/* * Copyright (C) 2015,2016 by Jonathan Naylor G4KLX * Copyright (C) 2015 by Jim Mclaughlin KI6ZUM * Copyright (C) 2016 by Colin Durbridge G4EML * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ // #define WANT_DEBUG #include "Config.h" #include "Globals.h" #include "IO.h" // Generated using rcosdesign(0.2, 4, 10, 'sqrt') in MATLAB static q15_t C4FSK_FILTER[] = {486, 39, -480, -1022, -1526, -1928, -2164, -2178, -1927, -1384, -548, 561, 1898, 3399, 4980, 6546, 7999, 9246, 10202, 10803, 11008, 10803, 10202, 9246, 7999, 6546, 4980, 3399, 1898, 561, -548, -1384, -1927, -2178, -2164, -1928, -1526, -1022, -480, 39, 486, 0}; const uint16_t C4FSK_FILTER_LEN = 42U; // Generated using gaussfir(0.5, 4, 10) in MATLAB static q15_t GMSK_FILTER[] = {1, 4, 15, 52, 151, 380, 832, 1579, 2599, 3710, 4594, 4933, 4594, 3710, 2599, 1579, 832, 380, 151, 52, 15, 4, 1, 0}; const uint16_t GMSK_FILTER_LEN = 24U; const uint16_t DC_OFFSET = 2048U; CIO::CIO() : m_started(false), m_rxBuffer(RX_RINGBUFFER_SIZE), m_txBuffer(TX_RINGBUFFER_SIZE), m_rssiBuffer(RX_RINGBUFFER_SIZE), m_C4FSKFilter(), m_GMSKFilter(), m_C4FSKState(), m_GMSKState(), m_pttInvert(false), m_rxLevel(128 * 128), m_cwIdTXLevel(128 * 128), m_dstarTXLevel(128 * 128), m_dmrTXLevel(128 * 128), m_ysfTXLevel(128 * 128), m_p25TXLevel(128 * 128), m_ledCount(0U), m_ledValue(true), m_detect(false), m_adcOverflow(0U), m_dacOverflow(0U), m_count(0U), m_watchdog(0U), m_lockout(false) { ::memset(m_C4FSKState, 0x00U, 70U * sizeof(q15_t)); ::memset(m_GMSKState, 0x00U, 40U * sizeof(q15_t)); m_C4FSKFilter.numTaps = C4FSK_FILTER_LEN; m_C4FSKFilter.pState = m_C4FSKState; m_C4FSKFilter.pCoeffs = C4FSK_FILTER; m_GMSKFilter.numTaps = GMSK_FILTER_LEN; m_GMSKFilter.pState = m_GMSKState; m_GMSKFilter.pCoeffs = GMSK_FILTER; initInt(); } void CIO::start() { if (m_started) return; startInt(); m_count = 0U; m_started = true; setMode(); } void CIO::process() { m_ledCount++; if (m_started) { // Two seconds timeout if (m_watchdog >= 96000U) { if (m_modemState == STATE_DSTAR || m_modemState == STATE_DMR || m_modemState == STATE_YSF) { if (m_modemState == STATE_DMR && m_tx) dmrTX.setStart(false); m_modemState = STATE_IDLE; setMode(); } m_watchdog = 0U; } if (m_ledCount >= 48000U) { m_ledCount = 0U; m_ledValue = !m_ledValue; setLEDInt(m_ledValue); } } else { if (m_ledCount >= 480000U) { m_ledCount = 0U; m_ledValue = !m_ledValue; setLEDInt(m_ledValue); } return; } #if defined(USE_COS_AS_LOCKOUT) m_lockout = getCOSInt(); #endif // Switch off the transmitter if needed if (m_txBuffer.getData() == 0U && m_tx) { m_tx = false; setPTTInt(m_pttInvert ? true : false); } if (m_rxBuffer.getData() >= RX_BLOCK_SIZE) { q15_t samples[RX_BLOCK_SIZE + 1U]; uint8_t control[RX_BLOCK_SIZE + 1U]; uint16_t rssi[RX_BLOCK_SIZE + 1U]; uint8_t blockSize = RX_BLOCK_SIZE; for (uint16_t i = 0U; i < RX_BLOCK_SIZE; i++) { uint16_t sample; m_rxBuffer.get(sample, control[i]); m_rssiBuffer.get(rssi[i]); // Detect ADC overflow if (m_detect && (sample == 0U || sample == 4095U)) m_adcOverflow++; q15_t res1 = q15_t(sample) - DC_OFFSET; q31_t res2 = res1 * m_rxLevel; samples[i] = q15_t(__SSAT((res2 >> 15), 16)); } // Handle the case of the oscillator not being accurate enough if (m_sampleCount > 0U) { m_count += RX_BLOCK_SIZE; if (m_count >= m_sampleCount) { if (m_sampleInsert) { blockSize++; samples[RX_BLOCK_SIZE] = 0; for (int8_t i = RX_BLOCK_SIZE - 1; i >= 0; i--) control[i + 1] = control[i]; } else { blockSize--; for (uint8_t i = 0U; i < (RX_BLOCK_SIZE - 1U); i++) control[i] = control[i + 1U]; } m_count -= m_sampleCount; } } if (m_lockout) return; if (m_modemState == STATE_IDLE) { if (m_dstarEnable) { q15_t GMSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize); dstarRX.samples(GMSKVals, blockSize); } if (m_dmrEnable || m_ysfEnable || m_p25Enable) { q15_t C4FSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize); if (m_dmrEnable) { if (m_duplex) dmrIdleRX.samples(C4FSKVals, blockSize); else dmrDMORX.samples(C4FSKVals, rssi, blockSize); } if (m_ysfEnable) ysfRX.samples(C4FSKVals, blockSize); if (m_p25Enable) p25RX.samples(C4FSKVals, blockSize); } } else if (m_modemState == STATE_DSTAR) { if (m_dstarEnable) { q15_t GMSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize); dstarRX.samples(GMSKVals, blockSize); } } else if (m_modemState == STATE_DMR) { if (m_dmrEnable) { q15_t C4FSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize); if (m_duplex) { // If the transmitter isn't on, use the DMR idle RX to detect the wakeup CSBKs if (m_tx) dmrRX.samples(C4FSKVals, rssi, control, blockSize); else dmrIdleRX.samples(C4FSKVals, blockSize); } else { dmrDMORX.samples(C4FSKVals, rssi, blockSize); } } } else if (m_modemState == STATE_YSF) { if (m_ysfEnable) { q15_t C4FSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize); ysfRX.samples(C4FSKVals, blockSize); } } else if (m_modemState == STATE_P25) { if (m_p25Enable) { q15_t C4FSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_C4FSKFilter, samples, C4FSKVals, blockSize); p25RX.samples(C4FSKVals, blockSize); } } else if (m_modemState == STATE_DSTARCAL) { q15_t GMSKVals[RX_BLOCK_SIZE + 1U]; ::arm_fir_fast_q15(&m_GMSKFilter, samples, GMSKVals, blockSize); calDStarRX.samples(GMSKVals, blockSize); } } } void CIO::write(MMDVM_STATE mode, q15_t* samples, uint16_t length, const uint8_t* control) { if (!m_started) return; if (m_lockout) return; // Switch the transmitter on if needed if (!m_tx) { m_tx = true; setPTTInt(m_pttInvert ? false : true); } q15_t txLevel = 0; switch (mode) { case STATE_DSTAR: txLevel = m_dstarTXLevel; break; case STATE_DMR: txLevel = m_dmrTXLevel; break; case STATE_YSF: txLevel = m_ysfTXLevel; break; case STATE_P25: txLevel = m_p25TXLevel; break; default: txLevel = m_cwIdTXLevel; break; } for (uint16_t i = 0U; i < length; i++) { q31_t res1 = samples[i] * txLevel; q15_t res2 = q15_t(__SSAT((res1 >> 15), 16)); uint16_t res3 = uint16_t(res2 + DC_OFFSET); // Detect DAC overflow if (res3 > 4095U) m_dacOverflow++; if (control == NULL) m_txBuffer.put(res3, MARK_NONE); else m_txBuffer.put(res3, control[i]); } } uint16_t CIO::getSpace() const { return m_txBuffer.getSpace(); } void CIO::setDecode(bool dcd) { if (dcd != m_dcd) setCOSInt(dcd ? true : false); m_dcd = dcd; } void CIO::setADCDetection(bool detect) { m_detect = detect; } void CIO::setMode() { #if defined(ARDUINO_MODE_PINS) setDStarInt(m_modemState == STATE_DSTAR); setDMRInt(m_modemState == STATE_DMR); setYSFInt(m_modemState == STATE_YSF); setP25Int(m_modemState == STATE_P25); #endif } void CIO::setParameters(bool rxInvert, bool txInvert, bool pttInvert, uint8_t rxLevel, uint8_t cwIdTXLevel, uint8_t dstarTXLevel, uint8_t dmrTXLevel, uint8_t ysfTXLevel, uint8_t p25TXLevel) { m_pttInvert = pttInvert; m_rxLevel = q15_t(rxLevel * 128); m_cwIdTXLevel = q15_t(cwIdTXLevel * 128); m_dstarTXLevel = q15_t(dstarTXLevel * 128); m_dmrTXLevel = q15_t(dmrTXLevel * 128); m_ysfTXLevel = q15_t(ysfTXLevel * 128); m_p25TXLevel = q15_t(p25TXLevel * 128); if (rxInvert) m_rxLevel = -m_rxLevel; if (txInvert) { m_dstarTXLevel = -m_dstarTXLevel; m_dmrTXLevel = -m_dmrTXLevel; m_ysfTXLevel = -m_ysfTXLevel; m_p25TXLevel = -m_p25TXLevel; } } void CIO::getOverflow(bool& adcOverflow, bool& dacOverflow) { adcOverflow = m_adcOverflow > 0U; dacOverflow = m_dacOverflow > 0U; #if defined(WANT_DEBUG) if (m_adcOverflow > 0U || m_dacOverflow > 0U) DEBUG3("IO: adc/dac", m_adcOverflow, m_dacOverflow); #endif m_adcOverflow = 0U; m_dacOverflow = 0U; } bool CIO::hasTXOverflow() { return m_txBuffer.hasOverflowed(); } bool CIO::hasRXOverflow() { return m_rxBuffer.hasOverflowed(); } void CIO::resetWatchdog() { m_watchdog = 0U; } bool CIO::hasLockout() const { return m_lockout; }