rp2350: custom ldscript + TZEN work in progress

pull/524/head
Daniele Lacamera 2024-12-20 16:11:24 +01:00
parent b19d9d6b39
commit ae82a60a88
8 changed files with 762 additions and 7 deletions

View File

@ -17,6 +17,7 @@ add_executable(blink
blink.c
)
pico_set_linker_script(blink ../../../../../hal/rp2350-app.ld)
target_link_libraries(blink pico_stdlib)
# create map/bin/hex/uf2 file etc.

View File

@ -3,8 +3,6 @@
mkdir -p build
cd build
cmake .. -DPICO_SDK_PATH=$PICO_SDK_PATH -DPICO_PLATFORM=rp2350
cat pico_flash_region.ld | sed -e "s/0x10000000/0x10040400/g" >pico_flash_region_wolfboot.ld
cp pico_flash_region_wolfboot.ld pico_flash_region.ld
# Get off-tree source file from raspberry pico-examples
curl -o blink.c https://raw.githubusercontent.com/raspberrypi/pico-examples/refs/tags/sdk-2.1.0/blink/blink.c

View File

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.13)
set(WOLFBOOT_PATH ../../../../)
set(WOLFBOOT_PATH ../../../..)
set(CMAKE_CXX_COMPILER arm-none-eabi-gcc)
include(${PICO_SDK_PATH}/pico_sdk_init.cmake)
@ -64,6 +64,7 @@ target_include_directories(wolfboot PRIVATE
)
target_link_libraries(wolfboot pico_stdlib hardware_flash)
pico_set_linker_script(wolfboot ../../../../../hal/rp2350.ld)
pico_enable_stdio_usb(wolfboot 1)
pico_enable_stdio_uart(wolfboot 0)

View File

@ -1,4 +1,4 @@
/* stm32_tz.h
/* armv8m_tz.h
*
* Copyright (C) 2024 wolfSSL Inc.
*
@ -19,8 +19,8 @@
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifndef STM32_TZ_INCLUDED
#define STM32_TZ_INCLUDED
#ifndef TZ_INCLUDED
#define TZ_INCLUDED
#include <stdint.h>
/* SAU registers, used to define memory mapped regions */

302
hal/rp2350-app.ld 100644
View File

@ -0,0 +1,302 @@
/* Based on GCC ARM embedded samples.
Defines the following symbols for use by code:
__exidx_start
__exidx_end
__etext
__data_start__
__preinit_array_start
__preinit_array_end
__init_array_start
__init_array_end
__fini_array_start
__fini_array_end
__data_end__
__bss_start__
__bss_end__
__end__
end
__HeapLimit
__StackLimit
__StackTop
__stack (== StackTop)
*/
MEMORY
{
FLASH(rx) : ORIGIN = 0x10040400, LENGTH = 0x1D0000
RAM(rwx) : ORIGIN = 0x20008000, LENGTH = 472k
SCRATCH_X(rwx) : ORIGIN = 0x2007E000, LENGTH = 4k
SCRATCH_Y(rwx) : ORIGIN = 0x2007F000, LENGTH = 4k
}
ENTRY(_entry_point)
SECTIONS
{
.flash_begin : {
__flash_binary_start = .;
} > FLASH
/* The bootrom will enter the image at the point indicated in your
IMAGE_DEF, which is usually the reset handler of your vector table.
The debugger will use the ELF entry point, which is the _entry_point
symbol, and in our case is *different from the bootrom's entry point.*
This is used to go back through the bootrom on debugger launches only,
to perform the same initial flash setup that would be performed on a
cold boot.
*/
.text : {
__logical_binary_start = .;
KEEP (*(.vectors))
KEEP (*(.binary_info_header))
__binary_info_header_end = .;
KEEP (*(.embedded_block))
__embedded_block_end = .;
KEEP (*(.reset))
/* TODO revisit this now memset/memcpy/float in ROM */
/* bit of a hack right now to exclude all floating point and time critical (e.g. memset, memcpy) code from
* FLASH ... we will include any thing excluded here in .data below by default */
*(.init)
*libgcc.a:cmse_nonsecure_call.o
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .text*)
*(.fini)
/* Pull all c'tors into .text */
*crtbegin.o(.ctors)
*crtbegin?.o(.ctors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
*(SORT(.ctors.*))
*(.ctors)
/* Followed by destructors */
*crtbegin.o(.dtors)
*crtbegin?.o(.dtors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
*(SORT(.dtors.*))
*(.dtors)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(SORT(.preinit_array.*)))
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
*(SORT(.fini_array.*))
*(.fini_array)
PROVIDE_HIDDEN (__fini_array_end = .);
*(.eh_frame*)
. = ALIGN(4);
} > FLASH
/* Note the boot2 section is optional, and should be discarded if there is
no reference to it *inside* the binary, as it is not called by the
bootrom. (The bootrom performs a simple best-effort XIP setup and
leaves it to the binary to do anything more sophisticated.) However
there is still a size limit of 256 bytes, to ensure the boot2 can be
stored in boot RAM.
Really this is a "XIP setup function" -- the name boot2 is historic and
refers to its dual-purpose on RP2040, where it also handled vectoring
from the bootrom into the user image.
*/
.boot2 : {
__boot2_start__ = .;
*(.boot2)
__boot2_end__ = .;
} > FLASH
ASSERT(__boot2_end__ - __boot2_start__ <= 256,
"ERROR: Pico second stage bootloader must be no more than 256 bytes in size")
.rodata : {
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .rodata*)
*(.srodata*)
. = ALIGN(4);
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
. = ALIGN(4);
} > FLASH
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} > FLASH
__exidx_start = .;
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > FLASH
__exidx_end = .;
/* Machine inspectable binary information */
. = ALIGN(4);
__binary_info_start = .;
.binary_info :
{
KEEP(*(.binary_info.keep.*))
*(.binary_info.*)
} > FLASH
__binary_info_end = .;
. = ALIGN(4);
.ram_vector_table (NOLOAD): {
*(.ram_vector_table)
} > RAM
.uninitialized_data (NOLOAD): {
. = ALIGN(4);
*(.uninitialized_data*)
} > RAM
.data : {
__data_start__ = .;
*(vtable)
*(.time_critical*)
/* remaining .text and .rodata; i.e. stuff we exclude above because we want it in RAM */
*(.text*)
. = ALIGN(4);
*(.rodata*)
. = ALIGN(4);
*(.data*)
*(.sdata*)
. = ALIGN(4);
*(.after_data.*)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__mutex_array_start = .);
KEEP(*(SORT(.mutex_array.*)))
KEEP(*(.mutex_array))
PROVIDE_HIDDEN (__mutex_array_end = .);
*(.jcr)
. = ALIGN(4);
} > RAM AT> FLASH
.tdata : {
. = ALIGN(4);
*(.tdata .tdata.* .gnu.linkonce.td.*)
/* All data end */
__tdata_end = .;
} > RAM AT> FLASH
PROVIDE(__data_end__ = .);
/* __etext is (for backwards compatibility) the name of the .data init source pointer (...) */
__etext = LOADADDR(.data);
.tbss (NOLOAD) : {
. = ALIGN(4);
__bss_start__ = .;
__tls_base = .;
*(.tbss .tbss.* .gnu.linkonce.tb.*)
*(.tcommon)
__tls_end = .;
} > RAM
.bss (NOLOAD) : {
. = ALIGN(4);
__tbss_end = .;
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
*(COMMON)
PROVIDE(__global_pointer$ = . + 2K);
*(.sbss*)
. = ALIGN(4);
__bss_end__ = .;
} > RAM
.heap (NOLOAD):
{
__end__ = .;
end = __end__;
KEEP(*(.heap*))
} > RAM
/* historically on GCC sbrk was growing past __HeapLimit to __StackLimit, however
to be more compatible, we now set __HeapLimit explicitly to where the end of the heap is */
__HeapLimit = ORIGIN(RAM) + LENGTH(RAM);
/* Start and end symbols must be word-aligned */
.scratch_x : {
__scratch_x_start__ = .;
*(.scratch_x.*)
. = ALIGN(4);
__scratch_x_end__ = .;
} > SCRATCH_X AT > FLASH
__scratch_x_source__ = LOADADDR(.scratch_x);
.scratch_y : {
__scratch_y_start__ = .;
*(.scratch_y.*)
. = ALIGN(4);
__scratch_y_end__ = .;
} > SCRATCH_Y AT > FLASH
__scratch_y_source__ = LOADADDR(.scratch_y);
/* .stack*_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later
*
* stack1 section may be empty/missing if platform_launch_core1 is not used */
/* by default we put core 0 stack at the end of scratch Y, so that if core 1
* stack is not used then all of SCRATCH_X is free.
*/
.stack1_dummy (NOLOAD):
{
*(.stack1*)
} > SCRATCH_X
.stack_dummy (NOLOAD):
{
KEEP(*(.stack*))
} > SCRATCH_Y
.flash_end : {
KEEP(*(.embedded_end_block*))
PROVIDE(__flash_binary_end = .);
} > FLASH =0xaa
/* stack limit is poorly named, but historically is maximum heap ptr */
__StackLimit = ORIGIN(RAM) + LENGTH(RAM);
__StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
__StackTop = ORIGIN(SCRATCH_Y) + LENGTH(SCRATCH_Y);
__StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy);
__StackBottom = __StackTop - SIZEOF(.stack_dummy);
PROVIDE(__stack = __StackTop);
/* picolibc and LLVM */
PROVIDE (__heap_start = __end__);
PROVIDE (__heap_end = __HeapLimit);
PROVIDE( __tls_align = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)) );
PROVIDE( __tls_size_align = (__tls_size + __tls_align - 1) & ~(__tls_align - 1));
PROVIDE( __arm32_tls_tcb_offset = MAX(8, __tls_align) );
/* llvm-libc */
PROVIDE (_end = __end__);
PROVIDE (__llvm_libc_heap_limit = __HeapLimit);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed")
ASSERT( __binary_info_header_end - __logical_binary_start <= 1024, "Binary info must be in first 1024 bytes of the binary")
ASSERT( __embedded_block_end - __logical_binary_start <= 4096, "Embedded block must be in first 4096 bytes of the binary")
/* todo assert on extra code */
}

View File

@ -26,6 +26,83 @@
#include <target.h>
#include "image.h"
#include "printf.h"
#ifdef TZEN
#include "armv8m_tz.h"
#include "pico/bootrom.h"
#define NVIC_ICER0 (*(volatile uint32_t *)(0xE000E180))
#define NVIC_ICPR0 (*(volatile uint32_t *)(0xE000E280))
#define NVIC_ITNS0 (*(volatile uint32_t *)(0xE000EF00))
#define SCB_VTOR_NS (*(volatile uint32_t *)(0xE002ED08))
#define ACCESS_BITS_DBG (1 << 7)
#define ACCESS_BITS_DMA (1 << 6)
#define ACCESS_BITS_CORE1 (1 << 5)
#define ACCESS_BITS_CORE0 (1 << 4)
#define ACCESS_BITS_SP (1 << 3)
#define ACCESS_BITS_SU (1 << 2)
#define ACCESS_BITS_NSP (1 << 1)
#define ACCESS_BITS_NSU (1 << 0)
#define ACCESS_MAGIC (0xACCE0000)
#define ACCESS_CONTROL (0x40060000)
#define ACCESS_CONTROL_LOCK (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0000))
#define ACCESS_CONTROL_FORCE_CORE_NS (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0004))
#define ACCESS_CONTROL_CFGRESET (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0008))
#define ACCESS_CONTROL_GPIOMASK0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x000C))
#define ACCESS_CONTROL_GPIOMASK1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0010))
#define ACCESS_CONTROL_ROM (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0014))
#define ACCESS_CONTROL_XIP_MAIN (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0018))
#define ACCESS_CONTROL_SRAM(block) (*(volatile uint32_t *)(ACCESS_CONTROL + 0x001C + (block) * 4)) /* block = 0..9 */
#define ACCESS_CONTROL_DMA (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0044))
#define ACCESS_CONTROL_USBCTRL (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0048))
#define ACCESS_CONTROL_PIO0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x004C))
#define ACCESS_CONTROL_PIO1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0050))
#define ACCESS_CONTROL_PIO2 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0054))
#define ACCESS_CONTROL_CORESIGHT_TRACE (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0058))
#define ACCESS_CONTROL_CORESIGHT_PERIPH (*(volatile uint32_t *)(ACCESS_CONTROL + 0x005C))
#define ACCESS_CONTROL_SYSINFO (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0060))
#define ACCESS_CONTROL_RESETS (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0064))
#define ACCESS_CONTROL_IO_BANK0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0068))
#define ACCESS_CONTROL_IO_BANK1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x006C))
#define ACCESS_CONTROL_PADS_BANK0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0070))
#define ACCESS_CONTROL_PADS_QSPI (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0074))
#define ACCESS_CONTROL_BUSCTRL (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0078))
#define ACCESS_CONTROL_ADC (*(volatile uint32_t *)(ACCESS_CONTROL + 0x007C))
#define ACCESS_CONTROL_HSTX (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0080))
#define ACCESS_CONTROL_I2C0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0084))
#define ACCESS_CONTROL_I2C1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0088))
#define ACCESS_CONTROL_PWM (*(volatile uint32_t *)(ACCESS_CONTROL + 0x008C))
#define ACCESS_CONTROL_SPI0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0090))
#define ACCESS_CONTROL_SPI1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0094))
#define ACCESS_CONTROL_TIMER0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x0098))
#define ACCESS_CONTROL_TIMER1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x009C))
#define ACCESS_CONTROL_UART0 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00A0))
#define ACCESS_CONTROL_UART1 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00A4))
#define ACCESS_CONTROL_OTP (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00A8))
#define ACCESS_CONTROL_TBMAN (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00AC))
#define ACCESS_CONTROL_POWMAN (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00B0))
#define ACCESS_CONTROL_TRNG (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00B4))
#define ACCESS_CONTROL_SHA256 (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00B8))
#define ACCESS_CONTROL_SYSCFG (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00BC))
#define ACCESS_CONTROL_CLOCKS (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00C0))
#define ACCESS_CONTROL_XOSC (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00C4))
#define ACCESS_CONTROL_ROSC (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00C8))
#define ACCESS_CONTROL_PLL_SYS (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00CC))
#define ACCESS_CONTROL_PLL_USB (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00D0))
#define ACCESS_CONTROL_TICKS (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00D4))
#define ACCESS_CONTROL_WATCHDOG (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00D8))
#define ACCESS_CONTROL_PSM (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00DC))
#define ACCESS_CONTROL_XIP_CTRL (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00E0))
#define ACCESS_CONTROL_XIP_QMI (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00E4))
#define ACCESS_CONTROL_XIP_AUX (*(volatile uint32_t *)(ACCESS_CONTROL + 0x00E8))
#endif
#ifdef __WOLFBOOT
void hal_init(void)
@ -35,8 +112,82 @@ void hal_init(void)
#endif
}
#ifdef TZEN
static void rp2350_configure_sau(void)
{
/* Disable SAU */
SAU_CTRL = 0;
sau_init_region(0, 0x10000000, 0x1002FFFF, 1); /* Secure flash */
sau_init_region(1, 0x10030000, 0x1003FFFF, 1); /* Non-secure-callable flash */
sau_init_region(2, 0x10040000, 0x101FFFFF, 0); /* Non-secure flash */
sau_init_region(3, 0x20000000, 0x20007FFF, 1); /* Secure RAM */
sau_init_region(4, 0x20008000, 0x2007FFFF, 0); /* Non-secure RAM */
/* Enable SAU */
SAU_CTRL = 1;
}
static void rp2350_configure_nvic(void)
{
/* Disable all interrupts */
NVIC_ICER0 = 0xFFFFFFFF;
NVIC_ICPR0 = 0xFFFFFFFF;
/* Set all interrupts to non-secure */
NVIC_ITNS0 = 0xFFFFFFFF;
}
static void rp2350_configure_access_control(void)
{
int i;
/* Reset ACCESSCTRL */
const uint32_t secure_fl = (ACCESS_BITS_SU | ACCESS_BITS_SP | ACCESS_BITS_DMA | ACCESS_BITS_DBG | ACCESS_BITS_CORE0 | ACCESS_BITS_CORE1 | ACCESS_MAGIC);
const uint32_t non_secure_fl = (ACCESS_BITS_NSU | ACCESS_BITS_NSP | ACCESS_BITS_DMA | ACCESS_BITS_DBG | ACCESS_BITS_CORE0 | ACCESS_BITS_CORE1 | ACCESS_MAGIC);
//ACCESS_CONTROL_CFGRESET = 1;
/* Corresponding regions for the secure flash and RAM */
//for(i = 0; i < 2; i++) {
// ACCESS_CONTROL_SRAM(i) = secure_fl;
//}
for (i = 0; i < 10; i++) {
ACCESS_CONTROL_SRAM(i) = non_secure_fl | secure_fl;
}
ACCESS_CONTROL_ROM = secure_fl;
ACCESS_CONTROL_XIP_MAIN = non_secure_fl | secure_fl;
ACCESS_CONTROL_DMA = non_secure_fl;
ACCESS_CONTROL_TRNG = secure_fl;
ACCESS_CONTROL_SYSCFG = secure_fl;
ACCESS_CONTROL_SHA256 = secure_fl;
ACCESS_CONTROL_GPIOMASK0 = 0xFFFFFFFF;
ACCESS_CONTROL_GPIOMASK1 = 0xFFFFFFFF;
// ACCESS_CONTROL_FORCE_CORE_NS = (1 << 1); /* Force core 1 to non-secure */
ACCESS_CONTROL_PIO0 = non_secure_fl;
ACCESS_CONTROL_PIO1 = non_secure_fl;
ACCESS_CONTROL_PIO2 = non_secure_fl;
ACCESS_CONTROL_I2C0 = non_secure_fl;
ACCESS_CONTROL_I2C1 = non_secure_fl;
ACCESS_CONTROL_PWM = non_secure_fl;
ACCESS_CONTROL_SPI0 = non_secure_fl;
ACCESS_CONTROL_SPI1 = non_secure_fl;
ACCESS_CONTROL_TIMER0 = non_secure_fl;
ACCESS_CONTROL_TIMER1 = non_secure_fl;
ACCESS_CONTROL_UART0 = non_secure_fl;
ACCESS_CONTROL_UART1 = non_secure_fl;
ACCESS_CONTROL_ADC = non_secure_fl;
// ACCESS_CONTROL_LOCK = (1 << 0) | (1 << 1) | (1 << 3);
}
#endif
void hal_prepare_boot(void)
{
#ifdef TZEN
rp2350_configure_sau();
rp2350_configure_nvic();
rp2350_configure_access_control();
#endif
}
#endif

302
hal/rp2350.ld 100644
View File

@ -0,0 +1,302 @@
/* Based on GCC ARM embedded samples.
Defines the following symbols for use by code:
__exidx_start
__exidx_end
__etext
__data_start__
__preinit_array_start
__preinit_array_end
__init_array_start
__init_array_end
__fini_array_start
__fini_array_end
__data_end__
__bss_start__
__bss_end__
__end__
end
__HeapLimit
__StackLimit
__StackTop
__stack (== StackTop)
*/
MEMORY
{
FLASH(rx) : ORIGIN = 0x10000000, LENGTH = 256k
RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 24k
SCRATCH_X(rwx) : ORIGIN = 0x20006000, LENGTH = 4k
SCRATCH_Y(rwx) : ORIGIN = 0x20007000, LENGTH = 4k
}
ENTRY(_entry_point)
SECTIONS
{
.flash_begin : {
__flash_binary_start = .;
} > FLASH
/* The bootrom will enter the image at the point indicated in your
IMAGE_DEF, which is usually the reset handler of your vector table.
The debugger will use the ELF entry point, which is the _entry_point
symbol, and in our case is *different from the bootrom's entry point.*
This is used to go back through the bootrom on debugger launches only,
to perform the same initial flash setup that would be performed on a
cold boot.
*/
.text : {
__logical_binary_start = .;
KEEP (*(.vectors))
KEEP (*(.binary_info_header))
__binary_info_header_end = .;
KEEP (*(.embedded_block))
__embedded_block_end = .;
KEEP (*(.reset))
/* TODO revisit this now memset/memcpy/float in ROM */
/* bit of a hack right now to exclude all floating point and time critical (e.g. memset, memcpy) code from
* FLASH ... we will include any thing excluded here in .data below by default */
*(.init)
*libgcc.a:cmse_nonsecure_call.o
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .text*)
*(.fini)
/* Pull all c'tors into .text */
*crtbegin.o(.ctors)
*crtbegin?.o(.ctors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .ctors)
*(SORT(.ctors.*))
*(.ctors)
/* Followed by destructors */
*crtbegin.o(.dtors)
*crtbegin?.o(.dtors)
*(EXCLUDE_FILE(*crtend?.o *crtend.o) .dtors)
*(SORT(.dtors.*))
*(.dtors)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__preinit_array_start = .);
KEEP(*(SORT(.preinit_array.*)))
KEEP(*(.preinit_array))
PROVIDE_HIDDEN (__preinit_array_end = .);
. = ALIGN(4);
/* init data */
PROVIDE_HIDDEN (__init_array_start = .);
KEEP(*(SORT(.init_array.*)))
KEEP(*(.init_array))
PROVIDE_HIDDEN (__init_array_end = .);
. = ALIGN(4);
/* finit data */
PROVIDE_HIDDEN (__fini_array_start = .);
*(SORT(.fini_array.*))
*(.fini_array)
PROVIDE_HIDDEN (__fini_array_end = .);
*(.eh_frame*)
. = ALIGN(4);
} > FLASH
/* Note the boot2 section is optional, and should be discarded if there is
no reference to it *inside* the binary, as it is not called by the
bootrom. (The bootrom performs a simple best-effort XIP setup and
leaves it to the binary to do anything more sophisticated.) However
there is still a size limit of 256 bytes, to ensure the boot2 can be
stored in boot RAM.
Really this is a "XIP setup function" -- the name boot2 is historic and
refers to its dual-purpose on RP2040, where it also handled vectoring
from the bootrom into the user image.
*/
.boot2 : {
__boot2_start__ = .;
*(.boot2)
__boot2_end__ = .;
} > FLASH
ASSERT(__boot2_end__ - __boot2_start__ <= 256,
"ERROR: Pico second stage bootloader must be no more than 256 bytes in size")
.rodata : {
*(EXCLUDE_FILE(*libgcc.a: *libc.a:*lib_a-mem*.o *libm.a:) .rodata*)
*(.srodata*)
. = ALIGN(4);
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.flashdata*)))
. = ALIGN(4);
} > FLASH
.ARM.extab :
{
*(.ARM.extab* .gnu.linkonce.armextab.*)
} > FLASH
__exidx_start = .;
.ARM.exidx :
{
*(.ARM.exidx* .gnu.linkonce.armexidx.*)
} > FLASH
__exidx_end = .;
/* Machine inspectable binary information */
. = ALIGN(4);
__binary_info_start = .;
.binary_info :
{
KEEP(*(.binary_info.keep.*))
*(.binary_info.*)
} > FLASH
__binary_info_end = .;
. = ALIGN(4);
.ram_vector_table (NOLOAD): {
*(.ram_vector_table)
} > RAM
.uninitialized_data (NOLOAD): {
. = ALIGN(4);
*(.uninitialized_data*)
} > RAM
.data : {
__data_start__ = .;
*(vtable)
*(.time_critical*)
/* remaining .text and .rodata; i.e. stuff we exclude above because we want it in RAM */
*(.text*)
. = ALIGN(4);
*(.rodata*)
. = ALIGN(4);
*(.data*)
*(.sdata*)
. = ALIGN(4);
*(.after_data.*)
. = ALIGN(4);
/* preinit data */
PROVIDE_HIDDEN (__mutex_array_start = .);
KEEP(*(SORT(.mutex_array.*)))
KEEP(*(.mutex_array))
PROVIDE_HIDDEN (__mutex_array_end = .);
*(.jcr)
. = ALIGN(4);
} > RAM AT> FLASH
.tdata : {
. = ALIGN(4);
*(.tdata .tdata.* .gnu.linkonce.td.*)
/* All data end */
__tdata_end = .;
} > RAM AT> FLASH
PROVIDE(__data_end__ = .);
/* __etext is (for backwards compatibility) the name of the .data init source pointer (...) */
__etext = LOADADDR(.data);
.tbss (NOLOAD) : {
. = ALIGN(4);
__bss_start__ = .;
__tls_base = .;
*(.tbss .tbss.* .gnu.linkonce.tb.*)
*(.tcommon)
__tls_end = .;
} > RAM
.bss (NOLOAD) : {
. = ALIGN(4);
__tbss_end = .;
*(SORT_BY_ALIGNMENT(SORT_BY_NAME(.bss*)))
*(COMMON)
PROVIDE(__global_pointer$ = . + 2K);
*(.sbss*)
. = ALIGN(4);
__bss_end__ = .;
} > RAM
.heap (NOLOAD):
{
__end__ = .;
end = __end__;
KEEP(*(.heap*))
} > RAM
/* historically on GCC sbrk was growing past __HeapLimit to __StackLimit, however
to be more compatible, we now set __HeapLimit explicitly to where the end of the heap is */
__HeapLimit = ORIGIN(RAM) + LENGTH(RAM);
/* Start and end symbols must be word-aligned */
.scratch_x : {
__scratch_x_start__ = .;
*(.scratch_x.*)
. = ALIGN(4);
__scratch_x_end__ = .;
} > SCRATCH_X AT > FLASH
__scratch_x_source__ = LOADADDR(.scratch_x);
.scratch_y : {
__scratch_y_start__ = .;
*(.scratch_y.*)
. = ALIGN(4);
__scratch_y_end__ = .;
} > SCRATCH_Y AT > FLASH
__scratch_y_source__ = LOADADDR(.scratch_y);
/* .stack*_dummy section doesn't contains any symbols. It is only
* used for linker to calculate size of stack sections, and assign
* values to stack symbols later
*
* stack1 section may be empty/missing if platform_launch_core1 is not used */
/* by default we put core 0 stack at the end of scratch Y, so that if core 1
* stack is not used then all of SCRATCH_X is free.
*/
.stack1_dummy (NOLOAD):
{
*(.stack1*)
} > SCRATCH_X
.stack_dummy (NOLOAD):
{
KEEP(*(.stack*))
} > SCRATCH_Y
.flash_end : {
KEEP(*(.embedded_end_block*))
PROVIDE(__flash_binary_end = .);
} > FLASH =0xaa
/* stack limit is poorly named, but historically is maximum heap ptr */
__StackLimit = ORIGIN(RAM) + LENGTH(RAM);
__StackOneTop = ORIGIN(SCRATCH_X) + LENGTH(SCRATCH_X);
__StackTop = ORIGIN(SCRATCH_Y) + LENGTH(SCRATCH_Y);
__StackOneBottom = __StackOneTop - SIZEOF(.stack1_dummy);
__StackBottom = __StackTop - SIZEOF(.stack_dummy);
PROVIDE(__stack = __StackTop);
/* picolibc and LLVM */
PROVIDE (__heap_start = __end__);
PROVIDE (__heap_end = __HeapLimit);
PROVIDE( __tls_align = MAX(ALIGNOF(.tdata), ALIGNOF(.tbss)) );
PROVIDE( __tls_size_align = (__tls_size + __tls_align - 1) & ~(__tls_align - 1));
PROVIDE( __arm32_tls_tcb_offset = MAX(8, __tls_align) );
/* llvm-libc */
PROVIDE (_end = __end__);
PROVIDE (__llvm_libc_heap_limit = __HeapLimit);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(__StackLimit >= __HeapLimit, "region RAM overflowed")
ASSERT( __binary_info_header_end - __logical_binary_start <= 1024, "Binary info must be in first 1024 bytes of the binary")
ASSERT( __embedded_block_end - __logical_binary_start <= 4096, "Embedded block must be in first 4096 bytes of the binary")
/* todo assert on extra code */
}

View File

@ -33,7 +33,7 @@
#include "hal/stm32h5.h"
#endif
#include "hal/stm32_tz.h"
#include "hal/armv8m_tz.h"
#include "image.h"
#include "hal.h"