mirror of https://github.com/markqvist/MMDVM.git
954 lines
25 KiB
C++
954 lines
25 KiB
C++
/*
|
|
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
|
|
* Copyright (C) 2016, 2017 by Andy Uribe CA6JAU
|
|
* Copyright (c) 2017 by Jonathan Naylor G4KLX
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include "Config.h"
|
|
#include "Globals.h"
|
|
|
|
#include "SerialPort.h"
|
|
|
|
/*
|
|
Pin definitions:
|
|
|
|
- Host communication:
|
|
USART1 - TXD PA9 - RXD PA10 (Pi board)
|
|
USART2 - TXD PA2 - RXD PA3 (Nucleo board)
|
|
USART3 - TXD PC10 - RXD PC11 (Discovery board)
|
|
|
|
- Serial repeater:
|
|
USART1 - TXD PA9 - RXD PA10 (Nucleo with Arduino header)
|
|
UART5 - TXD PC12 - RXD PD2 (Discovery, Pi and Nucleo with Morpho header)
|
|
|
|
*/
|
|
|
|
#if defined(STM32F4XX) || defined(STM32F4)
|
|
|
|
#define TX_SERIAL_FIFO_SIZE 512U
|
|
#define RX_SERIAL_FIFO_SIZE 512U
|
|
|
|
extern "C" {
|
|
void USART1_IRQHandler();
|
|
void USART2_IRQHandler();
|
|
void USART3_IRQHandler();
|
|
void UART5_IRQHandler();
|
|
}
|
|
|
|
/* ************* USART1 ***************** */
|
|
#if defined(STM32F4_PI) || (defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
|
|
|
|
volatile uint32_t intcount1;
|
|
volatile uint8_t TXSerialfifo1[TX_SERIAL_FIFO_SIZE];
|
|
volatile uint8_t RXSerialfifo1[RX_SERIAL_FIFO_SIZE];
|
|
volatile uint16_t TXSerialfifohead1, TXSerialfifotail1;
|
|
volatile uint16_t RXSerialfifohead1, RXSerialfifotail1;
|
|
|
|
// Init queues
|
|
void TXSerialfifoinit1()
|
|
{
|
|
TXSerialfifohead1 = 0U;
|
|
TXSerialfifotail1 = 0U;
|
|
}
|
|
|
|
void RXSerialfifoinit1()
|
|
{
|
|
RXSerialfifohead1 = 0U;
|
|
RXSerialfifotail1 = 0U;
|
|
}
|
|
|
|
// How full is queue
|
|
// TODO decide if how full or how empty is preferred info to return
|
|
uint16_t TXSerialfifolevel1()
|
|
{
|
|
uint32_t tail = TXSerialfifotail1;
|
|
uint32_t head = TXSerialfifohead1;
|
|
|
|
if (tail > head)
|
|
return TX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
uint16_t RXSerialfifolevel1()
|
|
{
|
|
uint32_t tail = RXSerialfifotail1;
|
|
uint32_t head = RXSerialfifohead1;
|
|
|
|
if (tail > head)
|
|
return RX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
// Flushes the transmit shift register
|
|
// warning: this call is blocking
|
|
void TXSerialFlush1()
|
|
{
|
|
// wait until the TXE shows the shift register is empty
|
|
while (USART_GetITStatus(USART1, USART_FLAG_TXE))
|
|
;
|
|
}
|
|
|
|
uint8_t TXSerialfifoput1(uint8_t next)
|
|
{
|
|
if (TXSerialfifolevel1() < TX_SERIAL_FIFO_SIZE) {
|
|
TXSerialfifo1[TXSerialfifohead1] = next;
|
|
|
|
TXSerialfifohead1++;
|
|
if (TXSerialfifohead1 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifohead1 = 0U;
|
|
|
|
// make sure transmit interrupts are enabled as long as there is data to send
|
|
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
|
|
return 1U;
|
|
} else {
|
|
return 0U; // signal an overflow occurred by returning a zero count
|
|
}
|
|
}
|
|
|
|
void USART1_IRQHandler()
|
|
{
|
|
uint8_t c;
|
|
|
|
if (USART_GetITStatus(USART1, USART_IT_RXNE)) {
|
|
c = (uint8_t) USART_ReceiveData(USART1);
|
|
|
|
if (RXSerialfifolevel1() < RX_SERIAL_FIFO_SIZE) {
|
|
RXSerialfifo1[RXSerialfifohead1] = c;
|
|
|
|
RXSerialfifohead1++;
|
|
if (RXSerialfifohead1 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifohead1 = 0U;
|
|
} else {
|
|
// TODO - do something if rx fifo is full?
|
|
}
|
|
|
|
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
|
|
intcount1++;
|
|
}
|
|
|
|
if (USART_GetITStatus(USART1, USART_IT_TXE)) {
|
|
c = 0U;
|
|
|
|
if (TXSerialfifohead1 != TXSerialfifotail1) { // if the fifo is not empty
|
|
c = TXSerialfifo1[TXSerialfifotail1];
|
|
|
|
TXSerialfifotail1++;
|
|
if (TXSerialfifotail1 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifotail1 = 0U;
|
|
|
|
USART_SendData(USART1, c);
|
|
} else { // if there's no more data to transmit then turn off TX interrupts
|
|
USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
|
|
}
|
|
|
|
USART_ClearITPendingBit(USART1, USART_IT_TXE);
|
|
}
|
|
}
|
|
|
|
void InitUSART1(int speed)
|
|
{
|
|
// USART1 - TXD PA9 - RXD PA10 - pins on mmdvm pi board
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
USART_InitTypeDef USART_InitStructure;
|
|
NVIC_InitTypeDef NVIC_InitStructure;
|
|
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
|
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1);
|
|
|
|
// USART IRQ init
|
|
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
|
|
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
|
|
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
|
|
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
|
|
NVIC_Init(&NVIC_InitStructure);
|
|
|
|
// Configure USART as alternate function
|
|
GPIO_StructInit(&GPIO_InitStructure);
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // Tx | Rx
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(GPIOA, &GPIO_InitStructure);
|
|
|
|
// Configure USART baud rate
|
|
USART_StructInit(&USART_InitStructure);
|
|
USART_InitStructure.USART_BaudRate = speed;
|
|
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
|
|
USART_InitStructure.USART_StopBits = USART_StopBits_1;
|
|
USART_InitStructure.USART_Parity = USART_Parity_No;
|
|
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
|
|
USART_Init(USART1, &USART_InitStructure);
|
|
|
|
USART_Cmd(USART1, ENABLE);
|
|
|
|
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
|
|
|
|
// initialize the fifos
|
|
TXSerialfifoinit1();
|
|
RXSerialfifoinit1();
|
|
}
|
|
|
|
uint8_t AvailUSART1()
|
|
{
|
|
if (RXSerialfifolevel1() > 0U)
|
|
return 1U;
|
|
else
|
|
return 0U;
|
|
}
|
|
|
|
int AvailForWriteUSART1()
|
|
{
|
|
return TXSerialfifolevel1();
|
|
}
|
|
|
|
uint8_t ReadUSART1()
|
|
{
|
|
uint8_t data_c = RXSerialfifo1[RXSerialfifotail1];
|
|
|
|
RXSerialfifotail1++;
|
|
if (RXSerialfifotail1 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifotail1 = 0U;
|
|
|
|
return data_c;
|
|
}
|
|
|
|
void WriteUSART1(const uint8_t* data, uint16_t length)
|
|
{
|
|
for (uint16_t i = 0U; i < length; i++)
|
|
TXSerialfifoput1(data[i]);
|
|
|
|
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* ************* USART2 ***************** */
|
|
#if defined(STM32F4_NUCLEO)
|
|
|
|
volatile uint32_t intcount2;
|
|
volatile uint8_t TXSerialfifo2[TX_SERIAL_FIFO_SIZE];
|
|
volatile uint8_t RXSerialfifo2[RX_SERIAL_FIFO_SIZE];
|
|
volatile uint16_t TXSerialfifohead2, TXSerialfifotail2;
|
|
volatile uint16_t RXSerialfifohead2, RXSerialfifotail2;
|
|
|
|
// Init queues
|
|
void TXSerialfifoinit2()
|
|
{
|
|
TXSerialfifohead2 = 0U;
|
|
TXSerialfifotail2 = 0U;
|
|
}
|
|
|
|
void RXSerialfifoinit2()
|
|
{
|
|
RXSerialfifohead2 = 0U;
|
|
RXSerialfifotail2 = 0U;
|
|
}
|
|
|
|
// How full is queue
|
|
// TODO decide if how full or how empty is preferred info to return
|
|
uint16_t TXSerialfifolevel2()
|
|
{
|
|
uint32_t tail = TXSerialfifotail2;
|
|
uint32_t head = TXSerialfifohead2;
|
|
|
|
if (tail > head)
|
|
return TX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
uint16_t RXSerialfifolevel2()
|
|
{
|
|
uint32_t tail = RXSerialfifotail2;
|
|
uint32_t head = RXSerialfifohead2;
|
|
|
|
if (tail > head)
|
|
return RX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
// Flushes the transmit shift register
|
|
// warning: this call is blocking
|
|
void TXSerialFlush2()
|
|
{
|
|
// wait until the TXE shows the shift register is empty
|
|
while (USART_GetITStatus(USART2, USART_FLAG_TXE))
|
|
;
|
|
}
|
|
|
|
uint8_t TXSerialfifoput2(uint8_t next)
|
|
{
|
|
if (TXSerialfifolevel2() < TX_SERIAL_FIFO_SIZE) {
|
|
TXSerialfifo2[TXSerialfifohead2] = next;
|
|
|
|
TXSerialfifohead2++;
|
|
if (TXSerialfifohead2 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifohead2 = 0U;
|
|
|
|
// make sure transmit interrupts are enabled as long as there is data to send
|
|
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
|
|
return 1U;
|
|
} else {
|
|
return 0U; // signal an overflow occurred by returning a zero count
|
|
}
|
|
}
|
|
|
|
void USART2_IRQHandler()
|
|
{
|
|
uint8_t c;
|
|
|
|
if (USART_GetITStatus(USART2, USART_IT_RXNE)) {
|
|
c = (uint8_t) USART_ReceiveData(USART2);
|
|
|
|
if (RXSerialfifolevel2() < RX_SERIAL_FIFO_SIZE) {
|
|
RXSerialfifo2[RXSerialfifohead2] = c;
|
|
|
|
RXSerialfifohead2++;
|
|
if (RXSerialfifohead2 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifohead2 = 0U;
|
|
} else {
|
|
// TODO - do something if rx fifo is full?
|
|
}
|
|
|
|
USART_ClearITPendingBit(USART2, USART_IT_RXNE);
|
|
intcount2++;
|
|
}
|
|
|
|
if (USART_GetITStatus(USART2, USART_IT_TXE)) {
|
|
c = 0U;
|
|
|
|
if (TXSerialfifohead2 != TXSerialfifotail2) { // if the fifo is not empty
|
|
c = TXSerialfifo2[TXSerialfifotail2];
|
|
|
|
TXSerialfifotail2++;
|
|
if (TXSerialfifotail2 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifotail2 = 0U;
|
|
|
|
USART_SendData(USART2, c);
|
|
} else { // if there's no more data to transmit then turn off TX interrupts
|
|
USART_ITConfig(USART2, USART_IT_TXE, DISABLE);
|
|
}
|
|
|
|
USART_ClearITPendingBit(USART2, USART_IT_TXE);
|
|
}
|
|
}
|
|
|
|
void InitUSART2(int speed)
|
|
{
|
|
// USART2 - TXD PA2 - RXD PA3
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
USART_InitTypeDef USART_InitStructure;
|
|
NVIC_InitTypeDef NVIC_InitStructure;
|
|
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2);
|
|
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2);
|
|
|
|
// USART IRQ init
|
|
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
|
|
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
|
|
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
|
|
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
|
|
NVIC_Init(&NVIC_InitStructure);
|
|
|
|
// Configure USART as alternate function
|
|
GPIO_StructInit(&GPIO_InitStructure);
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; // Tx | Rx
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(GPIOA, &GPIO_InitStructure);
|
|
|
|
// Configure USART baud rate
|
|
USART_StructInit(&USART_InitStructure);
|
|
USART_InitStructure.USART_BaudRate = speed;
|
|
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
|
|
USART_InitStructure.USART_StopBits = USART_StopBits_1;
|
|
USART_InitStructure.USART_Parity = USART_Parity_No;
|
|
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
|
|
USART_Init(USART2, &USART_InitStructure);
|
|
|
|
USART_Cmd(USART2, ENABLE);
|
|
|
|
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
|
|
|
|
// initialize the fifos
|
|
TXSerialfifoinit2();
|
|
RXSerialfifoinit2();
|
|
}
|
|
|
|
uint8_t AvailUSART2()
|
|
{
|
|
if (RXSerialfifolevel2() > 0U)
|
|
return 1U;
|
|
else
|
|
return 0U;
|
|
}
|
|
|
|
int AvailForWriteUSART2()
|
|
{
|
|
return TXSerialfifolevel2();
|
|
}
|
|
|
|
uint8_t ReadUSART2()
|
|
{
|
|
uint8_t data_c = RXSerialfifo2[RXSerialfifotail2];
|
|
|
|
RXSerialfifotail2++;
|
|
if (RXSerialfifotail2 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifotail2 = 0U;
|
|
|
|
return data_c;
|
|
}
|
|
|
|
void WriteUSART2(const uint8_t* data, uint16_t length)
|
|
{
|
|
for (uint16_t i = 0U; i < length; i++)
|
|
TXSerialfifoput2(data[i]);
|
|
|
|
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* ************* USART3 ***************** */
|
|
#if defined(STM32F4_DISCOVERY) || defined(STM32F4_PI)
|
|
|
|
volatile uint32_t intcount3;
|
|
volatile uint8_t TXSerialfifo3[TX_SERIAL_FIFO_SIZE];
|
|
volatile uint8_t RXSerialfifo3[RX_SERIAL_FIFO_SIZE];
|
|
volatile uint16_t TXSerialfifohead3, TXSerialfifotail3;
|
|
volatile uint16_t RXSerialfifohead3, RXSerialfifotail3;
|
|
|
|
// Init queues
|
|
void TXSerialfifoinit3()
|
|
{
|
|
TXSerialfifohead3 = 0U;
|
|
TXSerialfifotail3 = 0U;
|
|
}
|
|
|
|
void RXSerialfifoinit3()
|
|
{
|
|
RXSerialfifohead3 = 0U;
|
|
RXSerialfifotail3 = 0U;
|
|
}
|
|
|
|
// How full is queue
|
|
// TODO decide if how full or how empty is preferred info to return
|
|
uint16_t TXSerialfifolevel3()
|
|
{
|
|
uint32_t tail = TXSerialfifotail3;
|
|
uint32_t head = TXSerialfifohead3;
|
|
|
|
if (tail > head)
|
|
return TX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
uint16_t RXSerialfifolevel3()
|
|
{
|
|
uint32_t tail = RXSerialfifotail3;
|
|
uint32_t head = RXSerialfifohead3;
|
|
|
|
if (tail > head)
|
|
return RX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
// Flushes the transmit shift register
|
|
// warning: this call is blocking
|
|
void TXSerialFlush3()
|
|
{
|
|
// wait until the TXE shows the shift register is empty
|
|
while (USART_GetITStatus(USART3, USART_FLAG_TXE))
|
|
;
|
|
}
|
|
|
|
uint8_t TXSerialfifoput3(uint8_t next)
|
|
{
|
|
if (TXSerialfifolevel3() < TX_SERIAL_FIFO_SIZE) {
|
|
TXSerialfifo3[TXSerialfifohead3] = next;
|
|
|
|
TXSerialfifohead3++;
|
|
if (TXSerialfifohead3 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifohead3 = 0U;
|
|
|
|
// make sure transmit interrupts are enabled as long as there is data to send
|
|
USART_ITConfig(USART3, USART_IT_TXE, ENABLE);
|
|
return 1U;
|
|
} else {
|
|
return 0U; // signal an overflow occurred by returning a zero count
|
|
}
|
|
}
|
|
|
|
void USART3_IRQHandler()
|
|
{
|
|
uint8_t c;
|
|
|
|
if (USART_GetITStatus(USART3, USART_IT_RXNE)) {
|
|
c = (uint8_t) USART_ReceiveData(USART3);
|
|
|
|
if (RXSerialfifolevel3() < RX_SERIAL_FIFO_SIZE) {
|
|
RXSerialfifo3[RXSerialfifohead3] = c;
|
|
|
|
RXSerialfifohead3++;
|
|
if (RXSerialfifohead3 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifohead3 = 0U;
|
|
} else {
|
|
// TODO - do something if rx fifo is full?
|
|
}
|
|
|
|
USART_ClearITPendingBit(USART3, USART_IT_RXNE);
|
|
intcount3++;
|
|
}
|
|
|
|
if (USART_GetITStatus(USART3, USART_IT_TXE)) {
|
|
c = 0U;
|
|
|
|
if (TXSerialfifohead3 != TXSerialfifotail3) { // if the fifo is not empty
|
|
c = TXSerialfifo3[TXSerialfifotail3];
|
|
|
|
TXSerialfifotail3++;
|
|
if (TXSerialfifotail3 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifotail3 = 0U;
|
|
|
|
USART_SendData(USART3, c);
|
|
} else { // if there's no more data to transmit then turn off TX interrupts
|
|
USART_ITConfig(USART3, USART_IT_TXE, DISABLE);
|
|
}
|
|
|
|
USART_ClearITPendingBit(USART3, USART_IT_TXE);
|
|
}
|
|
}
|
|
|
|
void InitUSART3(int speed)
|
|
{
|
|
// USART3 - TXD PC10 - RXD PC11
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
USART_InitTypeDef USART_InitStructure;
|
|
NVIC_InitTypeDef NVIC_InitStructure;
|
|
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
|
|
GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_USART3);
|
|
GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_USART3);
|
|
|
|
// USART IRQ init
|
|
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
|
|
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
|
|
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
|
|
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
|
|
NVIC_Init(&NVIC_InitStructure);
|
|
|
|
// Configure USART as alternate function
|
|
GPIO_StructInit(&GPIO_InitStructure);
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11; // Tx | Rx
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(GPIOC, &GPIO_InitStructure);
|
|
|
|
// Configure USART baud rate
|
|
USART_StructInit(&USART_InitStructure);
|
|
USART_InitStructure.USART_BaudRate = speed;
|
|
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
|
|
USART_InitStructure.USART_StopBits = USART_StopBits_1;
|
|
USART_InitStructure.USART_Parity = USART_Parity_No;
|
|
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
|
|
USART_Init(USART3, &USART_InitStructure);
|
|
|
|
USART_Cmd(USART3, ENABLE);
|
|
|
|
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
|
|
|
|
// initialize the fifos
|
|
TXSerialfifoinit3();
|
|
RXSerialfifoinit3();
|
|
}
|
|
|
|
uint8_t AvailUSART3()
|
|
{
|
|
if (RXSerialfifolevel3() > 0U)
|
|
return 1U;
|
|
else
|
|
return 0U;
|
|
}
|
|
|
|
int AvailForWriteUSART3()
|
|
{
|
|
return TXSerialfifolevel3();
|
|
}
|
|
|
|
uint8_t ReadUSART3()
|
|
{
|
|
uint8_t data_c = RXSerialfifo3[RXSerialfifotail3];
|
|
|
|
RXSerialfifotail3++;
|
|
if (RXSerialfifotail3 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifotail3 = 0U;
|
|
|
|
return data_c;
|
|
}
|
|
|
|
void WriteUSART3(const uint8_t* data, uint16_t length)
|
|
{
|
|
for (uint16_t i = 0U; i < length; i++)
|
|
TXSerialfifoput3(data[i]);
|
|
|
|
USART_ITConfig(USART3, USART_IT_TXE, ENABLE);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* ************* UART5 ***************** */
|
|
#if !(defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
|
|
|
|
volatile uint32_t intcount5;
|
|
volatile uint8_t TXSerialfifo5[TX_SERIAL_FIFO_SIZE];
|
|
volatile uint8_t RXSerialfifo5[RX_SERIAL_FIFO_SIZE];
|
|
volatile uint16_t TXSerialfifohead5, TXSerialfifotail5;
|
|
volatile uint16_t RXSerialfifohead5, RXSerialfifotail5;
|
|
|
|
// Init queues
|
|
void TXSerialfifoinit5()
|
|
{
|
|
TXSerialfifohead5 = 0U;
|
|
TXSerialfifotail5 = 0U;
|
|
}
|
|
|
|
void RXSerialfifoinit5()
|
|
{
|
|
RXSerialfifohead5 = 0U;
|
|
RXSerialfifotail5 = 0U;
|
|
}
|
|
|
|
// How full is queue
|
|
// TODO decide if how full or how empty is preferred info to return
|
|
uint16_t TXSerialfifolevel5()
|
|
{
|
|
uint32_t tail = TXSerialfifotail5;
|
|
uint32_t head = TXSerialfifohead5;
|
|
|
|
if (tail > head)
|
|
return TX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
uint16_t RXSerialfifolevel5()
|
|
{
|
|
uint32_t tail = RXSerialfifotail5;
|
|
uint32_t head = RXSerialfifohead5;
|
|
|
|
if (tail > head)
|
|
return RX_SERIAL_FIFO_SIZE + head - tail;
|
|
else
|
|
return head - tail;
|
|
}
|
|
|
|
// Flushes the transmit shift register
|
|
// warning: this call is blocking
|
|
void TXSerialFlush5()
|
|
{
|
|
// wait until the TXE shows the shift register is empty
|
|
while (USART_GetITStatus(UART5, USART_FLAG_TXE))
|
|
;
|
|
}
|
|
|
|
uint8_t TXSerialfifoput5(uint8_t next)
|
|
{
|
|
if (TXSerialfifolevel5() < TX_SERIAL_FIFO_SIZE) {
|
|
TXSerialfifo5[TXSerialfifohead5] = next;
|
|
|
|
TXSerialfifohead5++;
|
|
if (TXSerialfifohead5 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifohead5 = 0U;
|
|
|
|
// make sure transmit interrupts are enabled as long as there is data to send
|
|
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
|
|
return 1U;
|
|
} else {
|
|
return 0U; // signal an overflow occurred by returning a zero count
|
|
}
|
|
}
|
|
|
|
void UART5_IRQHandler()
|
|
{
|
|
uint8_t c;
|
|
|
|
if (USART_GetITStatus(UART5, USART_IT_RXNE)) {
|
|
c = (uint8_t) USART_ReceiveData(UART5);
|
|
|
|
if (RXSerialfifolevel5() < RX_SERIAL_FIFO_SIZE) {
|
|
RXSerialfifo5[RXSerialfifohead5] = c;
|
|
|
|
RXSerialfifohead5++;
|
|
if (RXSerialfifohead5 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifohead5 = 0U;
|
|
} else {
|
|
// TODO - do something if rx fifo is full?
|
|
}
|
|
|
|
USART_ClearITPendingBit(UART5, USART_IT_RXNE);
|
|
intcount5++;
|
|
}
|
|
|
|
if (USART_GetITStatus(UART5, USART_IT_TXE)) {
|
|
c = 0U;
|
|
|
|
if (TXSerialfifohead5 != TXSerialfifotail5) { // if the fifo is not empty
|
|
c = TXSerialfifo5[TXSerialfifotail5];
|
|
|
|
TXSerialfifotail5++;
|
|
if (TXSerialfifotail5 >= TX_SERIAL_FIFO_SIZE)
|
|
TXSerialfifotail5 = 0U;
|
|
|
|
USART_SendData(UART5, c);
|
|
} else { // if there's no more data to transmit then turn off TX interrupts
|
|
USART_ITConfig(UART5, USART_IT_TXE, DISABLE);
|
|
}
|
|
|
|
USART_ClearITPendingBit(UART5, USART_IT_TXE);
|
|
}
|
|
}
|
|
|
|
void InitUART5(int speed)
|
|
{
|
|
// UART5 - TXD PC12 - RXD PD2
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
USART_InitTypeDef USART_InitStructure;
|
|
NVIC_InitTypeDef NVIC_InitStructure;
|
|
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
|
|
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART5, ENABLE);
|
|
GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_UART5);
|
|
GPIO_PinAFConfig(GPIOD, GPIO_PinSource2, GPIO_AF_UART5);
|
|
|
|
// USART IRQ init
|
|
NVIC_InitStructure.NVIC_IRQChannel = UART5_IRQn;
|
|
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
|
|
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
|
|
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
|
|
NVIC_Init(&NVIC_InitStructure);
|
|
|
|
// Configure USART as alternate function
|
|
GPIO_StructInit(&GPIO_InitStructure);
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; // Tx
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(GPIOC, &GPIO_InitStructure);
|
|
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; // Rx
|
|
GPIO_Init(GPIOD, &GPIO_InitStructure);
|
|
|
|
// Configure USART baud rate
|
|
USART_StructInit(&USART_InitStructure);
|
|
USART_InitStructure.USART_BaudRate = speed;
|
|
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
|
|
USART_InitStructure.USART_StopBits = USART_StopBits_1;
|
|
USART_InitStructure.USART_Parity = USART_Parity_No;
|
|
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
|
|
USART_Init(UART5, &USART_InitStructure);
|
|
|
|
USART_Cmd(UART5, ENABLE);
|
|
|
|
USART_ITConfig(UART5, USART_IT_RXNE, ENABLE);
|
|
|
|
// initialize the fifos
|
|
TXSerialfifoinit5();
|
|
RXSerialfifoinit5();
|
|
}
|
|
|
|
uint8_t AvailUART5()
|
|
{
|
|
if (RXSerialfifolevel5() > 0U)
|
|
return 1U;
|
|
else
|
|
return 0U;
|
|
}
|
|
|
|
int AvailForWriteUSART5()
|
|
{
|
|
return TXSerialfifolevel5();
|
|
}
|
|
|
|
uint8_t ReadUART5()
|
|
{
|
|
uint8_t data_c = RXSerialfifo5[RXSerialfifotail5];
|
|
|
|
RXSerialfifotail5++;
|
|
if (RXSerialfifotail5 >= RX_SERIAL_FIFO_SIZE)
|
|
RXSerialfifotail5 = 0U;
|
|
|
|
return data_c;
|
|
}
|
|
|
|
void WriteUART5(const uint8_t* data, uint16_t length)
|
|
{
|
|
for (uint16_t i = 0U; i < length; i++)
|
|
TXSerialfifoput5(data[i]);
|
|
|
|
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
|
|
}
|
|
|
|
#endif
|
|
/////////////////////////////////////////////////////////////////
|
|
|
|
void CSerialPort::beginInt(uint8_t n, int speed)
|
|
{
|
|
switch (n) {
|
|
case 1U:
|
|
#if defined(STM32F4_DISCOVERY)
|
|
InitUSART3(speed);
|
|
#elif defined(STM32F4_PI)
|
|
InitUSART1(speed);
|
|
#elif defined(STM32F4_NUCLEO)
|
|
InitUSART2(speed);
|
|
#endif
|
|
break;
|
|
case 3U:
|
|
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
|
|
InitUSART1(speed);
|
|
#else
|
|
InitUART5(speed);
|
|
#endif
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
int CSerialPort::availableInt(uint8_t n)
|
|
{
|
|
switch (n) {
|
|
case 1U:
|
|
#if defined(STM32F4_DISCOVERY)
|
|
return AvailUSART3();
|
|
#elif defined(STM32F4_PI)
|
|
return AvailUSART1();
|
|
#elif defined(STM32F4_NUCLEO)
|
|
return AvailUSART2();
|
|
#endif
|
|
case 3U:
|
|
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
|
|
return AvailUSART1();
|
|
#else
|
|
return AvailUART5();
|
|
#endif
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int CSerialPort::availableForWriteInt(uint8_t n)
|
|
{
|
|
switch (n) {
|
|
case 1U:
|
|
#if defined(STM32F4_DISCOVERY)
|
|
return AvailForWriteUSART3();
|
|
#elif defined(STM32F4_PI)
|
|
return AvailForWriteUSART1();
|
|
#elif defined(STM32F4_NUCLEO)
|
|
return AvailForWriteUSART2();
|
|
#endif
|
|
case 3U:
|
|
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
|
|
return AvailForWriteUSART1();
|
|
#else
|
|
return AvailForWriteUART5();
|
|
#endif
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uint8_t CSerialPort::readInt(uint8_t n)
|
|
{
|
|
switch (n) {
|
|
case 1U:
|
|
#if defined(STM32F4_DISCOVERY)
|
|
return ReadUSART3();
|
|
#elif defined(STM32F4_PI)
|
|
return ReadUSART1();
|
|
#elif defined(STM32F4_NUCLEO)
|
|
return ReadUSART2();
|
|
#endif
|
|
case 3U:
|
|
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
|
|
return ReadUSART1();
|
|
#else
|
|
return ReadUART5();
|
|
#endif
|
|
default:
|
|
return 0U;
|
|
}
|
|
}
|
|
|
|
void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool flush)
|
|
{
|
|
switch (n) {
|
|
case 1U:
|
|
#if defined(STM32F4_DISCOVERY)
|
|
WriteUSART3(data, length);
|
|
if (flush)
|
|
TXSerialFlush3();
|
|
#elif defined(STM32F4_PI)
|
|
WriteUSART1(data, length);
|
|
if (flush)
|
|
TXSerialFlush1();
|
|
#elif defined(STM32F4_NUCLEO)
|
|
WriteUSART2(data, length);
|
|
if (flush)
|
|
TXSerialFlush2();
|
|
#endif
|
|
break;
|
|
case 3U:
|
|
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
|
|
WriteUSART1(data, length);
|
|
if (flush)
|
|
TXSerialFlush1();
|
|
#else
|
|
WriteUART5(data, length);
|
|
if (flush)
|
|
TXSerialFlush5();
|
|
#endif
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#endif
|