OpenModem/bertos/cpu/cortex-m3/drv/i2c_stm32.c

354 lines
8.3 KiB
C

/**
* \file
* <!--
* This file is part of BeRTOS.
*
* Bertos is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* As a special exception, you may use this file as part of a free software
* library without restriction. Specifically, if other files instantiate
* templates or use macros or inline functions from this file, or you compile
* this file and link it with other files to produce an executable, this
* file does not by itself cause the resulting executable to be covered by
* the GNU General Public License. This exception does not however
* invalidate any other reasons why the executable file might be covered by
* the GNU General Public License.
*
* Copyright 2010 Develer S.r.l. (http://www.develer.com/)
*
* -->
*
* \brief STM32F103xx I2C driver.
*
* \author Daniele Basile <asterix@develer.com>
*/
#include "cfg/cfg_i2c.h"
#define LOG_LEVEL I2C_LOG_LEVEL
#define LOG_FORMAT I2C_LOG_FORMAT
#include <cfg/log.h>
#include <cfg/debug.h>
#include <cfg/macros.h> // BV()
#include <cfg/module.h>
#include <cpu/power.h>
#include <drv/gpio_stm32.h>
#include <drv/irq_cm3.h>
#include <drv/clock_stm32.h>
#include <drv/i2c.h>
#include <drv/timer.h>
#include <io/stm32.h>
struct I2cHardware
{
struct stm32_i2c *base;
uint32_t clk_i2c_en;
uint32_t pin_mask;
uint8_t cache[2];
bool cached;
};
#define WAIT_BTF(base) \
do { \
while (!(base->SR1 & BV(SR1_BTF))) \
cpu_relax(); \
} while (0)
#define WAIT_RXNE(base) \
do { \
while (!(base->SR1 & BV(SR1_RXNE))) \
cpu_relax(); \
} while (0)
INLINE uint32_t get_status(struct stm32_i2c *base)
{
return ((base->SR1 | (base->SR2 << 16)) & 0x00FFFFFF);
}
/*
* This fuction read the status registers of the i2c device
* and waint until the selec event happen. If occur one error
* the funtions return false.
*/
INLINE bool wait_event(I2c *i2c, uint32_t event)
{
while (true)
{
uint32_t stat = get_status(i2c->hw->base);
if (stat == event)
break;
if (stat & SR1_ERR_MASK)
{
i2c->hw->base->SR1 &= ~SR1_ERR_MASK;
return false;
}
cpu_relax();
}
return true;
}
INLINE void start_w(struct I2c *i2c, uint16_t slave_addr)
{
/*
* Loop on the select write sequence: when the eeprom is busy
* writing previously sent data it will reply to the SLA_W
* control byte with a NACK. In this case, we must
* keep trying until the eeprom responds with an ACK.
*/
ticks_t start = timer_clock();
while (true)
{
i2c->hw->base->CR1 |= CR1_ACK_SET | CR1_START_SET;
if(!wait_event(i2c, I2C_EVENT_MASTER_MODE_SELECT))
{
LOG_ERR("ARBIT lost\n");
i2c->errors |= I2C_ARB_LOST;
break;
}
i2c->hw->base->DR = slave_addr & OAR1_ADD0_RESET;
if(wait_event(i2c, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED))
break;
if (timer_clock() - start > ms_to_ticks(CONFIG_I2C_START_TIMEOUT))
{
LOG_ERR("Timeout on I2C START\n");
i2c->errors |= I2C_START_TIMEOUT;
i2c->hw->base->CR1 |= CR1_STOP_SET;
break;
}
}
}
INLINE bool start_and_addr(struct I2c *i2c, uint16_t slave_addr)
{
i2c->hw->base->CR1 |= CR1_START_SET;
if(!wait_event(i2c, I2C_EVENT_MASTER_MODE_SELECT))
{
LOG_ERR("ARBIT lost\n");
i2c->errors |= I2C_ARB_LOST;
i2c->hw->base->CR1 |= CR1_STOP_SET;
return false;
}
i2c->hw->base->DR = (slave_addr | OAR1_ADD0_SET);
if (i2c->xfer_size == 2)
i2c->hw->base->CR1 |= CR1_ACK_SET | CR1_POS_SET;
if(!wait_event(i2c, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED))
{
LOG_ERR("SLAR NACK:%08lx\n", get_status(i2c->hw->base));
i2c->errors |= I2C_NO_ACK;
i2c->hw->base->CR1 |= CR1_STOP_SET;
return false;
}
return true;
}
INLINE void start_r(struct I2c *i2c, uint16_t slave_addr)
{
if (!start_and_addr(i2c, slave_addr))
return;
/*
* Due to the hardware receive bytes from slave in automatically mode
* we should manage contextually all cases that we want to read one, two or more
* than two bytes. To comply this behaviour to our api we shoul bufferd some byte
* to hide all special case that needs to use this device.
*/
if (i2c->xfer_size == 1)
{
i2c->hw->base->CR1 &= CR1_ACK_RESET;
cpu_flags_t irq;
IRQ_SAVE_DISABLE(irq);
(void)i2c->hw->base->SR2;
if (I2C_TEST_STOP(i2c->flags) == I2C_STOP)
i2c->hw->base->CR1 |= CR1_STOP_SET;
IRQ_RESTORE(irq);
WAIT_RXNE(i2c->hw->base);
i2c->hw->cache[0] = i2c->hw->base->DR;
i2c->hw->cached = true;
if (I2C_TEST_STOP(i2c->flags) == I2C_STOP)
while (i2c->hw->base->CR1 & CR1_STOP_SET);
i2c->hw->base->CR1 |= CR1_ACK_SET;
}
else if (i2c->xfer_size == 2)
{
cpu_flags_t irq;
IRQ_SAVE_DISABLE(irq);
(void)i2c->hw->base->SR2;
i2c->hw->base->CR1 &= CR1_ACK_RESET;
IRQ_RESTORE(irq);
WAIT_BTF(i2c->hw->base);
IRQ_SAVE_DISABLE(irq);
if (I2C_TEST_STOP(i2c->flags) == I2C_STOP)
i2c->hw->base->CR1 |= CR1_STOP_SET;
/*
* We store read bytes like a fifo..
*/
i2c->hw->cache[1] = i2c->hw->base->DR;
i2c->hw->cache[0] = i2c->hw->base->DR;
i2c->hw->cached = true;
IRQ_RESTORE(irq);
i2c->hw->base->CR1 &= CR1_POS_RESET;
i2c->hw->base->CR1 |= CR1_ACK_SET;
}
}
static void i2c_stm32_start(struct I2c *i2c, uint16_t slave_addr)
{
i2c->hw->cached = false;
if (I2C_TEST_START(i2c->flags) == I2C_START_W)
start_w(i2c, slave_addr);
else /* (I2C_TEST_START(i2c->flags) == I2C_START_R) */
start_r(i2c, slave_addr);
}
static void i2c_stm32_putc(I2c *i2c, const uint8_t data)
{
i2c->hw->base->DR = data;
WAIT_BTF(i2c->hw->base);
/* Generate the stop if we finish to send all programmed bytes */
if ((i2c->xfer_size == 1) && (I2C_TEST_STOP(i2c->flags) == I2C_STOP))
{
wait_event(i2c, I2C_EVENT_MASTER_BYTE_TRANSMITTED);
i2c->hw->base->CR1 |= CR1_STOP_SET;
}
}
static uint8_t i2c_stm32_getc(I2c *i2c)
{
if (i2c->hw->cached)
{
ASSERT(i2c->xfer_size <= 2);
return i2c->hw->cache[i2c->xfer_size - 1];
}
else
{
WAIT_BTF(i2c->hw->base);
if (i2c->xfer_size == 3)
{
i2c->hw->base->CR1 &= CR1_ACK_RESET;
cpu_flags_t irq;
IRQ_SAVE_DISABLE(irq);
uint8_t data = i2c->hw->base->DR;
if (I2C_TEST_STOP(i2c->flags) == I2C_STOP)
i2c->hw->base->CR1 |= CR1_STOP_SET;
i2c->hw->cache[1] = i2c->hw->base->DR;
IRQ_RESTORE(irq);
WAIT_RXNE(i2c->hw->base);
i2c->hw->cache[0] = i2c->hw->base->DR;
i2c->hw->cached = true;
if (I2C_TEST_STOP(i2c->flags) == I2C_STOP)
while (i2c->hw->base->CR1 & CR1_STOP_SET);
return data;
}
else
return i2c->hw->base->DR;
}
}
static const I2cVT i2c_stm32_vt =
{
.start = i2c_stm32_start,
.getc = i2c_stm32_getc,
.putc = i2c_stm32_putc,
.write = i2c_genericWrite,
.read = i2c_genericRead,
};
static struct I2cHardware i2c_stm32_hw[] =
{
{ /* I2C1 */
.base = (struct stm32_i2c *)I2C1_BASE,
.clk_i2c_en = RCC_APB1_I2C1,
.pin_mask = (GPIO_I2C1_SCL_PIN | GPIO_I2C1_SDA_PIN),
},
{ /* I2C2 */
.base = (struct stm32_i2c *)I2C2_BASE,
.clk_i2c_en = RCC_APB1_I2C2,
.pin_mask = (GPIO_I2C2_SCL_PIN | GPIO_I2C2_SDA_PIN),
},
};
/**
* Initialize I2C module.
*/
void i2c_hw_init(I2c *i2c, int dev, uint32_t clock)
{
i2c->hw = &i2c_stm32_hw[dev];
i2c->vt = &i2c_stm32_vt;
RCC->APB2ENR |= RCC_APB2_GPIOB;
RCC->APB1ENR |= i2c->hw->clk_i2c_en;
/* Set gpio to use I2C driver */
stm32_gpioPinConfig((struct stm32_gpio *)GPIOB_BASE, i2c->hw->pin_mask,
GPIO_MODE_AF_OD, GPIO_SPEED_50MHZ);
/* Clear all needed registers */
i2c->hw->base->CR1 = 0;
i2c->hw->base->CR2 = 0;
i2c->hw->base->CCR = 0;
i2c->hw->base->TRISE = 0;
i2c->hw->base->OAR1 = 0;
/* Set PCLK1 frequency accornding to the master clock settings. See stm32_clock.c */
i2c->hw->base->CR2 |= CR2_FREQ_36MHZ;
/* Configure spi in standard mode */
ASSERT2(clock >= 100000, "fast mode not supported");
i2c->hw->base->CCR |= (uint16_t)((CR2_FREQ_36MHZ * 1000000) / (clock << 1));
i2c->hw->base->TRISE |= (CR2_FREQ_36MHZ + 1);
i2c->hw->base->CR1 |= CR1_PE_SET;
}