gr-m17/lib/m17_coder_impl.cc

892 lines
25 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2023 jmfriedt.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
// 240620: todo uncomment #idef AES for cryptography and #ifdef ECC for signature
// in m17_coder_impl.h: #define AES #define ECC
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "m17_coder_impl.h"
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include "m17.h"
#ifdef AES
#include "aes.h"
#endif
#ifdef ECC
#include "uECC.h"
#endif
namespace gr
{
namespace m17
{
m17_coder::sptr
m17_coder::make (std::string src_id, std::string dst_id, int mode,
int data, int encr_type, int encr_subtype, int can,
std::string meta, std::string key,
std::string priv_key, bool debug, bool signed_str, std::string seed)
{
return gnuradio::get_initial_sptr
(new
m17_coder_impl (src_id, dst_id, mode, data, encr_type, encr_subtype,
can, meta, key, priv_key, debug, signed_str, seed));
}
/*
* The private constructor
*/
m17_coder_impl::m17_coder_impl (std::string src_id, std::string dst_id,
int mode, int data, int encr_type,
int encr_subtype, int can,
std::string meta, std::string key,
std::string priv_key, bool debug,
bool signed_str, std::string seed):gr::block
("m17_coder", gr::io_signature:: make (1, 1, sizeof (char)),
gr::io_signature:: make (1, 1, sizeof (float))),
_mode (mode), _data (data), _encr_subtype (encr_subtype), _can (can), _meta (meta), _debug (debug),
_signed_str (signed_str)
{
set_encr_type(encr_type); // overwritten by set_seed()
set_type (mode, data, _encr_type, encr_subtype, can);
set_meta (meta); // depends on ^^^ encr_subtype
set_seed (seed); // depends on ^^^ encr_subtype
set_src_id (src_id);
set_dst_id (dst_id);
set_signed (signed_str);
set_debug (debug);
set_output_multiple (192);
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
_got_lsf = 0; //have we filled the LSF struct yet?
_fn = 0; //16-bit Frame Number (for the stream mode)
_finished = false;
#ifdef AES
srand (time (NULL)); //random number generator (for IV rand() seed value)
memset (_key, 0, 32 * sizeof (uint8_t));
memset (_iv, 0, 16 * sizeof (uint8_t));
#endif
if (_encr_type == ENCR_AES)
{
set_key (key); // read key
*((int32_t *) & _iv[0]) = (uint32_t) time (NULL) - (uint32_t) epoch; //timestamp
for (uint8_t i = 4; i < 4 + 10; i++)
_iv[i] = 0; //10 random bytes TODO: replace with a rand() or pass through an additional arg
}
message_port_register_in(pmt::mp("end_of_transmission"));
set_msg_handler(pmt::mp("end_of_transmission"), [this](const pmt::pmt_t& msg) { end_of_transmission(msg); });
}
void m17_coder_impl::end_of_transmission(const pmt::pmt_t& msg)
{_finished=true;
std::cout << "***** End of Transmission ********\n";
pmt::print(msg);
}
void m17_coder_impl::set_encr_type (int encr_type)
{
switch (encr_type)
{case 0:_encr_type=ENCR_NONE;break;
case 1:_encr_type=ENCR_SCRAM;break;
case 2:_encr_type=ENCR_AES;break;
case 3:_encr_type=ENCR_RES;break;
default:_encr_type=ENCR_NONE;
}
printf ("new encr type: %x -> ", _encr_type);
}
void m17_coder_impl::set_signed (bool signed_str)
{
_signed_str = signed_str;
if (_signed_str == true)
printf ("Signed\n");
else
printf ("Unsigned\n");
}
void m17_coder_impl::set_debug (bool debug)
{
_debug = debug;
if (_debug == true)
printf ("Debug true\n");
else
printf ("Debug false\n");
}
void m17_coder_impl::set_src_id (std::string src_id)
{
int length;
for (int i = 0; i < 10; i++)
{
_src_id[i] = 0;
}
if (src_id.length () > 9)
length = 9;
else
length = src_id.length ();
for (int i = 0; i < length; i++)
{
_src_id[i] = toupper (src_id.c_str ()[i]);
}
encode_callsign_bytes (_lsf.src, _src_id); // 6 byte ID <- 9 char callsign
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
}
void m17_coder_impl::set_dst_id (std::string dst_id)
{
int length;
for (int i = 0; i < 10; i++)
{
_dst_id[i] = 0;
}
if (dst_id.length () > 9)
length = 9;
else
length = dst_id.length ();
for (int i = 0; i < length; i++)
{
_dst_id[i] = toupper (dst_id.c_str ()[i]);
}
encode_callsign_bytes (_lsf.dst, _dst_id); // 6 byte ID <- 9 char callsign
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
}
void m17_coder_impl::set_priv_key (std::string arg) // *UTF-8* encoded byte array
{
int length;
printf ("new private key: ");
length = arg.size ();
_priv_key_loaded = true;
int i = 0, j = 0;
while ((j < 32) && (i < length))
{
if ((unsigned int) arg.data ()[i] < 0xc2) // https://www.utf8-chartable.de/
{
_priv_key[j] = arg.data ()[i];
i++;
j++;
}
else
{
_priv_key[j] =
(arg.data ()[i] - 0xc2) * 0x40 + arg.data ()[i + 1];
i += 2;
j++;
}
}
length = j; // index from 0 to length-1
printf ("%d bytes: ", length);
for (i = 0; i < length; i++)
printf ("%02X ", _priv_key[i]);
printf ("\n");
fflush (stdout);
}
void m17_coder_impl::set_key (std::string arg) // *UTF-8* encoded byte array
{
int length;
printf ("new key: ");
length = arg.size ();
int i = 0, j = 0;
while ((j < 32) && (i < length))
{
if ((unsigned int) arg.data ()[i] < 0xc2) // https://www.utf8-chartable.de/
{
_key[j] = arg.data ()[i];
i++;
j++;
}
else
{
_key[j] = (arg.data ()[i] - 0xc2) * 0x40 + arg.data ()[i + 1];
i += 2;
j++;
}
}
length = j; // index from 0 to length-1
printf ("%d bytes: ", length);
for (i = 0; i < length; i++)
printf ("%02X ", _key[i]);
printf ("\n");
fflush (stdout);
}
void m17_coder_impl::set_seed (std::string arg) // *UTF-8* encoded byte array
{
int length;
printf ("new seed: ");
length = arg.size ();
int i = 0, j = 0;
while ((j < 3) && (i < length))
{
if ((unsigned int) arg.data ()[i] < 0xc2) // https://www.utf8-chartable.de/
{
_seed[j] = arg.data ()[i];
i++;
j++;
}
else
{
_seed[j] = (arg.data ()[i] - 0xc2) * 0x40 + arg.data ()[i + 1];
i += 2;
j++;
}
}
length = j; // index from 0 to length-1
printf ("%d bytes: ", length);
for (i = 0; i < length; i++)
printf ("%02X ", _seed[i]);
printf ("\n");
fflush (stdout);
if(length<=2)
{
_scrambler_seed = _scrambler_seed >> 16;
fprintf(stderr, "Scrambler key: 0x%02X (8-bit)\n", _scrambler_seed);
}
else if(length<=4)
{
_scrambler_seed = _scrambler_seed >> 8;
fprintf(stderr, "Scrambler key: 0x%04X (16-bit)\n", _scrambler_seed);
}
else
fprintf(stderr, "Scrambler key: 0x%06X (24-bit)\n", _scrambler_seed);
_encr_type=ENCR_SCRAM; //Scrambler key was passed
}
void m17_coder_impl::set_meta (std::string meta) // either an ASCII string if encr_subtype==0 or *UTF-8* encoded byte array
{
int length;
printf ("new meta: ");
if (_encr_subtype == 0) // meta is \0-terminated string
{
if (meta.length () < 14)
length = meta.length ();
else
{
length = 14;
meta[length] = 0;
}
printf ("%s\n", meta.c_str ());
for (int i = 0; i < length; i++)
{
_lsf.meta[i] = meta[i];
}
}
else
{
length = meta.size ();
int i = 0, j = 0;
while ((j < 14) && (i < length))
{
if ((unsigned int) meta.data ()[i] < 0xc2) // https://www.utf8-chartable.de/
{
_lsf.meta[j] = meta.data ()[i];
i++;
j++;
}
else
{
_lsf.meta[j] =
(meta.data ()[i] - 0xc2) * 0x40 + meta.data ()[i + 1];
i += 2;
j++;
}
}
length = j; // index from 0 to length-1
printf ("%d bytes: ", length);
for (i = 0; i < length; i++)
printf ("%02X ", _lsf.meta[i]);
printf ("\n");
}
fflush (stdout);
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
}
void m17_coder_impl::set_mode (int mode)
{
_mode = mode;
printf ("new mode: %x -> ", _mode);
set_type (_mode, _data, _encr_type, _encr_subtype, _can);
}
void m17_coder_impl::set_data (int data)
{
_data = data;
printf ("new data type: %x -> ", _data);
set_type (_mode, _data, _encr_type, _encr_subtype, _can);
}
void m17_coder_impl::set_encr_subtype (int encr_subtype)
{
_encr_subtype = encr_subtype;
printf ("new encr subtype: %x -> ", _encr_subtype);
set_type (_mode, _data, _encr_type, _encr_subtype, _can);
}
void m17_coder_impl::set_can (int can)
{
_can = can;
printf ("new CAN: %x -> ", _can);
set_type (_mode, _data, _encr_type, _encr_subtype, _can);
}
void m17_coder_impl::set_type (int mode, int data, encr_t encr_type,
int encr_subtype, int can)
{
short tmptype;
tmptype =
mode | (data << 1) | (encr_type << 3) | (encr_subtype << 5) | (can <<
7);
_lsf.type[0] = tmptype >> 8; // MSB
_lsf.type[1] = tmptype & 0xff; // LSB
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
printf ("Transmission type: 0x%02X%02X\n", _lsf.type[0], _lsf.type[1]);
fflush (stdout);
}
/*
* Our virtual destructor.
*/
m17_coder_impl::~m17_coder_impl ()
{
}
void
m17_coder_impl::forecast (int noutput_items,
gr_vector_int & ninput_items_required)
{
ninput_items_required[0] = noutput_items / 12; // 16 inputs -> 192 outputs
}
//scrambler pn sequence generation
void m17_coder_impl::scrambler_sequence_generator ()
{
int i = 0;
uint32_t lfsr, bit;
lfsr = _scrambler_seed;
//only set if not initially set (first run), it is possible (and observed) that the scrambler_subtype can
//change on subsequent passes if the current SEED for the LFSR falls below one of these thresholds
if (_scrambler_subtype == -1)
{
if (lfsr > 0 && lfsr <= 0xFF)
_scrambler_subtype = 0; // 8-bit key
else if (lfsr > 0xFF && lfsr <= 0xFFFF)
_scrambler_subtype = 1; //16-bit key
else if (lfsr > 0xFFFF && lfsr <= 0xFFFFFF)
_scrambler_subtype = 2; //24-bit key
else
_scrambler_subtype = 0; // 8-bit key (default)
}
//TODO: Set Frame Type based on scrambler_subtype value
if (_debug == true)
{
fprintf (stderr,
"\nScrambler Key: 0x%06X; Seed: 0x%06X; Subtype: %02d;",
_scrambler_seed, lfsr, _scrambler_subtype);
fprintf (stderr, "\n pN: ");
}
//run pN sequence with taps specified
for (i = 0; i < 128; i++)
{
//get feedback bit with specified taps, depending on the scrambler_subtype
if (_scrambler_subtype == 0)
bit = (lfsr >> 7) ^ (lfsr >> 5) ^ (lfsr >> 4) ^ (lfsr >> 3);
else if (_scrambler_subtype == 1)
bit = (lfsr >> 15) ^ (lfsr >> 14) ^ (lfsr >> 12) ^ (lfsr >> 3);
else if (_scrambler_subtype == 2)
bit = (lfsr >> 23) ^ (lfsr >> 22) ^ (lfsr >> 21) ^ (lfsr >> 16);
else
bit = 0; //should never get here, but just in case
bit &= 1; //truncate bit to 1 bit (required since I didn't do it above)
lfsr = (lfsr << 1) | bit; //shift LFSR left once and OR bit onto LFSR's LSB
lfsr &= 0xFFFFFF; //truncate lfsr to 24-bit (really doesn't matter)
_scrambler_pn[i] = bit;
}
//pack bit array into byte array for easy data XOR
pack_bit_array_into_byte_array (_scrambler_pn, _scr_bytes, 16);
//save scrambler seed for next round
_scrambler_seed = lfsr;
//truncate seed so subtype will continue to set properly on subsequent passes
if (_scrambler_subtype == 0)
_scrambler_seed &= 0xFF;
else if (_scrambler_subtype == 1)
_scrambler_seed &= 0xFFFF;
else if (_scrambler_subtype == 2)
_scrambler_seed &= 0xFFFFFF;
if (_debug == true)
{
//debug packed bytes
for (i = 0; i < 16; i++)
fprintf (stderr, " %02X", _scr_bytes[i]);
fprintf (stderr, "\n");
}
}
//convert a user string (as hex octets) into a uint8_t array for key
void m17_coder_impl::parse_raw_key_string (uint8_t * dest,
const char *inp)
{
uint16_t len = strlen (inp);
if (len == 0)
return; //return silently and pretend nothing happened
memset (dest, 0, len / 2); //one character represents half of a byte
if (!(len % 2)) //length even?
{
for (uint8_t i = 0; i < len; i += 2)
{
if (inp[i] >= 'a')
dest[i / 2] |= (inp[i] - 'a' + 10) * 0x10;
else if (inp[i] >= 'A')
dest[i / 2] |= (inp[i] - 'A' + 10) * 0x10;
else if (inp[i] >= '0')
dest[i / 2] |= (inp[i] - '0') * 0x10;
if (inp[i + 1] >= 'a')
dest[i / 2] |= inp[i + 1] - 'a' + 10;
else if (inp[i + 1] >= 'A')
dest[i / 2] |= inp[i + 1] - 'A' + 10;
else if (inp[i + 1] >= '0')
dest[i / 2] |= inp[i + 1] - '0';
}
}
else
{
if (inp[0] >= 'a')
dest[0] |= inp[0] - 'a' + 10;
else if (inp[0] >= 'A')
dest[0] |= inp[0] - 'A' + 10;
else if (inp[0] >= '0')
dest[0] |= inp[0] - '0';
for (uint8_t i = 1; i < len - 1; i += 2)
{
if (inp[i] >= 'a')
dest[i / 2 + 1] |= (inp[i] - 'a' + 10) * 0x10;
else if (inp[i] >= 'A')
dest[i / 2 + 1] |= (inp[i] - 'A' + 10) * 0x10;
else if (inp[i] >= '0')
dest[i / 2 + 1] |= (inp[i] - '0') * 0x10;
if (inp[i + 1] >= 'a')
dest[i / 2 + 1] |= inp[i + 1] - 'a' + 10;
else if (inp[i + 1] >= 'A')
dest[i / 2 + 1] |= inp[i + 1] - 'A' + 10;
else if (inp[i + 1] >= '0')
dest[i / 2 + 1] |= inp[i + 1] - '0';
}
}
}
int
m17_coder_impl::general_work (int noutput_items,
gr_vector_int & ninput_items,
gr_vector_const_void_star & input_items,
gr_vector_void_star & output_items)
{
const char *in = (const char *) input_items[0];
float *out = (float *) output_items[0];
int countin = 0;
uint32_t countout = 0;
uint8_t enc_bits[SYM_PER_PLD * 2]; //type-2 bits, unpacked
uint8_t rf_bits[SYM_PER_PLD * 2]; //type-4 bits, unpacked
uint8_t lich[6]; //48 bits packed raw, unencoded LICH
uint8_t lich_encoded[12]; //96 bits packed, encoded LICH
uint8_t data[16], next_data[16]; //raw payload, packed bits
while ((countout < (uint32_t) noutput_items) && (countin + 16 <= noutput_items))
{
if (!_got_lsf) //stream frames
{
//send LSF syncword
send_syncword (out, &countout, SYNC_LSF);
//encode LSF data
conv_encode_LSF (enc_bits, &_lsf);
//reorder bits
reorder_bits (rf_bits, enc_bits);
//randomize
randomize_bits (rf_bits);
//send LSF data
send_data (out, &countout, rf_bits);
//check the SIGNED STREAM flag
_signed_str = (_lsf.type[0] >> 3) & 1;
//set the flag
_got_lsf = 1;
}
if (_debug == true)
{
//destination set to "ALL"
memset (_next_lsf.dst, 0xFF, 6 * sizeof (uint8_t));
//source set to "N0CALL"
_next_lsf.src[0] = 0x00;
_next_lsf.src[1] = 0x00;
_next_lsf.src[2] = 0x4B;
_next_lsf.src[3] = 0x13;
_next_lsf.src[4] = 0xD1;
_next_lsf.src[5] = 0x06;
if (_encr_type == ENCR_AES) //AES ENC, 3200 voice
{
_next_lsf.type[0] = 0x03;
_next_lsf.type[1] = 0x95;
}
else if (_encr_type == ENCR_SCRAM) //Scrambler ENC, 3200 Voice
{
_next_lsf.type[0] = 0x00;
_next_lsf.type[1] = 0x00;
if (_scrambler_subtype == 0)
_next_lsf.type[1] = 0x0D;
else if (_scrambler_subtype == 1)
_next_lsf.type[1] = 0x2D;
else if (_scrambler_subtype == 2)
_next_lsf.type[1] = 0x4D;
}
else //no enc or subtype field, normal 3200 voice
{
_next_lsf.type[0] = 0x00;
_next_lsf.type[1] = 0x05;
}
//a signature key is loaded, OR this bit
if (_priv_key_loaded == true)
_next_lsf.type[0] |= 0x8;
_finished = false;
memset (next_data, 0, sizeof (next_data));
memcpy (data, next_data, sizeof (data));
// if (_fn == 60)
// _finished = true;
//debug sig with random payloads (don't play the audio)
for (uint8_t i = 0; i < 16; i++)
data[i] = 0x69; //rand() & 0xFF;
}
/*
//TODO: pass some of these through arguments?
//read data
dummy=fread(&(lsf.dst), 6, 1, stdin);
dummy=fread(&(lsf.src), 6, 1, stdin);
dummy=fread(&(lsf.type), 2, 1, stdin);
dummy=fread(&(lsf.meta), 14, 1, stdin);
dummy=fread(data, 16, 1, stdin);
*/
if (countin + 16 <= noutput_items)
{
for (int i = 0; i < 16; i++)
{
data[i] = in[countin];
countin++;
}
}
//AES encryption enabled - use 112 bits of IV
if (_encr_type == ENCR_AES)
{
memcpy (&(_lsf.meta), _iv, 14);
_iv[14] = (_fn >> 8) & 0x7F;
_iv[15] = (_fn >> 0) & 0xFF;
//re-calculate LSF CRC with IV insertion
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
}
// while (_finished == false)
{
if (!_got_lsf)
{ //debug
//fprintf(stderr, "LSF\n");
//send LSF syncword
send_syncword (out, &countout, SYNC_LSF);
//encode LSF data
conv_encode_LSF (enc_bits, &_lsf);
//reorder bits
reorder_bits (rf_bits, enc_bits);
//randomize
randomize_bits (rf_bits);
//send LSF data
send_data (out, &countout, rf_bits);
//check the SIGNED STREAM flag
_signed_str = (_lsf.type[0] >> 3) & 1;
//set the flag
_got_lsf = 1;
}
if (_debug == true)
{
//destination set to "ALL"
memset (_next_lsf.dst, 0xFF, 6 * sizeof (uint8_t));
//source set to "N0CALL"
_next_lsf.src[0] = 0x00;
_next_lsf.src[1] = 0x00;
_next_lsf.src[2] = 0x4B;
_next_lsf.src[3] = 0x13;
_next_lsf.src[4] = 0xD1;
_next_lsf.src[5] = 0x06;
if (_encr_type == ENCR_AES) //AES ENC, 3200 voice
{
_next_lsf.type[0] = 0x03;
_next_lsf.type[1] = 0x95;
}
else if (_encr_type == ENCR_SCRAM) //Scrambler ENC, 3200 Voice
{
_next_lsf.type[0] = 0x00;
_next_lsf.type[1] = 0x00;
if (_scrambler_subtype == 0)
_next_lsf.type[1] = 0x0D;
else if (_scrambler_subtype == 1)
_next_lsf.type[1] = 0x2D;
else if (_scrambler_subtype == 2)
_next_lsf.type[1] = 0x4D;
}
else //no enc or subtype field, normal 3200 voice
{
_next_lsf.type[0] = 0x00;
_next_lsf.type[1] = 0x05;
}
//a signature key is loaded, OR this bit
if (_priv_key_loaded == true)
_next_lsf.type[0] |= 0x8;
_finished = false;
memset (next_data, 0, sizeof (next_data));
memcpy (data, next_data, sizeof (data));
if (_fn == 60)
_finished = 1;
//debug sig with random payloads (don't play the audio)
for (uint8_t i = 0; i < 16; i++)
data[i] = 0x69; //rand() & 0xFF;
} // end of debug==true
else
{
/*
//check if theres any more data
if(fread(&(next_lsf.dst), 6, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.src), 6, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.type), 2, 1, stdin)<1) finished=1;
if(fread(&(next_lsf.meta), 14, 1, stdin)<1) finished=1;
if(fread(next_data, 16, 1, stdin)<1) _finished=true;
*/
if (countin + 16 <= noutput_items)
{
for (int i = 0; i < 16; i++)
{
next_data[i] = in[countin];
countin++;
}
}
}
//AES
if (_encr_type == ENCR_AES)
{
memcpy (&(_next_lsf.meta), _iv, 14);
_iv[14] = (_fn >> 8) & 0x7F;
_iv[15] = (_fn >> 0) & 0xFF;
aes_ctr_bytewise_payload_crypt (_iv, _key, data, AES128); //hardcoded for now
}
//Scrambler
else if (_encr_type == ENCR_SCRAM)
{
scrambler_sequence_generator ();
for (uint8_t i = 0; i < 16; i++)
{
data[i] ^= _scr_bytes[i];
}
}
if (_finished == false)
{
send_syncword (out, &countout, SYNC_STR);
extract_LICH (lich, _lich_cnt, &_lsf);
encode_LICH (lich_encoded, lich);
unpack_LICH (enc_bits, lich_encoded);
conv_encode_stream_frame (&enc_bits[96], data, _fn);
reorder_bits (rf_bits, enc_bits);
randomize_bits (rf_bits);
send_data (out, &countout, rf_bits);
_fn = (_fn + 1) % 0x8000; //increment FN
_lich_cnt = (_lich_cnt + 1) % 6; //continue with next LICH_CNT
//update the stream digest if required
if (_signed_str)
{
for (uint8_t i = 0; i < sizeof (_digest); i++)
_digest[i] ^= data[i];
uint8_t tmp = _digest[0];
for (uint8_t i = 0; i < sizeof (_digest) - 1; i++)
_digest[i] = _digest[i + 1];
_digest[sizeof (_digest) - 1] = tmp;
}
//update LSF every 6 frames (superframe boundary)
if (_fn > 0 && _lich_cnt == 0)
{
_lsf = _next_lsf;
//calculate LSF CRC
uint16_t ccrc = LSF_CRC (&_lsf);
_lsf.crc[0] = ccrc >> 8;
_lsf.crc[1] = ccrc & 0xFF;
}
memcpy (data, next_data, 16);
}
else //send last frame(s)
{ printf("Sending last frame\n");
send_syncword (out, &countout, SYNC_STR);
extract_LICH (lich, _lich_cnt, &_lsf);
encode_LICH (lich_encoded, lich);
unpack_LICH (enc_bits, lich_encoded);
if (!_signed_str)
conv_encode_stream_frame (&enc_bits[96], data,
(_fn | 0x8000));
else
conv_encode_stream_frame (&enc_bits[96], data, _fn);
reorder_bits (rf_bits, enc_bits);
randomize_bits (rf_bits);
send_data (out, &countout, rf_bits);
_lich_cnt = (_lich_cnt + 1) % 6; //continue with next LICH_CNT
//if we are done, and the stream is signed, so we need to transmit the signature (4 frames)
if (_signed_str)
{
//update digest
for (uint8_t i = 0; i < sizeof (_digest); i++)
_digest[i] ^= data[i];
uint8_t tmp = _digest[0];
for (uint8_t i = 0; i < sizeof (_digest) - 1; i++)
_digest[i] = _digest[i + 1];
_digest[sizeof (_digest) - 1] = tmp;
//sign the digest
uECC_sign (_priv_key, _digest, sizeof (_digest),
_sig, _curve);
//4 frames with 512-bit signature
_fn = 0x7FFC; //signature has to start at 0x7FFC to end at 0x7FFF (0xFFFF with EoT marker set)
for (uint8_t i = 0; i < 4; i++)
{
send_syncword (out, &countout, SYNC_STR);
extract_LICH (lich, _lich_cnt, &_lsf);
encode_LICH (lich_encoded, lich);
unpack_LICH (enc_bits, lich_encoded);
conv_encode_stream_frame (&enc_bits[96],
&_sig[i * 16], _fn);
reorder_bits (rf_bits, enc_bits);
randomize_bits (rf_bits);
send_data (out, &countout, rf_bits);
_fn =
(_fn < 0x7FFE) ? _fn + 1 : (0x7FFF | 0x8000);
_lich_cnt = (_lich_cnt + 1) % 6; //continue with next LICH_CNT
}
if (_debug == true)
{
fprintf (stderr, "Signature: ");
for (uint8_t i = 0; i < sizeof (_sig); i++)
{
if (i == 16 || i == 32 || i == 48)
fprintf (stderr, "\n ");
fprintf (stderr, "%02X", _sig[i]);
}
fprintf (stderr, "\n");
}
}
//send EOT frame
send_eot (out, &countout);
//fprintf(stderr, "Stream has ended. Exiting.\n");
} // finished == true
} // finished == false
} // loop on input data
// Tell runtime system how many input items we consumed on
// each input stream.
consume_each (countin);
// printf(" noutput_items=%d countin=%d countout=%d\n",noutput_items,countin,countout);
// Tell runtime system how many output items we produced.
if (_finished==false)
return countout;
else {printf("Killing flowgraph\n"); return -1;} // https://lists.gnu.org/archive/html/discuss-gnuradio/2016-12/msg00206.html
// returning -1 (which is the magical value for "there's nothing coming anymore, you can shut down") would normally end a flow graph
}
} /* namespace m17 */
} /* namespace gr */