/* * Copyright (C) 2016,2017 by Jonathan Naylor G4KLX * Copyright (C) 2017 by Andy Uribe CA6JAU * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ // #define WANT_DEBUG #include "Config.h" #include "Globals.h" #include "P25TX.h" #include "P25Defines.h" #if defined(WIDE_C4FSK_FILTERS_TX) // Generated using rcosdesign(0.2, 4, 5, 'normal') in MATLAB // numTaps = 20, L = 5 static q15_t P25_C4FSK_FILTER[] = {-1392, -2602, -3043, -2238, 0, 3460, 7543, 11400, 14153, 15152, 14153, 11400, 7543, 3460, 0, -2238, -3043, -2602, -1392, 0}; const uint16_t P25_C4FSK_FILTER_PHASE_LEN = 4U; // phaseLength = numTaps/L #else // Generated using rcosdesign(0.2, 8, 5, 'normal') in MATLAB // numTaps = 40, L = 5 static q15_t P25_C4FSK_FILTER[] = {-413, -751, -845, -587, 0, 740, 1348, 1520, 1063, 0, -1383, -2583, -3021, -2222, 0, 3435, 7488, 11318, 14053, 15044, 14053, 11318, 7488, 3435, 0, -2222, -3021, -2583, -1383, 0, 1063, 1520, 1348, 740, 0, -587, -845, -751, -413, 0}; const uint16_t P25_C4FSK_FILTER_PHASE_LEN = 8U; // phaseLength = numTaps/L #endif // Generated in MATLAB using the following commands, and then normalised for unity gain // shape2 = 'Inverse-sinc Lowpass'; // d2 = fdesign.interpolator(2, shape2); // h2 = design(d2, 'SystemObject', true); static q15_t P25_LP_FILTER[] = {170, 401, 340, -203, -715, -478, 281, 419, -440, -1002, -103, 1114, 528, -1389, -1520, 1108, 2674, -388, -4662, -2132, 9168, 20241, 20241, 9168, -2132, -4662, -388, 2674, 1108, -1520, -1389, 528, 1114, -103, -1002, -440, 419, 281, -478, -715, -203, 340, 401, 170}; const uint16_t P25_LP_FILTER_LEN = 44U; const q15_t P25_LEVELA = 1698; const q15_t P25_LEVELB = 566; const q15_t P25_LEVELC = -566; const q15_t P25_LEVELD = -1698; const uint8_t P25_START_SYNC = 0x77U; CP25TX::CP25TX() : m_buffer(1500U), m_modFilter(), m_lpFilter(), m_modState(), m_lpState(), m_poBuffer(), m_poLen(0U), m_poPtr(0U), m_txDelay(240U) // 200ms { ::memset(m_modState, 0x00U, 16U * sizeof(q15_t)); ::memset(m_lpState, 0x00U, 70U * sizeof(q15_t)); m_modFilter.L = P25_RADIO_SYMBOL_LENGTH; m_modFilter.phaseLength = P25_C4FSK_FILTER_PHASE_LEN; m_modFilter.pCoeffs = P25_C4FSK_FILTER; m_modFilter.pState = m_modState; m_lpFilter.numTaps = P25_LP_FILTER_LEN; m_lpFilter.pState = m_lpState; m_lpFilter.pCoeffs = P25_LP_FILTER; } void CP25TX::process() { if (m_buffer.getData() == 0U && m_poLen == 0U) return; if (m_poLen == 0U) { if (!m_tx) { for (uint16_t i = 0U; i < m_txDelay; i++) m_poBuffer[m_poLen++] = P25_START_SYNC; } else { uint8_t length = m_buffer.get(); for (uint8_t i = 0U; i < length; i++) { uint8_t c = m_buffer.get(); m_poBuffer[m_poLen++] = c; } } m_poPtr = 0U; } if (m_poLen > 0U) { uint16_t space = io.getSpace(); while (space > (4U * P25_RADIO_SYMBOL_LENGTH)) { uint8_t c = m_poBuffer[m_poPtr++]; writeByte(c); space -= 4U * P25_RADIO_SYMBOL_LENGTH; if (m_poPtr >= m_poLen) { m_poPtr = 0U; m_poLen = 0U; return; } } } } uint8_t CP25TX::writeData(const uint8_t* data, uint8_t length) { if (length < (P25_TERM_FRAME_LENGTH_BYTES + 1U)) return 4U; uint16_t space = m_buffer.getSpace(); if (space < length) return 5U; m_buffer.put(length - 1U); for (uint8_t i = 0U; i < (length - 1U); i++) m_buffer.put(data[i + 1U]); return 0U; } void CP25TX::writeByte(uint8_t c) { q15_t inBuffer[4U]; q15_t intBuffer[P25_RADIO_SYMBOL_LENGTH * 4U]; q15_t outBuffer[P25_RADIO_SYMBOL_LENGTH * 4U]; const uint8_t MASK = 0xC0U; for (uint8_t i = 0U; i < 4U; i++, c <<= 2) { switch (c & MASK) { case 0xC0U: inBuffer[i] = P25_LEVELA; break; case 0x80U: inBuffer[i] = P25_LEVELB; break; case 0x00U: inBuffer[i] = P25_LEVELC; break; default: inBuffer[i] = P25_LEVELD; break; } } ::arm_fir_interpolate_q15(&m_modFilter, inBuffer, intBuffer, 4U); ::arm_fir_fast_q15(&m_lpFilter, intBuffer, outBuffer, P25_RADIO_SYMBOL_LENGTH * 4U); io.write(STATE_P25, outBuffer, P25_RADIO_SYMBOL_LENGTH * 4U); } void CP25TX::setTXDelay(uint8_t delay) { m_txDelay = 600U + uint16_t(delay) * 12U; // 500ms + tx delay if (m_txDelay > 1200U) m_txDelay = 1200U; } uint8_t CP25TX::getSpace() const { return m_buffer.getSpace() / P25_LDU_FRAME_LENGTH_BYTES; }