MMDVM/SerialSTM.cpp

963 lines
26 KiB
C++

/*
* Copyright (C) 2016 by Jim McLaughlin KI6ZUM
* Copyright (C) 2016,2017,2018 by Andy Uribe CA6JAU
* Copyright (c) 2017 by Jonathan Naylor G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Config.h"
#include "Globals.h"
#include "SerialPort.h"
/*
Pin definitions:
- Host communication:
USART1 - TXD PA9 - RXD PA10 (MMDVM-Pi board, MMDVM-Pi F722 board, MMDVM-F4M board, STM32F722-F7M board)
USART2 - TXD PA2 - RXD PA3 (Nucleo64 F446RE board, Morpho or Arduino header)
USART3 - TXD PC10 - RXD PC11 (Discovery board)
USART3 - TXD PD8 - RXD PD9 (Nucleo144 F767ZI board)
- Serial repeater:
USART1 - TXD PA9 - RXD PA10 (Nucleo with Arduino header)
UART5 - TXD PC12 - RXD PD2 (Discovery, MMDVM-Pi, MMDVM-Pi F722 board, MMDVM-F4M board, STM32F722-F7M board, Nucleo64 with Morpho header and Nucleo144 F767ZI)
*/
#if defined(STM32F4XX) || defined(STM32F7XX)
#define TX_SERIAL_FIFO_SIZE 512U
#define RX_SERIAL_FIFO_SIZE 512U
extern "C" {
void USART1_IRQHandler();
void USART2_IRQHandler();
void USART3_IRQHandler();
void UART5_IRQHandler();
}
/* ************* USART1 ***************** */
#if defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_F7M) || defined(STM32F722_PI) || (defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
volatile uint8_t TXSerialfifo1[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo1[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead1, TXSerialfifotail1;
volatile uint16_t RXSerialfifohead1, RXSerialfifotail1;
// Init queues
void TXSerialfifoinit1()
{
TXSerialfifohead1 = 0U;
TXSerialfifotail1 = 0U;
}
void RXSerialfifoinit1()
{
RXSerialfifohead1 = 0U;
RXSerialfifotail1 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel1()
{
uint32_t tail = TXSerialfifotail1;
uint32_t head = TXSerialfifohead1;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel1()
{
uint32_t tail = RXSerialfifotail1;
uint32_t head = RXSerialfifohead1;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush1()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART1, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput1(uint8_t next)
{
if (TXSerialfifolevel1() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo1[TXSerialfifohead1] = next;
TXSerialfifohead1++;
if (TXSerialfifohead1 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead1 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART1_IRQHandler()
{
uint8_t c;
if (USART_GetITStatus(USART1, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART1);
if (RXSerialfifolevel1() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo1[RXSerialfifohead1] = c;
RXSerialfifohead1++;
if (RXSerialfifohead1 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead1 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART1, USART_IT_RXNE);
}
if (USART_GetITStatus(USART1, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead1 != TXSerialfifotail1) { // if the fifo is not empty
c = TXSerialfifo1[TXSerialfifotail1];
TXSerialfifotail1++;
if (TXSerialfifotail1 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail1 = 0U;
USART_SendData(USART1, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART1, USART_IT_TXE);
}
}
void InitUSART1(int speed)
{
// USART1 - TXD PA9 - RXD PA10 - pins on mmdvm pi board
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init(&NVIC_InitStructure);
// Configure USART as alternate function
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
USART_InitStructure.USART_BaudRate = speed;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
USART_Cmd(USART1, ENABLE);
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);
// initialize the fifos
TXSerialfifoinit1();
RXSerialfifoinit1();
}
uint8_t AvailUSART1()
{
if (RXSerialfifolevel1() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUSART1()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel1();
}
uint8_t ReadUSART1()
{
uint8_t data_c = RXSerialfifo1[RXSerialfifotail1];
RXSerialfifotail1++;
if (RXSerialfifotail1 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail1 = 0U;
return data_c;
}
void WriteUSART1(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput1(data[i]);
USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
}
#endif
/* ************* USART2 ***************** */
#if defined(STM32F4_NUCLEO)
volatile uint8_t TXSerialfifo2[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo2[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead2, TXSerialfifotail2;
volatile uint16_t RXSerialfifohead2, RXSerialfifotail2;
// Init queues
void TXSerialfifoinit2()
{
TXSerialfifohead2 = 0U;
TXSerialfifotail2 = 0U;
}
void RXSerialfifoinit2()
{
RXSerialfifohead2 = 0U;
RXSerialfifotail2 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel2()
{
uint32_t tail = TXSerialfifotail2;
uint32_t head = TXSerialfifohead2;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel2()
{
uint32_t tail = RXSerialfifotail2;
uint32_t head = RXSerialfifohead2;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush2()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART2, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput2(uint8_t next)
{
if (TXSerialfifolevel2() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo2[TXSerialfifohead2] = next;
TXSerialfifohead2++;
if (TXSerialfifohead2 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead2 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART2_IRQHandler()
{
uint8_t c;
if (USART_GetITStatus(USART2, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART2);
if (RXSerialfifolevel2() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo2[RXSerialfifohead2] = c;
RXSerialfifohead2++;
if (RXSerialfifohead2 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead2 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART2, USART_IT_RXNE);
}
if (USART_GetITStatus(USART2, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead2 != TXSerialfifotail2) { // if the fifo is not empty
c = TXSerialfifo2[TXSerialfifotail2];
TXSerialfifotail2++;
if (TXSerialfifotail2 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail2 = 0U;
USART_SendData(USART2, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART2, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART2, USART_IT_TXE);
}
}
void InitUSART2(int speed)
{
// USART2 - TXD PA2 - RXD PA3
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = USART2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init(&NVIC_InitStructure);
// Configure USART as alternate function
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
USART_InitStructure.USART_BaudRate = speed;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART2, &USART_InitStructure);
USART_Cmd(USART2, ENABLE);
USART_ITConfig(USART2, USART_IT_RXNE, ENABLE);
// initialize the fifos
TXSerialfifoinit2();
RXSerialfifoinit2();
}
uint8_t AvailUSART2()
{
if (RXSerialfifolevel2() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUSART2()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel2();
}
uint8_t ReadUSART2()
{
uint8_t data_c = RXSerialfifo2[RXSerialfifotail2];
RXSerialfifotail2++;
if (RXSerialfifotail2 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail2 = 0U;
return data_c;
}
void WriteUSART2(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput2(data[i]);
USART_ITConfig(USART2, USART_IT_TXE, ENABLE);
}
#endif
/* ************* USART3 ***************** */
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
volatile uint8_t TXSerialfifo3[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo3[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead3, TXSerialfifotail3;
volatile uint16_t RXSerialfifohead3, RXSerialfifotail3;
// Init queues
void TXSerialfifoinit3()
{
TXSerialfifohead3 = 0U;
TXSerialfifotail3 = 0U;
}
void RXSerialfifoinit3()
{
RXSerialfifohead3 = 0U;
RXSerialfifotail3 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel3()
{
uint32_t tail = TXSerialfifotail3;
uint32_t head = TXSerialfifohead3;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel3()
{
uint32_t tail = RXSerialfifotail3;
uint32_t head = RXSerialfifohead3;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush3()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(USART3, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput3(uint8_t next)
{
if (TXSerialfifolevel3() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo3[TXSerialfifohead3] = next;
TXSerialfifohead3++;
if (TXSerialfifohead3 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead3 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(USART3, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void USART3_IRQHandler()
{
uint8_t c;
if (USART_GetITStatus(USART3, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(USART3);
if (RXSerialfifolevel3() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo3[RXSerialfifohead3] = c;
RXSerialfifohead3++;
if (RXSerialfifohead3 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead3 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(USART3, USART_IT_RXNE);
}
if (USART_GetITStatus(USART3, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead3 != TXSerialfifotail3) { // if the fifo is not empty
c = TXSerialfifo3[TXSerialfifotail3];
TXSerialfifotail3++;
if (TXSerialfifotail3 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail3 = 0U;
USART_SendData(USART3, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(USART3, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(USART3, USART_IT_TXE);
}
}
#if defined(STM32F7_NUCLEO)
// USART3 - TXD PD8 - RXD PD9
#define USART3_GPIO_PinSource_TX GPIO_PinSource8
#define USART3_GPIO_PinSource_RX GPIO_PinSource9
#define USART3_GPIO_Pin_TX GPIO_Pin_8
#define USART3_GPIO_Pin_RX GPIO_Pin_9
#define USART3_GPIO_PORT GPIOD
#define USART3_RCC_Periph RCC_AHB1Periph_GPIOD
#else
// USART3 - TXD PC10 - RXD PC11
#define USART3_GPIO_PinSource_TX GPIO_PinSource10
#define USART3_GPIO_PinSource_RX GPIO_PinSource11
#define USART3_GPIO_Pin_TX GPIO_Pin_10
#define USART3_GPIO_Pin_RX GPIO_Pin_11
#define USART3_GPIO_PORT GPIOC
#define USART3_RCC_Periph RCC_AHB1Periph_GPIOC
#endif
void InitUSART3(int speed)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(USART3_RCC_Periph, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE);
GPIO_PinAFConfig(USART3_GPIO_PORT, USART3_GPIO_PinSource_TX, GPIO_AF_USART3);
GPIO_PinAFConfig(USART3_GPIO_PORT, USART3_GPIO_PinSource_RX, GPIO_AF_USART3);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = USART3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init(&NVIC_InitStructure);
// Configure USART as alternate function
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = USART3_GPIO_Pin_TX | USART3_GPIO_Pin_RX; // Tx | Rx
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(USART3_GPIO_PORT, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
USART_InitStructure.USART_BaudRate = speed;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART3, &USART_InitStructure);
USART_Cmd(USART3, ENABLE);
USART_ITConfig(USART3, USART_IT_RXNE, ENABLE);
// initialize the fifos
TXSerialfifoinit3();
RXSerialfifoinit3();
}
uint8_t AvailUSART3()
{
if (RXSerialfifolevel3() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUSART3()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel3();
}
uint8_t ReadUSART3()
{
uint8_t data_c = RXSerialfifo3[RXSerialfifotail3];
RXSerialfifotail3++;
if (RXSerialfifotail3 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail3 = 0U;
return data_c;
}
void WriteUSART3(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput3(data[i]);
USART_ITConfig(USART3, USART_IT_TXE, ENABLE);
}
#endif
/* ************* UART5 ***************** */
#if !(defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER))
volatile uint8_t TXSerialfifo5[TX_SERIAL_FIFO_SIZE];
volatile uint8_t RXSerialfifo5[RX_SERIAL_FIFO_SIZE];
volatile uint16_t TXSerialfifohead5, TXSerialfifotail5;
volatile uint16_t RXSerialfifohead5, RXSerialfifotail5;
// Init queues
void TXSerialfifoinit5()
{
TXSerialfifohead5 = 0U;
TXSerialfifotail5 = 0U;
}
void RXSerialfifoinit5()
{
RXSerialfifohead5 = 0U;
RXSerialfifotail5 = 0U;
}
// How full is queue
// TODO decide if how full or how empty is preferred info to return
uint16_t TXSerialfifolevel5()
{
uint32_t tail = TXSerialfifotail5;
uint32_t head = TXSerialfifohead5;
if (tail > head)
return TX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
uint16_t RXSerialfifolevel5()
{
uint32_t tail = RXSerialfifotail5;
uint32_t head = RXSerialfifohead5;
if (tail > head)
return RX_SERIAL_FIFO_SIZE + head - tail;
else
return head - tail;
}
// Flushes the transmit shift register
// warning: this call is blocking
void TXSerialFlush5()
{
// wait until the TXE shows the shift register is empty
while (USART_GetITStatus(UART5, USART_FLAG_TXE))
;
}
uint8_t TXSerialfifoput5(uint8_t next)
{
if (TXSerialfifolevel5() < TX_SERIAL_FIFO_SIZE) {
TXSerialfifo5[TXSerialfifohead5] = next;
TXSerialfifohead5++;
if (TXSerialfifohead5 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifohead5 = 0U;
// make sure transmit interrupts are enabled as long as there is data to send
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
return 1U;
} else {
return 0U; // signal an overflow occurred by returning a zero count
}
}
void UART5_IRQHandler()
{
uint8_t c;
if (USART_GetITStatus(UART5, USART_IT_RXNE)) {
c = (uint8_t) USART_ReceiveData(UART5);
if (RXSerialfifolevel5() < RX_SERIAL_FIFO_SIZE) {
RXSerialfifo5[RXSerialfifohead5] = c;
RXSerialfifohead5++;
if (RXSerialfifohead5 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifohead5 = 0U;
} else {
// TODO - do something if rx fifo is full?
}
USART_ClearITPendingBit(UART5, USART_IT_RXNE);
}
if (USART_GetITStatus(UART5, USART_IT_TXE)) {
c = 0U;
if (TXSerialfifohead5 != TXSerialfifotail5) { // if the fifo is not empty
c = TXSerialfifo5[TXSerialfifotail5];
TXSerialfifotail5++;
if (TXSerialfifotail5 >= TX_SERIAL_FIFO_SIZE)
TXSerialfifotail5 = 0U;
USART_SendData(UART5, c);
} else { // if there's no more data to transmit then turn off TX interrupts
USART_ITConfig(UART5, USART_IT_TXE, DISABLE);
}
USART_ClearITPendingBit(UART5, USART_IT_TXE);
}
}
void InitUART5(int speed)
{
// UART5 - TXD PC12 - RXD PD2
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_UART5, ENABLE);
GPIO_PinAFConfig(GPIOC, GPIO_PinSource12, GPIO_AF_UART5);
GPIO_PinAFConfig(GPIOD, GPIO_PinSource2, GPIO_AF_UART5);
// USART IRQ init
NVIC_InitStructure.NVIC_IRQChannel = UART5_IRQn;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;
NVIC_Init(&NVIC_InitStructure);
// Configure USART as alternate function
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; // Tx
GPIO_InitStructure.GPIO_Speed = GPIO_Fast_Speed;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; // Rx
GPIO_Init(GPIOD, &GPIO_InitStructure);
// Configure USART baud rate
USART_StructInit(&USART_InitStructure);
USART_InitStructure.USART_BaudRate = speed;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(UART5, &USART_InitStructure);
USART_Cmd(UART5, ENABLE);
USART_ITConfig(UART5, USART_IT_RXNE, ENABLE);
// initialize the fifos
TXSerialfifoinit5();
RXSerialfifoinit5();
}
uint8_t AvailUART5()
{
if (RXSerialfifolevel5() > 0U)
return 1U;
else
return 0U;
}
int AvailForWriteUART5()
{
return TX_SERIAL_FIFO_SIZE - TXSerialfifolevel5();
}
uint8_t ReadUART5()
{
uint8_t data_c = RXSerialfifo5[RXSerialfifotail5];
RXSerialfifotail5++;
if (RXSerialfifotail5 >= RX_SERIAL_FIFO_SIZE)
RXSerialfifotail5 = 0U;
return data_c;
}
void WriteUART5(const uint8_t* data, uint16_t length)
{
for (uint16_t i = 0U; i < length; i++)
TXSerialfifoput5(data[i]);
USART_ITConfig(UART5, USART_IT_TXE, ENABLE);
}
#endif
/////////////////////////////////////////////////////////////////
void CSerialPort::beginInt(uint8_t n, int speed)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
InitUSART3(speed);
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M)
InitUSART1(speed);
#elif defined(STM32F4_NUCLEO)
InitUSART2(speed);
#endif
break;
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
InitUSART1(speed);
#else
InitUART5(speed);
#endif
break;
default:
break;
}
}
int CSerialPort::availableInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return AvailUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M)
return AvailUSART1();
#elif defined(STM32F4_NUCLEO)
return AvailUSART2();
#endif
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return AvailUSART1();
#else
return AvailUART5();
#endif
default:
return 0;
}
}
int CSerialPort::availableForWriteInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return AvailForWriteUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M)
return AvailForWriteUSART1();
#elif defined(STM32F4_NUCLEO)
return AvailForWriteUSART2();
#endif
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return AvailForWriteUSART1();
#else
return AvailForWriteUART5();
#endif
default:
return 0;
}
}
uint8_t CSerialPort::readInt(uint8_t n)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
return ReadUSART3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M)
return ReadUSART1();
#elif defined(STM32F4_NUCLEO)
return ReadUSART2();
#endif
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
return ReadUSART1();
#else
return ReadUART5();
#endif
default:
return 0U;
}
}
void CSerialPort::writeInt(uint8_t n, const uint8_t* data, uint16_t length, bool flush)
{
switch (n) {
case 1U:
#if defined(STM32F4_DISCOVERY) || defined(STM32F7_NUCLEO)
WriteUSART3(data, length);
if (flush)
TXSerialFlush3();
#elif defined(STM32F4_PI) || defined(STM32F4_F4M) || defined(STM32F722_PI) || defined(STM32F722_F7M)
WriteUSART1(data, length);
if (flush)
TXSerialFlush1();
#elif defined(STM32F4_NUCLEO)
WriteUSART2(data, length);
if (flush)
TXSerialFlush2();
#endif
break;
case 3U:
#if defined(STM32F4_NUCLEO) && defined(STM32F4_NUCLEO_ARDUINO_HEADER)
WriteUSART1(data, length);
if (flush)
TXSerialFlush1();
#else
WriteUART5(data, length);
if (flush)
TXSerialFlush5();
#endif
break;
default:
break;
}
}
#endif