the data is authentic.
Users who require that received messages are proven to be exactly as-sent by the
sender should use an appropriate digital signature algorithm, as described below.

3.1.4 Channel Access Number (CAN)

The Channel Access Number (CAN) is a four bit code that may be used to filter received au-
dio, text, and GNSS data. A receiver may optionally allow reception from sources only if their
transmitted CAN value matches the receiver’s own specified CAN value.

3.1.5 Stream Frames

Stream Frames will contain chunked LSF contents (in the LICH field). The Stream Contents
will include the incrementing 16-bit Frame Number, and 128 bits of data (unencrypted or en-

crypted).

CHAPTER 3. APPLICATION LAYER 37

3.1.6 Digital Signatures

M17 protocol provides a stream authentication method through Elliptic Curve Digital Signa-
ture Algorithm (ECDSA). The curve used is secp256r1. Signature availability is signalled with
a specific bit in the TYPE field. Signature use reduces the maximum length of the stream by 4
frames.

Message Digest Algorithm for Voice Streams

At the beginning of the transmission, a digest byte array of size 16 is initialized with zeros.
After every stream frame (starting at frame 0) an exclusive or (XOR) operation is performed
over the contents of the digest array and the frame’s payload. The digest array is then rotated
left by 1 byte. The result shall be retained in the array.

digest :=digest ® payload
digest :=rol(digest,8)

This process is repeated until there is no more data to transmit. In case there is any encryption
enabled, the payload input shall be the encrypted stream. This ensures the possibility of verifi-
cation, even if the encryption details are not known to the receiving parties. Frame Numbers of
the frames carrying the signature should follow a succession of {7TF F'C4, TF F D1g, TF F E16, FFF F1}.

NOTE The Frame Number’s most significant bit of the last speech payload stream
shall not be set, since it is not the last frame to be transmitted.

Signature Generation and Transmission

At the transmitter-side, the stream digest is signed with a 256-bit private key. The resulting
512-bit signature is split into 4 chunks and sent as additional payload at the end of the trans-
mission. To keep the reassembled LSF data consistent, the LICH counter shall advance nor-
mally. The most significant bit of the Frame Number (signalling end of transmission) shall be
set only in the last frame carrying the signature.

Signature Verification

At the receiver-side, the 512-bit signature is retrieved from the last 4 frames’ contents, if the
appropriate TYPE bit is set. The signature is then checked using a 512-bit public key.

NOTE The verification process will work if and only if all the data is received suc-
cessfully (without transmission errors or dropped frames).

3.2 Packet Application

3.2.1 Packet Mode LSF TYPE

The TYPE field only defines the stream/packet bit, called “P/S” in the table below and the CAN
bits. All other bits are reserved.

CHAPTER 3. APPLICATION LAYER 38

Byte—oif 7 6 5 4 3 2 1 0
0 Reserved Channel Access Number...
1 ... Reserved P/S

Table 3.15: LSF TYPE layout

3.2.2 Packet Data
A single packet of up to 823 bytes of data may be sent in one transmission.
Packets are sent using Packet Mode.

Packets are composed of a 1..n byte data type specifier and up to 823 — n bytes of payload data.
The data type specifier is a variable-length encoding using the same format as UTF-8. The data
type specifier must be between 0 and 22! — 1 which will occupy between 1 and 4 bytes when
encoded. Values from 0 to 127 are identical to their encoded form.

The data type specifier can also be used as a protocol specifier. For example, the following
protocol identifiers are reserved in the M17 packet spec:

Identifier Protocol

0x00 RAW

0x01 AX.25

0x02 APRS

0x03 6LoWPAN

0x04 IPv4

0x05 SMS (null-terminated, UTF-8 encoded string)
0x06 Winlink

Table 3.16: Packet protocol identifiers

The data type specifier is used to compute the CRC, along with the payload.

3.3 Useful Internet Packets

In all cases, data in these packets are big endian, consistent with other IP protocols. They
should NOT contain added null bytes between data members sometimes used to make individ-
ual members start on a word boundary.

3.3.1 Stream Mode Packets

Stream Mode may be packetized using two different methods.

Single Packet Method The first method combines the LSF with the payload to produce an all-
in-one 54 byte packet. Within a stream, the LSF data will be identical within superframes. This

would allow late joiners to open a packet stream upon the receipt of any packet. A Superframe
would take 6 packets for a total of 326 bytes.

CHAPTER 3. APPLICATION LAYER 39

Field Size Description
MAGIC 4Dbytes Magic bytes 0x4d313720 (“M17)

StreamID (SID) 2bytes Random bits, changed for each PTT or stream, but consistent
from frame to frame within a stream

LSD 28 bytes The Link Setup Data (DST, SRC, TYPE, META field) as defined in
Table

FN 2 bytes Frame number exactly as would be transmitted as an RF stream
frame, including the last frame indicator at (FN & 0x8000)

Payload 16 bytes Payload (exactly as would be transmitted in an RF stream frame)

CRC16 2bytes CRC for the entire packet, as defined in Section|2.6

Table 3.17: Steaming Mode IP Packet, Single Packet Method

Two Packets Method The second method uses two packets, a “header” packet for the LSD
and a “data” packet for the payload. This method uses seven packet to send a superframe. This
method is more efficient than the Single Packet Method. Late joiners can open a packet stream
when they have received a header packet. Both types of packets would have the same SID within
a transmission.

The first 36 byte header packet contains the LSD and SID and would be sent after the LSF RF
Frame is received and when ever the LICH channel successfully produces an LSF.

Field Size Description
MAGIC 4Dbytes Magic bytes 0x4d313748 (“M17H”)

StreamID (SID) 2bytes Random bits, changed for each PTT or stream, but consistent
from frame to frame within a stream

LSD 28 bytes The Link Setup Data (DST, SRC, TYPE, META field) as defined in
Table
CRC16 2bytes CRC for the entire packet, as defined in Section|2.6

Table 3.18: Stream Mode IP Packet, Two Packet Method, Header

The second 26 byte data packet contains the SID, FN and Payload.

Field Size Description
MAGIC 4bytes Magic bytes 0x4d313744 (“M17D”)

StreamID (SID) 2bytes Random bits, changed for each PTT or stream, but consistent
from frame to frame within a stream

FN 2bytes Frame number exactly as would be transmitted as an RF stream

frame, including the last frame indicator at (FN & 0x8000)
Payload 16 bytes Payload (exactly as would be transmitted in an RF stream frame)
CRC16 2bytes CRC for the entire packet, as defined in Section 2.6

Table 3.19: Stream Mode IP Packet, Two Packet Method, Data

A Superframe would take 7 packets, one header and six data, totaling 192 bytes.

CHAPTER 3. APPLICATION LAYER 40

3.3.2 Packet Mode IP Packet

Field Size Description

MAGIC 4 bytes Magic bytes 0x4d313750 (“M17P”)

LSF 30 bytes The Link Setup Frame(DST, SRC, TYPE, META field, CRC) as defined
in Table[2.5.2

Payload 4..825bytes This includes a type specifer, the user data, and a CRC

Table 3.20: Packet Mode IP Packet

The Payload CRC is computed from the type specifer and the user data. The size of a payload
must be at least 4, but no more than 825 bytes. Payload includes a one (to four) byte type
specifier, user data and a two byte CRC. Packet integrity is validated by the MAGIC value, the
LSF CRC and the Payload CRC.

Appendix A

Address Encoding

A.1 The M17 aphabet

M17 uses a 48-bit (6-byte) address to represent the characters that define a source and destina-
tion. M17 uses a 40-character alphabet. Encoded, up to nine characters can be used to encode
a source or destination address that will still fit in a 48-bit address field. These nine characters
will usually, but not necessarily be an amateur radio callsign.

In nearly all circumstances, the source address will decode to an amateur callsign. But fre-
quently, the destination address will not decode to an amateur radio callsign. Typically it will
be a unit command, like ECHO, or UNLINK, or the module of a reflector, like M17-M17 C.

In order to define how encoding and decoding are done, here are 40 characters used in M17
ordered by their value:

Value Character Name ASCII Note

0 > Space 0x20 Also, any invalid character
1-26 A’ -’Z> Letter 0x41- 0x5A Uppercase
27-36 ’0’-’9" Digit 0x30 - 0x39 Decimal

37 iy Hyphen 0x2D Dash
38 A Slash 0x3F Forward slash
39 > Dot 0x3E Period

Table A.1: M17 Callsign Alphabet

A.2 Callsign Encoding

Here are some facts and rules about the encoding an address from a callsign:

A callsign is encoded backwards, from the last character to the first character. This means
that the first character of the callsign is in the least significant bits of the address, while
the last character is encode into the most significant bits of the address.

« Since the space character has a value of zero, trailing spaces will not affect the encoded
value. For example the calcuated address of ’ABC’ is the same as >ABC ’, or ’ABC ’,

» Ifanuncoded address represents an amateur radio callsign it should be left-justified. That
means that the first character will always be a digit or letter.

41

APPENDIX A. ADDRESS ENCODING 42

Over 262 trillion address can be encoded from 0x1 (A) to OXEE6B27FFFFFF (.........)
and only a fraction of these callsign actually look like an amateur radio callsign. Those
encodable base-40 text strings that don’t look like an amateur radio callsign can be used
by applications for triggering events and features that their programs offer.

A callsign consisting of only spaces is invalid, because it would have a corresponding
address of zero. That address is defined to be invalid.

Using this scheme, there are over 19 trillion 48-bit addresses that can’t be encoded by
nine characters. Only one of these non-encodable addresses (2*® — 1) has a specified use.

After the base-40 value is calculated, the final 6-byte address is the big endian encoded

representation of the base-40 value. This is also called network byte order.
As an example, the address of AB1CD would be calculated as:
CH:1)+ (B2 x40) + (17: 28 x 40%) + (°C’: 3 x 40%) + (’D’: 4 x 40%)
or, after refactoring and reordering:
((((4) x 40 + 3) x 40 + 28) x 40 + 2) x 40 + 1
producing the resulting address:

0x9fdd51 (base-16), 10476881 (base-10).

A.3 Encoded Addresses

Because 407 is less than 2%, there are some 48-bit addresses that can’t be accessed. Here is a

map of the address space:

Address Range Category Number of Addresses Remarks

0x000000000000 INVALID 1 Forbidden
0x000000000001 11 W w "
OxEEGB27FFFFFF Codable 262 trillion Ato"....... ..
0xEE6B28000000 A ..
OxFFFFFFFFFFFE Uncodable 19 trillion for application use
OxFFFFFFFFFFFF BROADCAST 1 valid only for a destination

Table A.2: M17 Addresses

The BROADCAST address should only be used in an RF transmission. As a destination address,

it means that the RF stream is intended for any capable RF receivers.

The Uncodable addresses can be used by applications for their own purposes and encoding/de-

coding algorithms for these addresses are left to the developer.

For Codable addresses, the following encoding and decoding examples written in C will not

treat the BROADCAST address. This is an implementation detail left to the developers.

APPENDIX A. ADDRESS ENCODING

A.4 Encoder Example

void Encode(const char *callsign, uint8_t *pUChar)
{
uint64_t address = 0; // the calculate address in host byte order

if (pUChar && callsign && *callsign) // make sure we can return a non-zero
address

{

const char *p = callsign;

// find the last char, but don’t select more than 9 characters
while (*p++ && (p-callsign < 9)) ;

// process each char from the end to the beginning

for (p--; p>=callsign; p--)

{
unsigned val = 0; // the default value of the character
if (A’ <= *p && *p <= ’Z’) val = xp - ’A’> + 1;
else if (’0’ <= *p && *p <= ’9’) val = *p - 20’ + 27;
else if (’-’ == x*p) val = 37;
else if (’/? == %*p) val = 38;
else if (’.° == *p) val = 39;

else if (’a’ <= *p && *p <= ’z’) val = *p - ’a’ + 1;

address = 40u * address + val; // increment and add
}
¥

for (int i=5; i>=0; i--) // put it in network byte order
{

pUChar [i] = address & Oxffu;

address /= 0x100u;

APPENDIX A. ADDRESS ENCODING 44

A.5 Decoder Example

char *Decode(const uint8_t* pUChar)

{

static char cs[10]; // this is the return value
memset (cs, NULL, 10); // initialize it to nothing

if (NULL

= pUChar) // nothing in, nothing out
return cs;

1]

>

// calculate the address in host byte order
uint64_t address = 0;
for (int i=0; i<6; i++)

address = address * 0x100u + pUChar[il;

if (address >= 0xee6b28000000u) // is it in the undecodable range?
return cs; // practical applications will do something here

// the M17 alphabet, ordered by value
const char *ml7chars = " ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-/.";

unsigned i = 0; // index for the current character

while (address)
{

// the current character is the address modulus 40
cs[i++] = mi7chars[address % 40ul;
address /= 40u; // keep dividing the address until there’s nothing left

return cs;

For an example of how to encode and decode BROADCAST, or how to use part of the Uncodable
address space, see https://github.com/M17-Project/libm17.

https://github.com/M17-Project/libm17

Appendix B

Randomizer Sequence

Seq. number Value Seq. number Value
00 0xD6 23 0x6E
01 0xB5 24 0x68
02 OxE2 25 0x2F
03 0x30 26 0x35
04 0x82 27 0xDA
05 OxFF 28 0x14
06 0x84 29 OxEA
07 0x62 30 0xCD
08 0xBA 31 0x76
09 0x4E 32 0x19
10 0x96 33 0x8D
11 0x90 34 0xD5
12 0xD8 35 0x80
13 0x98 36 0xD1
14 0xDD 37 0x33
15 0x5D 38 0x87
16 0x0C 39 0x13
17 0xC8 40 0x57
18 0x52 41 0x18
19 0x43 42 0x2D
20 0x91 43 0x29
21 0x1D 44 0x78
22 0xF8 45 0xC3

Table B.1: Randomizer values

45

Appendix C

Convolutional Encoder

The convolutional code shall encode the input bit sequence after appending 4 tail bits at the
end of the sequence. Rate of the coder is R=14% with constraint length K=5. The encoder diagram
and generating polynomials are shown below.

G1(D) =1+ D? + D*
Go(D) =1+ D + D* 4+ D*

The output from the encoder must be read alternately.

N > G,

N > G

Figure C.1: Convolutional encoder

46

Appendix D

Golay Encoder

The extended Golay(24,12) encoder uses generating polynomial g(x) given below to generate
the 11 check bits. The check bits and an additional parity bit are appended to the 12 bit data,
resulting in a 24 bit codeword. The resulting code is systematic, meaning that the input data
(message) is embedded in the codeword.

g@) =z + 20+ 26 42’ a4 22+ 1

This is equivalent to 0xC75 in hexadecimal notation. Both the generating matrix G and parity
check matrix H are shown below.

—_
—
—_ =
—_ =

—_
= o
— =
= o
(e

—
= o O
- o O O

= o O
(e}
—
—
=
—
=
o O

G = [I2|P]=| L2 (D.1)

—
o
—
—
=]
= o o O
—_
—
—
= o O
—

—_
o
—
—_
—_
o O

—
o o O
(e}

—
es}
= o O
=
—

—
=
=
(e}

47

APPENDIX D. GOLAY ENCODER 48

—
—
—
—
)
—
[
=)
—
- o O
_ o o o

H = [PT|I5] = I (D.2)

—
—
—
—
(e
— o (@)
= o o
=) @)
—

[a)
—
—
[a)
—
[a)
—
—

—
(e}

_ O O =
—

o @)

The output of the Golay encoder is shown in the table below.

Field Data Check bits Parity

Position 23..12 11..1 0 (LSB)
Length 12 11 1

Table D.1: Golay encoder details

Four of these 24-bit blocks are used to reconstruct the LSF.

Sample MATLAB/Octave code snippet for generating G and H matrices is shown below.

1 P = hex2poly(’0xC75°’);
[H,G] = cyclgen(23, P);

]

4 G_P = G(1:12, 1:11);

5 I_K = eye(12);

6 G = [I_K G_.P P.’];

7 H = [transpose([G_P P.’]) I_KI];

Appendix E

Code Puncturing

Removing some of the bits from the convolutional coder’s output is called code puncturing.
The nominal coding rate of the encoder used in M17 is ¥2. This means the encoder outputs
two bits for every bit of the input data stream. To get other (higher) coding rates, a puncturing
scheme has to be used.

Two different puncturing schemes are used in M17 stream mode:
1. P, leaving 46 from 61 encoded bits
2. Py leaving 11 from 12 encoded bits

Scheme P is used for the link setup frame, taking 488 bits of encoded data and selecting 368
bits. The gcd(368,488) is 8 which, when used to divide, leaves 46 and 61 bits. However, a full
puncture pattern requires the puncturing matrix entries count to be divisible by the number of
encoding polynomials. For this case a partial puncture matrix is used. It has 61 entries with
46 of them being ones and shall be used 8 times, repeatedly. The construction of the partial
puncturing pattern P; is as follows:

M:[l 0 1 1} (E.1)

P1=[1 My - Mm} (E.2)

In which M is a standard 2/3 rate puncture matrix and is used 15 times, along with a leading 1
to form P, an array of length 61.

The first pass of the partial puncturer discards G bits only, second pass discards G, third - G;
again, and so on. This ensures that both bits are punctured out evenly.

Scheme P is for frames (excluding LICH chunks, which are coded differently). This takes 296
encoded bits and selects 272 of them. Every 12th bit is being punctured out, leaving 272 bits.
The full matrix shall have 12 entries with 11 being ones.

The puncturing scheme P, is defined by its partial puncturing matrix:

P = (E.3)

111110

111111]

The linearized representations are:

49

APPENDIX E. CODE PUNCTURING 50

Pl = [1) 1) O, B 1’ 17 O’ > 17 1, 07 1’ 17 13 O) 3 1) 1: O) H >
1’ 0’ 1’ 1’ 1’ O’ 1’ 3 1’ O’ 1’ 1’ 1’ O, 1’ b 1’ O’ 1’ 3 3
0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1, 1]

P2 =1[1,1,1,1,1,1,1,1, 1,1, 1, 0]

One additional puncturing scheme P; is used in the Packet Mode. The puncturing scheme is
defined by its puncturing matrix:

1111
Py = (E.4)
1110

The linearized representation is:

P3 =101, 1,1, 1, 1, 1, 1, 0]

Appendix F

Interleaving

For interleaving a Quadratic Permutation Polynomial (QPP) is used. The polynomial
m(x) = (452 + 9222) mod 368
is used for a 368 bit interleaving pattern QPP.

input output input output input output input output
index index index index index index index index
0 0 92 92 184 184 276 276
1 137 93 229 185 321 277 45
2 90 94 182 186 274 278 366
3 227 95 319 187 43 279 135
4 180 96 272 188 364 280 88
5 317 97 41 189 133 281 225
6 270 98 362 190 86 282 178
7 39 99 131 191 223 283 315
8 360 100 84 192 176 284 268
9 129 101 221 193 313 285 37
10 82 102 174 194 266 286 358
11 219 103 311 195 35 287 127
12 172 104 264 196 356 288 80
13 309 105 33 197 125 289 217
14 262 106 354 198 78 290 170
15 31 107 123 199 215 291 307
16 352 108 76 200 168 292 260
17 121 109 213 201 305 293 29
18 74 110 166 202 258 294 350

51

APPENDIX F. INTERLEAVING

input output input output input output input output
index index index index index index index index
19 211 111 303 203 27 295 119
20 164 112 256 204 348 296 72
21 301 113 25 205 117 297 209
22 254 114 346 206 70 298 162
23 23 115 115 207 207 299 299
24 344 116 68 208 160 300 252
25 113 117 205 209 297 301 21
26 66 118 158 210 250 302 342
27 203 119 295 211 19 303 111
28 156 120 248 212 340 304 64
29 293 121 17 213 109 305 201
30 246 122 338 214 62 306 154
31 15 123 107 215 199 307 291
32 336 124 60 216 152 308 244
33 105 125 197 217 289 309 13
34 58 126 150 218 242 310 334
35 195 127 287 219 11 311 103
36 148 128 240 220 332 312 56
37 285 129 9 221 101 313 193
38 238 130 330 222 54 314 146
39 7 131 99 223 191 315 283
40 328 132 52 224 144 316 236
41 97 133 189 225 281 317 5
42 50 134 142 226 234 318 326
43 187 135 279 227 3 319 95
44 140 136 232 228 324 320 48
45 277 137 1 229 93 321 185
46 230 138 322 230 46 322 138
47 367 139 91 231 183 323 275
48 320 140 44 232 136 324 228
49 89 141 181 233 273 325 365

50 42 142 134 234 226 326 318

APPENDIX F. INTERLEAVING

input output input output input output input output
index index index index index index index index
51 179 143 271 235 363 327 87
52 132 144 224 236 316 328 40
53 269 145 361 237 85 329 177
54 222 146 314 238 38 330 130
55 359 147 83 239 175 331 267
56 312 148 36 240 128 332 220
57 81 149 173 241 265 333 357
58 34 150 126 242 218 334 310
59 171 151 263 243 355 335 79
60 124 152 216 244 308 336 32
61 261 153 353 245 77 337 169
62 214 154 306 246 30 338 122
63 351 155 75 247 167 339 259
64 304 156 28 248 120 340 212
65 73 157 165 249 257 341 349
66 26 158 118 250 210 342 302
67 163 159 255 251 347 343 71
68 116 160 208 252 300 344 24
69 253 161 345 253 69 345 161
70 206 162 298 254 22 346 114
71 343 163 67 255 159 347 251
72 296 164 20 256 112 348 204
73 65 165 157 257 249 349 341
74 18 166 110 258 202 350 294
75 155 167 247 259 339 351 63
76 108 168 200 260 292 352 16
77 245 169 337 261 61 353 153
78 198 170 290 262 14 354 106
79 335 171 59 263 151 355 243
80 288 172 12 264 104 356 196
81 57 173 149 265 241 357 333

82 10 174 102 266 194 358 286

APPENDIX F. INTERLEAVING 54
input output input output input output input output
index index index index index index index index
83 147 175 239 267 331 359 55

84 100 176 192 268 284 360 8

85 237 177 329 269 53 361 145
86 190 178 282 270 6 362 98

87 327 179 51 271 143 363 235
88 280 180 4 272 96 364 188
89 49 181 141 273 233 365 325
90 2 182 94 274 186 366 278

91 139 183 231 275 323 367 47

F.1 References

o Trifina Lucian, Tarniceriu Daniela, Munteanu Valeriu. “Improved QPP Interleavers for
LTE Standard.” ISSCS 2011 - International Symposium on Signals, Circuits and Systems

(2011)

https://arxiv.org/abs/1103.3794
https://arxiv.org/abs/1103.3794
https://arxiv.org/abs/1103.3794

Appendix G

BERT Details

G.1 PRBS Generation

The PRBS uses the ITU standard PRBS9 polynomial: 2° + 2° + 1

This is the traditional form for a linear feedback shift register (LFSR) used to generate a pseu-
dorandom binary sequence.

Traditional LFSR

Figure G.1: Traditional form LFSR

However, the M17 LFSR is a slightly different. The M17 PRBS9 uses the generated bit as the
output bit rather than the high-bit before the shift.

l l
® - ®

M17 PRBS Generation

Figure G.2: M17 LFSR

This will result in the same sequence, just shifted by nine bits.
M17 PRBS, = PRBS9,4s

The reason for this is that it allows for easier synchronization. This is equivalent to a multi-
plicative scrambler (a self-synchronizing scrambler) fed with a stream of 0s.

55

APPENDIX G. BERT DETAILS 56

out

0o +-@® [1][2[3|[4]|5]|6]7][8]09]

T o - ®

M17 PRBS9 Generator (as a multiplicative scrambler)

Figure G.3: M17 PRBS9 Generator

class PRBS9 {

static constexpr uintl6_t MASK = Ox1FF;
static constexpr uint8_t TAP_1 = 8; // Bit 9
static constexpr uint8_t TAP_2 = 4; // Bit 5

uintl6_t state = 1;

public:
bool generate ()

{
bool result = ((state >> TAP_1) ~ (state >> TAP_2)) & 1;
state = ((state << 1) | result) & MASK;
return result;

}

};

The PRBS9 SHOULD be initialized with a state of 1.

G.2 PRBS Receiver

The receiver detects the frame is a BERT Frame based on the Sync Burst received. If the PRBS9
generator is reset at this point, the sender and receiver should be synchronized at the start.
This, however, is not common nor is it required. PRBS generators can be self-synchronizing.

G.2.1 Synchronization

The receiver will synchronize the PRBS by first XORing the received bit with the LFSR taps. If
the result of the XOR is a 1, it is an error (the expected feedback bit and the input do not match)
and the sync count is reset. The received bit is then also shifted into the LFSR state register.
Once a sequence of eighteen (18) consecutive good bits are recovered (twice the length of the
LFSR), the stream is considered synchronized.

input41|2\3\4|5\6\7\8\9\

— ! !
compare «— & @ @

M17 PRBS Synchronization

Figure G.4: M17 PRBS9 Synchronization

During synchronization, bits received and bit errors are not counted towards the overall bit
error rate.

class PRBS9 {

static constexpr uint8_t LOCK_COUNT = 18; // 18 consecutive good bits.

APPENDIX G. BERT DETAILS

57

// PRBS Synchronizer. Returns O if the bit matches the PRBS, otherwise 1.
// When synchronizing the LFSR used in the PRBS, a single bad input bit
// will result in 3 error bits being emitted, one for each tap in the LFSR.

bool synchronize (bool bit)

{

bool result = (bit -~ (state >> TAP_1) -~ (state >> TAP_2)) & 1;

state = ((state << 1) | bit) & MASK;
if (result) {

sync_count = 0; // error
} else {
if (++sync_count == LOCK_COUNT) {
synced = true;
}
}
return result;

g

G.2.2 Counting Bit Errors

After synchronization, BERT mode switches to error-counting mode, where the received bits
are compared to a free-running PRBS9 generator. Each bit that does not match the output of

the free-running LFSR is counted as a bit error.

in —» @ —» out(l=error)
A

|67 8

{123 [4]

[9|

-
<

5
M17 PRBS Validation

Figure G.5: M17 PRBS9 Validation

class PRBS9 {

// PRBS validator. Returns O if the bit matches the PRBS,
// The results are only valid when sync() returns true;
bool validate(bool bit)
{
bool result;
if (!synced) {
result = synchronize(bit);
} else {
// PRBS is now free-running.
result = bit -~ generate();
count_errors (result) ;
}

return result;

l

@

otherwise 1.

APPENDIX G. BERT DETAILS 58

G.2.3 Resynchronization

The receiver must keep track of the number of bit errors over a period of 128 bits. If more than
18 bit errors occur, the synchronization process starts anew. This is necessary in the case of
missed frames or other serious synchronization issues.

Bits received and errors which occur during resynchronization are not counted towards the bit
error rate.

G.3 References

« ITU 0.150 : Digital test patterns for performance measurements on digital transmission
equipment

« PRBS (according ITU-T 0O.150) and Bit-Sequence Tester : VHDL-Modules

http://www.itu.int/rec/T-REC-O.150-199210-S
http://www.itu.int/rec/T-REC-O.150-199210-S
http://www.pldworld.com/_hdl/5/-thorsten-gaertner.de/vhdl/PRBS.pdf

Appendix H

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

59

APPENDIX H. GNU FREE DOCUMENTATION LICENSE 60

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or ab-
sence of markup, has been arranged to thwart or discourage subsequent modification by readers
is not Transparent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary for-
mats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another lan-
guage. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to

this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that

APPENDIX H. GNU FREE DOCUMENTATION LICENSE 61

these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transpar-
ent copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to en-
sure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the

APPENDIX H. GNU FREE DOCUMENTATION LICENSE 62

N.

0.

History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

. List on the Title Page, as authors, one or more persons or entities responsible for au-

thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.

. Include, immediately after the copyright notices, a license notice giving the public per-

mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

Include an unaltered copy of this License.

. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to a Trans-

parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review or

APPENDIX H. GNU FREE DOCUMENTATION LICENSE 63

that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrange-
ments made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent

APPENDIX H. GNU FREE DOCUMENTATION LICENSE 64

of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

» ¢

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document speci-
fies that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation. If the Document specifies that a
proxy can decide which future versions of this License can be used, that proxy’s public state-
ment of acceptance of a version permanently authorizes you to choose that version for the
Document.

APPENDIX H. GNU FREE DOCUMENTATION LICENSE 65

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu-
ment and put the following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ...
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

Appendix I

GNU General Public License, version 2

Copyright © 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect

66

APPENDIX I. GNU GENERAL PUBLIC LICENSE, VERSION 2 67

making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
Terms and Conditions For Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public Li-
cense. The “Program”, below, refers to any such program or work, and a “work based on
the Program” means either the Program or any derivative work under copyright law: that
is to say, a work containing the Program or a portion of it, either verbatim or with mod-
ifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this Li-
cense; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on
the Program (independent of having been made by running the Program). Whether that
is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the no-
tices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

(a) Youmust cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

(c) Ifthe modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and
that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

APPENDIX I. GNU GENERAL PUBLIC LICENSE, VERSION 2 68

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-
ten entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium custom-
arily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distri-
bution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However, as a special excep-
tion, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, noth-
ing else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by mod-
ifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distribut-
ing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify

APPENDIX I. GNU GENERAL PUBLIC LICENSE, VERSION 2 69

10.

11.

the Program subject to these terms and conditions. You may not impose any further re-
strictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent obli-
gations, then as a consequence you may not distribute the Program at all. For example, if
a patent license would not permit royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-
cumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented
by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Pro-
gram under this License may add an explicit geographical distribution limitation exclud-
ing those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body
of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

No Warranty

Because the program is licensed free of charge, there is no warranty for the program, to

APPENDIX I. GNU GENERAL PUBLIC LICENSE, VERSION 2 70

12.

the extent permitted by applicable law. Except when otherwise stated in writing the copy-
right holders and/or other parties provide the program “as is” without warranty of any
kind, either expressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The entire risk as to the quality and
performance of the program is with you. Should the program prove defective, you assume
the cost of all necessary servicing, repair or correction.

In no event unless required by applicable law or agreed to in writing will any copyright
holder, or any other party who may modify and/or redistribute the program as permitted
above, be liable to you for damages, including any general, special, incidental or conse-
quential damages arising out of the use or inability to use the program (including but not
limited to loss of data or data being rendered inaccurate or losses sustained by you or
third parties or a failure of the program to operate with any other programs), even if such
holder or other party has been advised of the possibility of such damages.

End of Terms and Conditions

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foun-
dation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an inter-
active mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it under certain condi-
tions; type ‘show ¢’ for details.

The hypothetical commands show wand show c should show the appropriate parts of the Gen-
eral Public License. Of course, the commands you use may be called something other than show

APPENDIX I. GNU GENERAL PUBLIC LICENSE, VERSION 2 71

w and show c; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

	Revision History
	Licenses
	Introduction
	Glossary
	Physical Layer
	4-level Frequency-shift Keying Modulation (4FSK)
	Dibit, Symbol, and Frequency-shift
	4FSK Generation
	Transmission
	Preamble
	Synchronization Burst (Sync Burst)
	Payload
	Randomizer
	End of Transmission marker (EoT)
	Carrier-sense Multiple Access (CSMA)

	Physical Layer Flow Summary

	Data Link Layer
	Frame
	Forward Error Correction (FEC)
	Modes
	Synchronization Burst (Sync Burst)
	Link Setup Data and Frame (LSD and LSF)
	Link Setup Data
	Link Setup Frame

	CRC
	LSF Contents ECC/FEC
	Stream Mode
	Stream Frames
	Stream Superframes

	Packet Mode
	Packet Frames
	Packet Superframes
	Net Throughput

	BERT Mode
	BERT Frames

	Application Layer
	M17 Amateur Radio Voice Application
	LSF
	TYPE
	Encryption Types
	Channel Access Number (CAN)
	Stream Frames
	Digital Signatures

	Packet Application
	Packet Mode LSF TYPE
	Packet Data

	Useful Internet Packets
	Stream Mode Packets
	Packet Mode IP Packet

	Address Encoding
	The M17 aphabet
	Callsign Encoding
	Encoded Addresses
	Encoder Example
	Decoder Example

	Randomizer Sequence
	Convolutional Encoder
	Golay Encoder
	Code Puncturing
	Interleaving
	References

	BERT Details
	PRBS Generation
	PRBS Receiver
	Synchronization
	Counting Bit Errors
	Resynchronization

	References

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

	GNU General Public License, version 2

