OpenModem/bertos/cpu/cortex-m3/drv/adc_stm32.c

216 lines
5.7 KiB
C

/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2010 Develer S.r.l. (http://www.develer.com/)
*
* -->
*
* \brief ADC hardware-specific implementation
*
* This ADC module should be use both whit kernel or none.
* If you are using a kernel, the adc drive does not wait the finish of
* conversion but use a singal every time a required conversion are
* ended. This signal wake up a process that return a result of
* conversion. Otherwise, if you not use a kernl, this module wait
* whit a loop the finishing of conversion.
*
*
* \author Daniele Basile <asterix@develer.com>
*/
#include "adc_stm32.h"
#include <cpu/irq.h>
#include "cfg/cfg_adc.h"
#include "cfg/cfg_proc.h"
#include "cfg/cfg_signal.h"
#include <cfg/macros.h>
#include <cfg/compiler.h>
#include <cfg/debug.h>
// Define log settings for cfg/log.h.
#define LOG_LEVEL ADC_LOG_LEVEL
#define LOG_FORMAT ADC_LOG_FORMAT
#include <cfg/log.h>
#include <drv/adc.h>
#include <drv/clock_stm32.h>
#include <drv/gpio_stm32.h>
#include <io/stm32.h>
struct stm32_adc *adc = (struct stm32_adc *)ADC1_BASE;
#if CONFIG_KERN
#include <cfg/module.h>
#include <kern/proc.h>
#include <kern/signal.h>
#include <drv/irq_cm3.h>
#if !CONFIG_KERN_SIGNALS
#error Signals must be active to use ADC with kernel
#endif
/* Signal adc convertion end */
#define SIG_ADC_COMPLETE SIG_USER0
/* ADC waiting process */
static struct Process *adc_process;
/**
* ADC ISR.
* Simply signal the adc process that convertion is complete.
*/
static DECLARE_ISR(adc_conversion_end_irq)
{
sig_post(adc_process, SIG_ADC_COMPLETE);
/* Clear the status bit */
adc->SR &= ~BV(SR_EOC);
}
static void adc_enable_irq(void)
{
/* Register the IRQ handler */
sysirq_setHandler(ADC_IRQHANDLER, adc_conversion_end_irq);
adc->CR1 |= BV(CR1_EOCIE);
}
#endif /* CONFIG_KERN */
/**
* Select mux channel \a ch.
* Generally the stm32 cpu family allow us to program the order
* of adc channel that we want to read.
* In this driver implementation we put as fist channel to read the
* select ones.
*/
void adc_hw_select_ch(uint8_t ch)
{
/* We sample only from one channel */
adc->SQR1 |= BV(SQR1_SQ_LEN_SHIFT);
adc->SQR3 = (ch & SQR3_SQ_MASK);
}
/**
* Start an ADC convertion.
* If a kernel is present, preempt until convertion is complete, otherwise
* a busy wait on ADC_DRDY bit is done.
*/
uint16_t adc_hw_read(void)
{
#if CONFIG_KERN
/* Ensure ADC is not already in use by another process */
ASSERT(adc_process == NULL);
adc_process = proc_current();
#endif
/* Start convertion */
adc->CR2 |= CR2_EXTTRIG_SWSTRT_SET;
#if CONFIG_KERN
/* Ensure IRQs enabled. */
IRQ_ASSERT_ENABLED();
sig_wait(SIG_ADC_COMPLETE);
/* Prevent race condition in case of preemptive kernel */
uint16_t ret = adc->DR;
MEMORY_BARRIER;
adc_process = NULL;
return ret;
#else
/* Wait in polling until conversion is done */
while (!(adc->SR & BV(SR_EOC)));
/* Return the last converted data */
return (adc->DR);
#endif
}
/**
* Init ADC hardware.
*/
void adc_hw_init(void)
{
RCC->APB2ENR |= (RCC_APB2_GPIOA | RCC_APB2_GPIOB | RCC_APB2_GPIOC);
RCC->APB2ENR |= RCC_APB2_ADC1;
/* Reset registry */
adc->CR1 = 0;
adc->CR2 = 0;
adc->SQR1 = 0;
adc->SQR2 = 0;
adc->SQR3 = 0;
/* Calibrate ADC */
adc->CR2 |= BV(CR2_RTSCAL);
adc->CR2 |= BV(CR2_CAL);
/* Wait in polling until calibration is done */
while (adc->CR2 & BV(CR2_CAL));
/*
* Configure ADC
* - Regular mode
* - Wake up adc
* - Wake up temperature and Vrefint
*/
adc->CR2 |= (BV(CR2_ADON) | ADC_EXTERNALTRIGCONV_NONE | BV(CR2_TSVREFE));
/* Set 17.1usec sampling time*/
adc->SMPR1 |= ((ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH17) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH16) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH15) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH14) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH13) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH12) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH11) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR1_CH10));
adc->SMPR2 |= ((ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH9) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH8) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH7) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH6) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH5) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH4) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH3) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH2) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH1) |
(ADC_SAMPLETIME_239CYCLES5 << SMPR2_CH0));
#if CONFIG_KERN
adc_enable_irq();
#endif
}