MMDVM/DMRTX.cpp

417 lines
10 KiB
C++
Executable File

/*
* Copyright (C) 2009-2017 by Jonathan Naylor G4KLX
* Copyright (C) 2016 by Colin Durbridge G4EML
* Copyright (C) 2017 by Andy Uribe CA6JAU
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "DMRSlotType.h"
// Generated using rcosdesign(0.2, 8, 5, 'sqrt') in MATLAB
static q15_t RRC_0_2_FILTER[] = {0, 0, 0, 0, 850, 219, -720, -1548, -1795, -1172, 237, 1927, 3120, 3073, 1447, -1431, -4544, -6442,
-5735, -1633, 5651, 14822, 23810, 30367, 32767, 30367, 23810, 14822, 5651, -1633, -5735, -6442,
-4544, -1431, 1447, 3073, 3120, 1927, 237, -1172, -1795, -1548, -720, 219, 850}; // numTaps = 45, L = 5
const uint16_t RRC_0_2_FILTER_PHASE_LEN = 9U; // phaseLength = numTaps/L
const q15_t DMR_LEVELA = 1362;
const q15_t DMR_LEVELB = 454;
const q15_t DMR_LEVELC = -454;
const q15_t DMR_LEVELD = -1362;
// The PR FILL and BS Data Sync pattern.
const uint8_t IDLE_DATA[] =
{0x53U, 0xC2U, 0x5EU, 0xABU, 0xA8U, 0x67U, 0x1DU, 0xC7U, 0x38U, 0x3BU, 0xD9U,
0x36U, 0x00U, 0x0DU, 0xFFU, 0x57U, 0xD7U, 0x5DU, 0xF5U, 0xD0U, 0x03U, 0xF6U,
0xE4U, 0x65U, 0x17U, 0x1BU, 0x48U, 0xCAU, 0x6DU, 0x4FU, 0xC6U, 0x10U, 0xB4U};
const uint8_t CACH_INTERLEAVE[] =
{ 1U, 2U, 3U, 5U, 6U, 7U, 9U, 10U, 11U, 13U, 15U, 16U, 17U, 19U, 20U, 21U, 23U,
25U, 26U, 27U, 29U, 30U, 31U, 33U, 34U, 35U, 37U, 39U, 40U, 41U, 43U, 44U, 45U, 47U,
49U, 50U, 51U, 53U, 54U, 55U, 57U, 58U, 59U, 61U, 63U, 64U, 65U, 67U, 68U, 69U, 71U,
73U, 74U, 75U, 77U, 78U, 79U, 81U, 82U, 83U, 85U, 87U, 88U, 89U, 91U, 92U, 93U, 95U};
const uint8_t EMPTY_SHORT_LC[] =
{0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U, 0x00U};
const uint8_t BIT_MASK_TABLE[] = {0x80U, 0x40U, 0x20U, 0x10U, 0x08U, 0x04U, 0x02U, 0x01U};
#define WRITE_BIT1(p,i,b) p[(i)>>3] = (b) ? (p[(i)>>3] | BIT_MASK_TABLE[(i)&7]) : (p[(i)>>3] & ~BIT_MASK_TABLE[(i)&7])
#define READ_BIT1(p,i) (p[(i)>>3] & BIT_MASK_TABLE[(i)&7])
const uint32_t STARTUP_COUNT = 20U;
const uint32_t ABORT_COUNT = 6U;
CDMRTX::CDMRTX() :
m_fifo(),
m_modFilter(),
m_modState(),
m_state(DMRTXSTATE_IDLE),
m_idle(),
m_cachPtr(0U),
m_shortLC(),
m_newShortLC(),
m_markBuffer(),
m_poBuffer(),
m_poLen(0U),
m_poPtr(0U),
m_frameCount(0U),
m_abortCount(),
m_abort()
{
::memset(m_modState, 0x00U, 16U * sizeof(q15_t));
m_modFilter.L = DMR_RADIO_SYMBOL_LENGTH;
m_modFilter.phaseLength = RRC_0_2_FILTER_PHASE_LEN;
m_modFilter.pCoeffs = RRC_0_2_FILTER;
m_modFilter.pState = m_modState;
::memcpy(m_newShortLC, EMPTY_SHORT_LC, 12U);
::memcpy(m_shortLC, EMPTY_SHORT_LC, 12U);
m_abort[0U] = false;
m_abort[1U] = false;
m_abortCount[0U] = 0U;
m_abortCount[1U] = 0U;
}
void CDMRTX::process()
{
if (m_state == DMRTXSTATE_IDLE)
return;
if (m_poLen == 0U) {
switch (m_state) {
case DMRTXSTATE_SLOT1:
createData(0U);
m_state = DMRTXSTATE_CACH2;
break;
case DMRTXSTATE_CACH2:
createCACH(1U, 0U);
m_state = DMRTXSTATE_SLOT2;
break;
case DMRTXSTATE_SLOT2:
createData(1U);
m_state = DMRTXSTATE_CACH1;
break;
case DMRTXSTATE_CAL:
createCal();
break;
default:
createCACH(0U, 1U);
m_state = DMRTXSTATE_SLOT1;
break;
}
}
if (m_poLen > 0U) {
uint16_t space = io.getSpace();
while (space > (4U * DMR_RADIO_SYMBOL_LENGTH)) {
uint8_t c = m_poBuffer[m_poPtr];
uint8_t m = m_markBuffer[m_poPtr];
m_poPtr++;
writeByte(c, m);
space -= 4U * DMR_RADIO_SYMBOL_LENGTH;
if (m_poPtr >= m_poLen) {
m_poPtr = 0U;
m_poLen = 0U;
return;
}
}
}
}
uint8_t CDMRTX::writeData1(const uint8_t* data, uint8_t length)
{
if (length != (DMR_FRAME_LENGTH_BYTES + 1U))
return 4U;
uint16_t space = m_fifo[0U].getSpace();
if (space < DMR_FRAME_LENGTH_BYTES)
return 5U;
if (m_abort[0U]) {
m_fifo[0U].reset();
m_abort[0U] = false;
}
for (uint8_t i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++)
m_fifo[0U].put(data[i + 1U]);
// Start the TX if it isn't already on
if (!m_tx)
m_state = DMRTXSTATE_SLOT1;
return 0U;
}
uint8_t CDMRTX::writeData2(const uint8_t* data, uint8_t length)
{
if (length != (DMR_FRAME_LENGTH_BYTES + 1U))
return 4U;
uint16_t space = m_fifo[1U].getSpace();
if (space < DMR_FRAME_LENGTH_BYTES)
return 5U;
if (m_abort[1U]) {
m_fifo[1U].reset();
m_abort[1U] = false;
}
for (uint8_t i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++)
m_fifo[1U].put(data[i + 1U]);
// Start the TX if it isn't already on
if (!m_tx)
m_state = DMRTXSTATE_SLOT1;
return 0U;
}
uint8_t CDMRTX::writeShortLC(const uint8_t* data, uint8_t length)
{
if (length != 9U)
return 4U;
::memset(m_newShortLC, 0x00U, 12U);
for (uint8_t i = 0U; i < 68U; i++) {
bool b = READ_BIT1(data, i);
uint8_t n = CACH_INTERLEAVE[i];
WRITE_BIT1(m_newShortLC, n, b);
}
return 0U;
}
uint8_t CDMRTX::writeAbort(const uint8_t* data, uint8_t length)
{
if (length != 1U)
return 4U;
switch (data[0U]) {
case 1U:
m_abortCount[0U] = 0U;
m_abort[0U] = true;
return 0U;
case 2U:
m_abortCount[1U] = 0U;
m_abort[1U] = true;
return 0U;
default:
return 4U;
}
}
void CDMRTX::setStart(bool start)
{
m_state = start ? DMRTXSTATE_SLOT1 : DMRTXSTATE_IDLE;
m_frameCount = 0U;
m_abortCount[0U] = 0U;
m_abortCount[1U] = 0U;
m_abort[0U] = false;
m_abort[1U] = false;
}
void CDMRTX::setCal(bool start)
{
m_state = start ? DMRTXSTATE_CAL : DMRTXSTATE_IDLE;
}
void CDMRTX::writeByte(uint8_t c, uint8_t control)
{
q15_t inBuffer[4U];
q15_t outBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U];
const uint8_t MASK = 0xC0U;
for (uint8_t i = 0U; i < 4U; i++, c <<= 2) {
switch (c & MASK) {
case 0xC0U:
inBuffer[i] = DMR_LEVELA;
break;
case 0x80U:
inBuffer[i] = DMR_LEVELB;
break;
case 0x00U:
inBuffer[i] = DMR_LEVELC;
break;
default:
inBuffer[i] = DMR_LEVELD;
break;
}
}
uint8_t controlBuffer[DMR_RADIO_SYMBOL_LENGTH * 4U];
::memset(controlBuffer, MARK_NONE, DMR_RADIO_SYMBOL_LENGTH * 4U * sizeof(uint8_t));
controlBuffer[DMR_RADIO_SYMBOL_LENGTH * 2U] = control;
::arm_fir_interpolate_q15(&m_modFilter, inBuffer, outBuffer, 4U);
io.write(STATE_DMR, outBuffer, DMR_RADIO_SYMBOL_LENGTH * 4U, controlBuffer);
}
uint8_t CDMRTX::getSpace1() const
{
return m_fifo[0U].getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
uint8_t CDMRTX::getSpace2() const
{
return m_fifo[1U].getSpace() / (DMR_FRAME_LENGTH_BYTES + 2U);
}
void CDMRTX::createData(uint8_t slotIndex)
{
if (m_fifo[slotIndex].getData() >= DMR_FRAME_LENGTH_BYTES && m_frameCount >= STARTUP_COUNT && m_abortCount[slotIndex] >= ABORT_COUNT) {
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = m_fifo[slotIndex].get();
m_markBuffer[i] = MARK_NONE;
}
} else {
m_abort[slotIndex] = false;
// Transmit an idle message
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = m_idle[i];
m_markBuffer[i] = MARK_NONE;
}
}
m_poLen = DMR_FRAME_LENGTH_BYTES;
m_poPtr = 0U;
}
void CDMRTX::createCal()
{
// 1.2 kHz sine wave generation
if (m_modemState == STATE_DMRCAL) {
for (unsigned int i = 0U; i < DMR_FRAME_LENGTH_BYTES; i++) {
m_poBuffer[i] = 0x5FU; // +3, +3, -3, -3 pattern for deviation cal.
m_markBuffer[i] = MARK_NONE;
}
m_poLen = DMR_FRAME_LENGTH_BYTES;
}
// 80 Hz square wave generation
if (m_modemState == STATE_LFCAL) {
for (unsigned int i = 0U; i < 7U; i++) {
m_poBuffer[i] = 0x55U; // +3, +3, ... pattern
m_markBuffer[i] = MARK_NONE;
}
m_poBuffer[7U] = 0x5FU; // +3, +3, -3, -3 pattern
for (unsigned int i = 8U; i < 15U; i++) {
m_poBuffer[i] = 0xFFU; // -3, -3, ... pattern
m_markBuffer[i] = MARK_NONE;
}
m_poLen = 15U;
}
m_poPtr = 0U;
}
void CDMRTX::createCACH(uint8_t txSlotIndex, uint8_t rxSlotIndex)
{
m_frameCount++;
m_abortCount[0U]++;
m_abortCount[1U]++;
if (m_cachPtr >= 12U)
m_cachPtr = 0U;
if (m_cachPtr == 0U) {
if (m_fifo[0U].getData() == 0U && m_fifo[1U].getData() == 0U)
::memcpy(m_shortLC, EMPTY_SHORT_LC, 12U);
else
::memcpy(m_shortLC, m_newShortLC, 12U);
}
::memcpy(m_poBuffer, m_shortLC + m_cachPtr, 3U);
m_markBuffer[0U] = MARK_NONE;
m_markBuffer[1U] = MARK_NONE;
m_markBuffer[2U] = rxSlotIndex == 1U ? MARK_SLOT1 : MARK_SLOT2;
bool at = false;
if (m_frameCount >= STARTUP_COUNT)
at = m_fifo[rxSlotIndex].getData() > 0U;
bool tc = txSlotIndex == 1U;
bool ls0 = true; // For 1 and 2
bool ls1 = true;
if (m_cachPtr == 0U) // For 0
ls1 = false;
else if (m_cachPtr == 9U) // For 3
ls0 = false;
bool h0 = at ^ tc ^ ls1;
bool h1 = tc ^ ls1 ^ ls0;
bool h2 = at ^ tc ^ ls0;
m_poBuffer[0U] |= at ? 0x80U : 0x00U;
m_poBuffer[0U] |= tc ? 0x08U : 0x00U;
m_poBuffer[1U] |= ls1 ? 0x80U : 0x00U;
m_poBuffer[1U] |= ls0 ? 0x08U : 0x00U;
m_poBuffer[1U] |= h0 ? 0x02U : 0x00U;
m_poBuffer[2U] |= h1 ? 0x20U : 0x00U;
m_poBuffer[2U] |= h2 ? 0x02U : 0x00U;
m_poLen = DMR_CACH_LENGTH_BYTES;
m_poPtr = 0U;
m_cachPtr += 3U;
}
void CDMRTX::setColorCode(uint8_t colorCode)
{
::memcpy(m_idle, IDLE_DATA, DMR_FRAME_LENGTH_BYTES);
CDMRSlotType slotType;
slotType.encode(colorCode, DT_IDLE, m_idle);
}
void CDMRTX::resetFifo1()
{
m_fifo[0U].reset();
}
void CDMRTX::resetFifo2()
{
m_fifo[1U].reset();
}
uint32_t CDMRTX::getFrameCount()
{
return m_frameCount;
}