/* * Copyright (C) 2009-2017 by Jonathan Naylor G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "Config.h" #include "Globals.h" #include "DMRDMORX.h" #include "DMRSlotType.h" #include "Utils.h" const q15_t SCALING_FACTOR = 19505; // Q15(0.60) const uint8_t MAX_SYNC_SYMBOLS_ERRS = 2U; const uint8_t MAX_SYNC_BYTES_ERRS = 3U; const uint8_t MAX_SYNC_LOST_FRAMES = 13U; const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U}; #define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7]) const uint16_t NOENDPTR = 9999U; const uint8_t CONTROL_NONE = 0x00U; const uint8_t CONTROL_VOICE = 0x20U; const uint8_t CONTROL_DATA = 0x40U; CDMRDMORX::CDMRDMORX() : m_bitBuffer(), m_buffer(), m_bitPtr(0U), m_dataPtr(0U), m_syncPtr(0U), m_startPtr(0U), m_endPtr(NOENDPTR), m_maxCorr(0), m_centre(), m_threshold(), m_averagePtr(0U), m_control(CONTROL_NONE), m_syncCount(0U), m_colorCode(0U), m_state(DMORXS_NONE), m_n(0U), m_type(0U), m_rssi() { } void CDMRDMORX::reset() { m_syncPtr = 0U; m_maxCorr = 0; m_control = CONTROL_NONE; m_syncCount = 0U; m_state = DMORXS_NONE; m_startPtr = 0U; m_endPtr = NOENDPTR; } void CDMRDMORX::samples(const q15_t* samples, const uint16_t* rssi, uint8_t length) { bool dcd = false; for (uint8_t i = 0U; i < length; i++) dcd = processSample(samples[i], rssi[i]); io.setDecode(dcd); } bool CDMRDMORX::processSample(q15_t sample, uint16_t rssi) { m_buffer[m_dataPtr] = sample; m_rssi[m_dataPtr] = rssi; m_bitBuffer[m_bitPtr] <<= 1; if (sample < 0) m_bitBuffer[m_bitPtr] |= 0x01U; if (m_state == DMORXS_NONE) { correlateSync(true); } else { uint16_t min = m_syncPtr + DMO_BUFFER_LENGTH_SAMPLES - 1U; uint16_t max = m_syncPtr + 1U; if (min >= DMO_BUFFER_LENGTH_SAMPLES) min -= DMO_BUFFER_LENGTH_SAMPLES; if (max >= DMO_BUFFER_LENGTH_SAMPLES) max -= DMO_BUFFER_LENGTH_SAMPLES; if (min < max) { if (m_dataPtr >= min && m_dataPtr <= max) correlateSync(false); } else { if (m_dataPtr >= min || m_dataPtr <= max) correlateSync(false); } } if (m_dataPtr == m_endPtr) { // Find the average centre and threshold values q15_t centre = (m_centre[0U] + m_centre[1U] + m_centre[2U] + m_centre[3U]) >> 2; q15_t threshold = (m_threshold[0U] + m_threshold[1U] + m_threshold[2U] + m_threshold[3U]) >> 2; uint8_t frame[DMR_FRAME_LENGTH_BYTES + 3U]; frame[0U] = m_control; uint16_t ptr = m_endPtr + DMO_BUFFER_LENGTH_SAMPLES - DMR_FRAME_LENGTH_SAMPLES + DMR_RADIO_SYMBOL_LENGTH + 1U; if (ptr >= DMO_BUFFER_LENGTH_SAMPLES) ptr -= DMO_BUFFER_LENGTH_SAMPLES; samplesToBits(ptr, DMR_FRAME_LENGTH_SYMBOLS, frame, 8U, centre, threshold); if (m_control == CONTROL_DATA) { // Data sync uint8_t colorCode; uint8_t dataType; CDMRSlotType slotType; slotType.decode(frame + 1U, colorCode, dataType); if (colorCode == m_colorCode) { m_syncCount = 0U; m_n = 0U; frame[0U] |= dataType; switch (dataType) { case DT_DATA_HEADER: DEBUG4("DMRDMORX: data header found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); m_state = DMORXS_DATA; m_type = 0x00U; break; case DT_RATE_12_DATA: case DT_RATE_34_DATA: case DT_RATE_1_DATA: if (m_state == DMORXS_DATA) { DEBUG4("DMRDMORX: data payload found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); m_type = dataType; } break; case DT_VOICE_LC_HEADER: DEBUG4("DMRDMORX: voice header found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); m_state = DMORXS_VOICE; break; case DT_VOICE_PI_HEADER: if (m_state == DMORXS_VOICE) { DEBUG4("DMRDMORX: voice pi header found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); } m_state = DMORXS_VOICE; break; case DT_TERMINATOR_WITH_LC: if (m_state == DMORXS_VOICE) { DEBUG4("DMRDMORX: voice terminator found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); reset(); } break; default: // DT_CSBK DEBUG4("DMRDMORX: csbk found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); reset(); break; } } } else if (m_control == CONTROL_VOICE) { // Voice sync DEBUG4("DMRDMORX: voice sync found pos/centre/threshold", m_syncPtr, centre, threshold); writeRSSIData(frame); m_state = DMORXS_VOICE; m_syncCount = 0U; m_n = 0U; } else { if (m_state != DMORXS_NONE) { m_syncCount++; if (m_syncCount >= MAX_SYNC_LOST_FRAMES) { serial.writeDMRLost(true); reset(); } } if (m_state == DMORXS_VOICE) { if (m_n >= 5U) { frame[0U] = CONTROL_VOICE; m_n = 0U; } else { frame[0U] = ++m_n; } serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U); } else if (m_state == DMORXS_DATA) { if (m_type != 0x00U) { frame[0U] = CONTROL_DATA | m_type; writeRSSIData(frame); } } } // End of this slot, reset some items for the next slot. m_maxCorr = 0; m_control = CONTROL_NONE; } m_dataPtr++; if (m_dataPtr >= DMO_BUFFER_LENGTH_SAMPLES) m_dataPtr = 0U; m_bitPtr++; if (m_bitPtr >= DMR_RADIO_SYMBOL_LENGTH) m_bitPtr = 0U; return m_state != DMORXS_NONE; } void CDMRDMORX::correlateSync(bool first) { uint8_t errs = countBits32((m_bitBuffer[m_bitPtr] & DMR_SYNC_SYMBOLS_MASK) ^ DMR_MS_DATA_SYNC_SYMBOLS); // The voice sync is the complement of the data sync bool data = (errs <= MAX_SYNC_SYMBOLS_ERRS); bool voice = (errs >= (DMR_SYNC_LENGTH_SYMBOLS - MAX_SYNC_SYMBOLS_ERRS)); if (data || voice) { uint16_t ptr = m_dataPtr + DMO_BUFFER_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES + DMR_RADIO_SYMBOL_LENGTH; if (ptr >= DMO_BUFFER_LENGTH_SAMPLES) ptr -= DMO_BUFFER_LENGTH_SAMPLES; q31_t corr = 0; q15_t min = 16000; q15_t max = -16000; for (uint8_t i = 0U; i < DMR_SYNC_LENGTH_SYMBOLS; i++) { q15_t val = m_buffer[ptr]; if (val > max) max = val; if (val < min) min = val; int8_t corrVal; if (data) corrVal = DMR_MS_DATA_SYNC_SYMBOLS_VALUES[i]; else corrVal = DMR_MS_VOICE_SYNC_SYMBOLS_VALUES[i]; switch (corrVal) { case +3: corr -= (val + val + val); break; case +1: corr -= val; break; case -1: corr += val; break; default: // -3 corr += (val + val + val); break; } ptr += DMR_RADIO_SYMBOL_LENGTH; if (ptr >= DMO_BUFFER_LENGTH_SAMPLES) ptr -= DMO_BUFFER_LENGTH_SAMPLES; } if (corr > m_maxCorr) { q15_t centre = (max + min) >> 1; q31_t v1 = (max - centre) * SCALING_FACTOR; q15_t threshold = q15_t(v1 >> 15); uint8_t sync[DMR_SYNC_BYTES_LENGTH]; uint16_t ptr = m_dataPtr + DMO_BUFFER_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES + DMR_RADIO_SYMBOL_LENGTH; if (ptr >= DMO_BUFFER_LENGTH_SAMPLES) ptr -= DMO_BUFFER_LENGTH_SAMPLES; samplesToBits(ptr, DMR_SYNC_LENGTH_SYMBOLS, sync, 4U, centre, threshold); if (data) { uint8_t errs = 0U; for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++) errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_MS_DATA_SYNC_BYTES[i]); if (errs <= MAX_SYNC_BYTES_ERRS) { if (first) { m_threshold[0U] = m_threshold[1U] = m_threshold[2U] = m_threshold[3U] = threshold; m_centre[0U] = m_centre[1U] = m_centre[2U] = m_centre[3U] = centre; m_averagePtr = 0U; } else { m_threshold[m_averagePtr] = threshold; m_centre[m_averagePtr] = centre; m_averagePtr++; if (m_averagePtr >= 4U) m_averagePtr = 0U; } m_maxCorr = corr; m_control = CONTROL_DATA; m_syncPtr = m_dataPtr; m_startPtr = m_dataPtr + DMO_BUFFER_LENGTH_SAMPLES - DMR_SLOT_TYPE_LENGTH_SAMPLES / 2U - DMR_INFO_LENGTH_SAMPLES / 2U - DMR_SYNC_LENGTH_SAMPLES; if (m_startPtr >= DMO_BUFFER_LENGTH_SAMPLES) m_startPtr -= DMO_BUFFER_LENGTH_SAMPLES; m_endPtr = m_dataPtr + DMR_SLOT_TYPE_LENGTH_SAMPLES / 2U + DMR_INFO_LENGTH_SAMPLES / 2U - 1U; if (m_endPtr >= DMO_BUFFER_LENGTH_SAMPLES) m_endPtr -= DMO_BUFFER_LENGTH_SAMPLES; } } else { // if (voice1 || voice2) uint8_t errs = 0U; for (uint8_t i = 0U; i < DMR_SYNC_BYTES_LENGTH; i++) errs += countBits8((sync[i] & DMR_SYNC_BYTES_MASK[i]) ^ DMR_MS_VOICE_SYNC_BYTES[i]); if (errs <= MAX_SYNC_BYTES_ERRS) { if (first) { m_threshold[0U] = m_threshold[1U] = m_threshold[2U] = m_threshold[3U] = threshold; m_centre[0U] = m_centre[1U] = m_centre[2U] = m_centre[3U] = centre; m_averagePtr = 0U; } else { m_threshold[m_averagePtr] = threshold; m_centre[m_averagePtr] = centre; m_averagePtr++; if (m_averagePtr >= 4U) m_averagePtr = 0U; } m_maxCorr = corr; m_control = CONTROL_VOICE; m_syncPtr = m_dataPtr; m_startPtr = m_dataPtr + DMO_BUFFER_LENGTH_SAMPLES - DMR_SLOT_TYPE_LENGTH_SAMPLES / 2U - DMR_INFO_LENGTH_SAMPLES / 2U - DMR_SYNC_LENGTH_SAMPLES; if (m_startPtr >= DMO_BUFFER_LENGTH_SAMPLES) m_startPtr -= DMO_BUFFER_LENGTH_SAMPLES; m_endPtr = m_dataPtr + DMR_SLOT_TYPE_LENGTH_SAMPLES / 2U + DMR_INFO_LENGTH_SAMPLES / 2U - 1U; if (m_endPtr >= DMO_BUFFER_LENGTH_SAMPLES) m_endPtr -= DMO_BUFFER_LENGTH_SAMPLES; } } } } } void CDMRDMORX::samplesToBits(uint16_t start, uint8_t count, uint8_t* buffer, uint16_t offset, q15_t centre, q15_t threshold) { for (uint8_t i = 0U; i < count; i++) { q15_t sample = m_buffer[start] - centre; if (sample < -threshold) { WRITE_BIT1(buffer, offset, false); offset++; WRITE_BIT1(buffer, offset, true); offset++; } else if (sample < 0) { WRITE_BIT1(buffer, offset, false); offset++; WRITE_BIT1(buffer, offset, false); offset++; } else if (sample < threshold) { WRITE_BIT1(buffer, offset, true); offset++; WRITE_BIT1(buffer, offset, false); offset++; } else { WRITE_BIT1(buffer, offset, true); offset++; WRITE_BIT1(buffer, offset, true); offset++; } start += DMR_RADIO_SYMBOL_LENGTH; if (start >= DMO_BUFFER_LENGTH_SAMPLES) start -= DMO_BUFFER_LENGTH_SAMPLES; } } void CDMRDMORX::setColorCode(uint8_t colorCode) { m_colorCode = colorCode; } void CDMRDMORX::writeRSSIData(uint8_t* frame) { #if defined(SEND_RSSI_DATA) // Calculate RSSI average over a burst period. We don't take into account 2.5 ms at the beginning and 2.5 ms at the end uint16_t start = m_startPtr + DMR_SYNC_LENGTH_SAMPLES / 2U; uint32_t accum = 0U; for (uint16_t i = 0U; i < (DMR_FRAME_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES); i++) { accum += m_rssi[start]; start++; if (start >= DMO_BUFFER_LENGTH_SAMPLES) start -= DMO_BUFFER_LENGTH_SAMPLES; } uint16_t avg = accum / (DMR_FRAME_LENGTH_SAMPLES - DMR_SYNC_LENGTH_SAMPLES); frame[34U] = (avg >> 8) & 0xFFU; frame[35U] = (avg >> 0) & 0xFFU; serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 3U); #else serial.writeDMRData(true, frame, DMR_FRAME_LENGTH_BYTES + 1U); #endif }