Initial support for NXP LS1028A. Booting into OCRAM app. Updates to ARMv8 startup.

pull/525/head
David Garske 2024-07-31 15:57:13 -07:00 committed by Daniele Lacamera
parent 34bb4f651c
commit d007c9af08
17 changed files with 2803 additions and 41 deletions

17
arch.mk
View File

@ -72,6 +72,23 @@ ifeq ($(ARCH),AARCH64)
MATH_OBJS += ./lib/wolfssl/wolfcrypt/src/sp_c32.o MATH_OBJS += ./lib/wolfssl/wolfcrypt/src/sp_c32.o
MATH_OBJS += ./lib/wolfssl/wolfcrypt/src/sp_arm64.o MATH_OBJS += ./lib/wolfssl/wolfcrypt/src/sp_arm64.o
endif endif
ifeq ($(TARGET),nxp_ls1028a)
ARCH_FLAGS=-mcpu=cortex-a72+crypto -mstrict-align -march=armv8-a+crypto -mtune=cortex-a72
CFLAGS+=$(ARCH_FLAGS) -DCORTEX_A72 -DTARGET_LS1028A -DWOLFSSL_ARMASM -DWC_HASH_DATA_ALIGNMENT=8
#LDFLAGS+=-Wl,--as-needed -D"__WOLFBOOT"
CFLAGS +=-ffunction-sections -fdata-sections
LDFLAGS+=-Wl,--gc-sections
WOLFCRYPT_OBJS += lib/wolfssl/wolfcrypt/src/port/arm/armv8-sha256.o \
lib/wolfssl/wolfcrypt/src/port/arm/armv8-aes.o
ifeq ($(DEBUG_UART),0)
CFLAGS+=-fno-builtin-printf
endif
SPI_TARGET=nxp
endif
endif endif
## ARM Cortex-M ## ARM Cortex-M

View File

@ -0,0 +1,65 @@
ARCH=AARCH64
TARGET=nxp_ls1028a
SIGN?=ECC256
HASH?=SHA256
DEBUG?=1
DEBUG_UART?=1
VTOR?=0
CORTEX_M0?=0
NO_ASM?=0
EXT_FLASH?=1
SPI_FLASH?=0
## Force app to be copied into ram
NO_XIP?=1
UART_FLASH?=0
ALLOW_DOWNGRADE?=0
NVM_FLASH_WRITEONCE?=0
WOLFBOOT_VERSION?=0
V?=0
NO_MPU?=0
SPMATH?=1
RAM_CODE?=0
DUALBANK_SWAP?=0
PKA?=0
WOLFTPM=1
MEASURED_BOOT?=0
MEASURED_PCR_A?=3
WOLFBOOT_TPM_KEYSTORE?=1
WOLFBOOT_TPM_KEYSTORE_NV_INDEX?=25166336
WOLFBOOT_TPM_POLICY_NV_INDEX?=25166337
WOLFBOOT_TPM_PCR_INDEX?=16
# NOR Base Address
ARCH_FLASH_OFFSET?=0x20000000
# Flash Sector Size (128 KB)
WOLFBOOT_SECTOR_SIZE=0x20000
# wolfBoot start address
WOLFBOOT_ORIGIN=0x20020000
# wolfBoot partition size
BOOTLOADER_PARTITION_SIZE=0x20000
# Application Partition size
WOLFBOOT_PARTITION_SIZE?=0x20000
# Location in Flash for Application Partition
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x20040000
# Load Partition to RAM Address
WOLFBOOT_LOAD_ADDRESS?=0x18020100
# Location in Flash for Update Partition
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x20060000
# Location of temporary sector used during updates
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0x20080000
# DTS (Device Tree)
WOLFBOOT_LOAD_DTS_ADDRESS?=0x80000000
WOLFBOOT_DTS_BOOT_ADDRESS?=0x20F00000
WOLFBOOT_DTS_UPDATE_ADDRESS?=0x20F00000

View File

@ -0,0 +1,55 @@
ARCH=AARCH64
TARGET=nxp_ls1028a
SIGN?=ECC256
HASH?=SHA256
DEBUG?=1
DEBUG_UART?=1
VTOR?=0
CORTEX_M0?=0
NO_ASM?=0
EXT_FLASH?=1
SPI_FLASH?=0
## Force app to be copied into ram
NO_XIP?=1
UART_FLASH?=0
ALLOW_DOWNGRADE?=0
NVM_FLASH_WRITEONCE?=0
WOLFBOOT_VERSION?=0
V?=0
NO_MPU?=0
SPMATH?=1
RAM_CODE?=0
DUALBANK_SWAP?=0
PKA?=0
# NOR Base Address
ARCH_FLASH_OFFSET?=0x20000000
# Flash Sector Size (128 KB)
WOLFBOOT_SECTOR_SIZE=0x20000
# wolfBoot start address
WOLFBOOT_ORIGIN=0x20020000
# wolfBoot partition size
BOOTLOADER_PARTITION_SIZE=0x20000
# Application Partition size
WOLFBOOT_PARTITION_SIZE?=0x20000
# Location in Flash for Application Partition
WOLFBOOT_PARTITION_BOOT_ADDRESS?=0x20040000
# Load Partition to RAM Address
WOLFBOOT_LOAD_ADDRESS?=0x18020100
# Location in Flash for Update Partition
WOLFBOOT_PARTITION_UPDATE_ADDRESS?=0x20060000
# Location of temporary sector used during updates
WOLFBOOT_PARTITION_SWAP_ADDRESS?=0x20080000
# DTS (Device Tree)
WOLFBOOT_LOAD_DTS_ADDRESS?=0x80000000
WOLFBOOT_DTS_BOOT_ADDRESS?=0x20F00000
WOLFBOOT_DTS_UPDATE_ADDRESS?=0x20F00000

View File

@ -16,6 +16,7 @@ This README describes configuration of supported targets.
* [NXP iMX-RT](#nxp-imx-rt) * [NXP iMX-RT](#nxp-imx-rt)
* [NXP Kinetis](#nxp-kinetis) * [NXP Kinetis](#nxp-kinetis)
* [NXP LPC54xxx](#nxp-lpc54xxx) * [NXP LPC54xxx](#nxp-lpc54xxx)
* [NXP LS1028A](#nxp-ls1028a)
* [NXP MCXA153](#nxp-mcxa153) * [NXP MCXA153](#nxp-mcxa153)
* [NXP P1021 PPC](#nxp-qoriq-p1021-ppc) * [NXP P1021 PPC](#nxp-qoriq-p1021-ppc)
* [NXP T1024 PPC](#nxp-qoriq-t1024-ppc) * [NXP T1024 PPC](#nxp-qoriq-t1024-ppc)
@ -1073,6 +1074,97 @@ arm-none-eabi-gdb wolfboot.elf -ex "target remote localhost:3333"
``` ```
## NXP LS1028A
The LS1028A is a AARCH64 armv8-a Cortex-A72 processor. Support has been tested with the NXP LS1028ARDB.
Example configurations for this target are provided in:
* NXP LS1028A: [/config/examples/nxp-ls1028a.config](/config/examples/nxp-ls1028a.config).
* NXP LS1028A with TPM: [/config/examples/nxp-ls1028a-tpm.config](/config/examples/nxp-ls1028a-tpm.config).
### Building wolfBoot for NXP LS1028A
1. Download `aarch64-none-elf-` toolchain.
2. Copy the example `nxp-ls1028a.cofig` file to root directory and rename to `.config`
3. Build keytools and wolfboot
```
cp ./config/examples/nxp-ls1028a.config .config
make distclean
make keytools
make
```
This should output 3 binary files, `wolfboot.bin`, `image_v1_signed.bin` and `factory.bin`
- `wolfboot.bin` is the wolfboot binary
- `image_v1_signed.bin` is the signed application image and by default is `test-app/app_nxp_ls1028a`
- `factory.bin` is the two binaries merged together
### Hardware Setup LS1028ARDB
DIP Switch Configuraiton for XSPI_NOR_BOOT:
```
SW2 : 0xF8 = 11111000 SW3 : 0x70 = 01110000 SW5 : 0x20 = 00100000
Where '1' = UP/ON
```
UART Configuraiton:
```
Baud Rate: 115200
Data Bits: 8
Parity: None
Stop Bits: 1
Flow Control: None
Specify device type - PC16552D
Configured for UART1 DB9 Connector
```
### Programming NXP LS1028A
Programming requires three components:
1. RCW binary - Distribured by NXP at `https://github.com/nxp-qoriq/qoriq-rcw-bin` or can be generated using `https://github.com/nxp-qoriq/rcw/tree/master/ls1028ardb/R_SQPP_0x85bb` (tested with `rcw_1300.bin`)
2. woflBoot
3. Application - Test app found in `test-app/app_nxp_ls1028a.c`
Once you have all components, you can use a lauterbach or CW to flash NOR flash. You must flash RCW, wolfboot and singed_image. `factory.bin` can be used which is wolfboot and the signed image merged. You will need to build a signed image for every update to the application code, which can be done by using keytools in `tools/keytools/sign` see `docs/Signing.md` for more details
and to sign a custom image.
```
Usage: tools/keytools/sign [options] image key version
```
#### Lauterbach Flashing and Debugging
1. Launch lauterbach and open the demo script `debug_wolfboot.cmm`.
2. Open any desired debug windows.
3. Hit the play button on the demo script.
4. It should pop up with a code window and at the reset startpoint. (May requrie a reset or power cycle)
```
./t32/bin/macosx64/t32marm-qt
Open Script > debug_wolfboot.cmm
```
You can modify the Lauterbach NOR flash demo or use `debug_wolfboot.cmm` script, just make sure the flash offset for
the RCW is `0x0` and the address offset for wolboot is `0x1000`.
#### Other Tools
1. Make sure the memory addresses are alinged with the `.config` file.
2. Note the important NOR flash addresses in the defualt config are as follows.
3. RCW location is offset `0x0` or `0x20000000` memory mapped.
4. Wolfboot location is offset `0x1000` or `0x20001000` where wolfboot starts.
5. Application location is offset `0x20000` or `0x20020000` where application code goes.
6. Update location is offset `0x40000` or `0x20040000` where the new or updated applciaiton goes.
7. Load Location is `0x18020100` which is OCRAM or where the applciaiton code is loaded if using RAM loading from
8. DTS Location is
9. Update memory locations as neeeded.
## Cortex-A53 / Raspberry PI 3 (experimental) ## Cortex-A53 / Raspberry PI 3 (experimental)
Tested using `https://github.com/raspberrypi/linux` on Ubuntu 20 Tested using `https://github.com/raspberrypi/linux` on Ubuntu 20

View File

@ -39,7 +39,7 @@ To enable measured boot add `MEASURED_BOOT=1` setting in your wolfBoot config.
It is also necessary to select the PCR (index) where the measurement will be stored. It is also necessary to select the PCR (index) where the measurement will be stored.
Selection is made using the `MEASURED_BOOT_PCR_A=[index]` setting. Add this Selection is made using the `MEASURED_PCR_A=[index]` setting. Add this
setting in your wolfBoot config and replace `[index]` with a number between setting in your wolfBoot config and replace `[index]` with a number between
0 and 23. Below you will find guidelines for selecting a PCR index. 0 and 23. Below you will find guidelines for selecting a PCR index.

View File

@ -0,0 +1,111 @@
OUTPUT_FORMAT("elf64-littleaarch64", "elf64-littleaarch64", "elf64-littleaarch64")
OUTPUT_ARCH(aarch64)
ENTRY(_vector_table)
MEMORY
{
/*The flash address range on LS1028A RDB is 0x20000000 - 0x23FFFFFF.*/
FLASH (rx) : ORIGIN = @WOLFBOOT_ORIGIN@, LENGTH = @BOOTLOADER_PARTITION_SIZE@
/* DDR4 - 2GB */
DRAM (rwx) : ORIGIN = 0x80001000 , LENGTH = 0xBFFFFFFF
/* OCRAM 128K for startup RAM */
OCRAM (rwx) : ORIGIN = 0x18000000, LENGTH = 128K
}
SECTIONS
{
PROVIDE (_DDR_ADDRESS = 0x80001000);
PROVIDE (_OCRAM_ADDRESS = 0x18000000);
PROVIDE (_FLASH_ADDRESS = @WOLFBOOT_ORIGIN@);
PROVIDE (_CORE_NUMBER = 0);
PROVIDE (_MEMORY_SIZE = LENGTH(OCRAM));
PROVIDE (_FLASH_SIZE = LENGTH(FLASH));
PROVIDE (STACK_SIZE = 20K);
.boot :
{
PROVIDE(_vector_table = .);
._vector_table = .;
. = ALIGN(0x800);
KEEP(*(.vector_table))
KEEP(*(.boot*))
} > OCRAM
/* Read-only sections, merged into text segment: */
.interp : { *(.interp) }
.note.gnu.build-id : { *(.note.gnu.build-id) }
.hash : { *(.hash) }
.gnu.hash : { *(.gnu.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rela.init : { *(.rela.init) }
.rela.fini : { *(.rela.fini) }
.rela.rodata : { *(.rela.rodata .rela.rodata.* .rela.gnu.linkonce.r.*) }
.rela.data.rel.ro : { *(.rela.data.rel.ro .rela.data.rel.ro.* .rela.gnu.linkonce.d.rel.ro.*) }
.rela.data : { *(.rela.data .rela.data.* .rela.gnu.linkonce.d.*) }
.rela.tdata : { *(.rela.tdata .rela.tdata.* .rela.gnu.linkonce.td.*) }
.rela.tbss : { *(.rela.tbss .rela.tbss.* .rela.gnu.linkonce.tb.*) }
.rela.ctors : { *(.rela.ctors) }
.rela.dtors : { *(.rela.dtors) }
.rela.got : { *(.rela.got) }
.rela.bss : { *(.rela.bss .rela.bss.* .rela.gnu.linkonce.b.*) }
.text :
{
_start_text = .;
*(.text*)
*(.note.*)
. = ALIGN(8);
_end_text = .;
} > OCRAM
.rodata :
{
_rodata_start = .;
*(.rodata)
*(.rodata.*)
. = ALIGN(8);
_rodata_end = .;
} > OCRAM
PROVIDE(_stored_data = .);
.data :
{
_start_data = .;
KEEP(*(.data .data.* .gnu.linkonce.d.*))
. = ALIGN(8);
KEEP(*(.ramcode))
. = ALIGN(8);
_end_data = .;
} > OCRAM
.bss :
{
_start_bss = .;
__bss_start__ = .;
*(.dynbss)
*(.bss .bss.* .gnu.linkonce.b.*)
*(COMMON)
. = ALIGN(8);
_end_bss = .;
__bss_end__ = .;
_end = .;
} > OCRAM
. = ALIGN(16);
.stack :
{
_start_stack = .;
. = . + STACK_SIZE;
_end_stack = .;
} > OCRAM
PROVIDE(_stack_base = .);
}

879
hal/nxp_ls1028a.c 100644
View File

@ -0,0 +1,879 @@
/* ls1028a.c
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <string.h>
#include <target.h>
#include "image.h"
#include "printf.h"
#ifndef ARCH_AARCH64
# error "wolfBoot ls1028a HAL: wrong architecture selected. Please compile with ARCH=AARCH64."
#endif
#include "nxp_ls1028a.h"
/* HAL options */
#define ENABLE_DDR
#define BAUD_RATE 115200
#define UART_SEL 0 /* select UART 0 or 1 */
void hal_flash_init(void);
void switch_el3_to_el2(void);
extern void mmu_enable(void);
#ifdef DEBUG_UART
void uart_init(void)
{
/* calc divisor for UART
* example config values:
* clock_div, baud, base_clk 163 115200 400000000
* +0.5 to round up
*/
uint32_t div = (((SYS_CLK / 2.0) / (16 * BAUD_RATE)) + 0.5);
while (!(UART_LSR(UART_SEL) & UART_LSR_TEMT));
/* set ier, fcr, mcr */
UART_IER(UART_SEL) = 0;
UART_FCR(UART_SEL) = (UART_FCR_TFR | UART_FCR_RFR | UART_FCR_FEN);
/* enable baud rate access (DLAB=1) - divisor latch access bit*/
UART_LCR(UART_SEL) = (UART_LCR_DLAB | UART_LCR_WLS);
/* set divisor */
UART_DLB(UART_SEL) = (div & 0xff);
UART_DMB(UART_SEL) = ((div>>8) & 0xff);
/* disable rate access (DLAB=0) */
UART_LCR(UART_SEL) = (UART_LCR_WLS);
}
void uart_write(const char* buf, uint32_t sz)
{
uint32_t pos = 0;
while (sz-- > 0) {
char c = buf[pos++];
if (c == '\n') { /* handle CRLF */
while (!(UART_LSR(UART_SEL) & UART_LSR_THRE));
UART_THR(UART_SEL) = '\r';
}
while (!(UART_LSR(UART_SEL) & UART_LSR_THRE));
UART_THR(UART_SEL) = c;
}
}
#endif /* DEBUG_UART */
/* SPI interface */
/* Clear and halt the SPI controller*/
static void spi_close(unsigned int sel)
{
/* Halt, flush and set as master */
SPI_MCR(sel) = SPI_MCR_MASTER_HALT;
}
/*Clear the SPI controller and setup as a running master*/
static void spi_open(unsigned int sel)
{
spi_close(sel);
/* Setup CTAR0 */
SPI_CTAR0(sel) = SPI_CTAR_8_00MODE_8DIV;
/* Enable as master */
SPI_MCR(sel) = SPI_MCR_MASTER_RUNNING;
}
static int spi_can_rx(unsigned int sel)
{
return !!(SPI_SR(sel) & SPI_SR_RXCTR);
}
static unsigned char spi_pop_rx(unsigned int sel)
{
return SPI_POPR(sel) & 0xFF;
}
static void spi_flush_rx(unsigned int sel)
{
unsigned char rx_data;
while (spi_can_rx(sel)) {
rx_data = spi_pop_rx(sel);
}
(void) rx_data;
}
static int spi_can_tx(unsigned int sel)
{
return !!(SPI_SR(sel) & SPI_SR_TFFF);
}
static void spi_push_tx(unsigned int sel, unsigned int pcs, unsigned char data,
int last)
{
SPI_PUSHR(sel) = (last ? SPI_PUSHR_LAST : SPI_PUSHR_CONT)
| SPI_PUSHR_PCS(pcs) | data;
}
/* Perform a SPI transaction. Set cont!=0 to not let CS go low after this*/
static void spi_transaction(unsigned int sel, unsigned int pcs,
const unsigned char *out, unsigned char *in, unsigned int size,
int cont)
{
unsigned int tx_count = size;
unsigned int rx_count = size;
int last = 0;
unsigned char rx_data = 0;
unsigned char tx_data = 0;
/* XXX No parameter validation */
/* Flush RX FIFO */
spi_flush_rx(sel);
/* Nothing to do? */
if (!size)
return;
while (rx_count > 0) {
/* Try to push TX data */
while ((tx_count > 0) && ((rx_count - tx_count) < SPI_FIFO_DEPTH)
&& spi_can_tx(sel)) {
if (out) {
tx_data = *out;
out++;
}
tx_count--;
last = (!cont && !tx_count);
spi_push_tx(sel, pcs, tx_data, last);
}
/* Try to pop RX data */
while ((rx_count > 0) && spi_can_rx(sel)) {
rx_data = spi_pop_rx(sel);
if (in) {
*in = rx_data;
in++;
}
rx_count--;
}
}
}
/*#define TPM_TEST*/
#ifdef TPM_TEST
void read_tpm_id()
{
/*Read 4 bytes from offset D40F00. Assumes 0 wait state on TPM*/
unsigned char out[8] = { 0x83, 0xD4, 0x0F, 0x00, 0x00, 0x00, 0x00, 0x00 };
unsigned char in[8] = { 0 };
unsigned char in2[8] = { 0 };
unsigned int counter;
/*LS1028A SPI to the MikroBus uses SPI3 (sel is 2) and CS 0*/
#ifndef SPI_SEL_TPM
#define SPI_SEL_TPM 2
#endif
#ifndef SPI_CS_TPM
#define SPI_CS_TPM 0
#endif
spi_open(SPI_SEL_TPM);
/* Single transaction */
spi_transaction(SPI_SEL_TPM, SPI_CS_TPM, out, in, sizeof(out), 0);
/* Use individual transactions with cont set */
for (counter = 0; counter < (sizeof(out) - 1); counter++) {
spi_transaction(SPI_SEL_TPM, SPI_CS_TPM, &out[counter], &in2[counter], 1,
1);
}
spi_transaction(SPI_SEL_TPM, SPI_CS_TPM, &out[counter], &in2[counter], 1, 0);
spi_close(SPI_SEL_TPM);
(void) in;
(void) in2;
}
#endif
/* Exposed functions */
extern void nxp_ls1028a_spi_init(unsigned int sel);
extern int nxp_ls1028a_spi_xfer(unsigned int sel, unsigned int cs,
const unsigned char *out, unsigned char *in,
unsigned int size, int cont);
extern void nxp_ls1028a_spi_deinit(unsigned int sel);
void nxp_ls1028a_spi_init(unsigned int sel)
{
/* TODO Expose more configuration options */
spi_open(sel);
}
int nxp_ls1028a_spi_xfer(unsigned int sel, unsigned int cs,
const unsigned char *out, unsigned char *in,
unsigned int size, int cont)
{
/*TODO Make spi_transaction actually return errors */
spi_transaction(sel, cs, out, in, size, cont);
return 0;
}
void nxp_ls1028a_spi_deinit(unsigned int sel)
{
spi_close(sel);
}
void hal_delay_us(uint32_t us) {
uint64_t delay = (uint64_t)SYS_CLK * us / 1000000;
volatile uint32_t i = 0;
for (i = 0; i < delay; i++) {
asm volatile("nop");
}
}
/* Fixed addresses */
static const void* kernel_addr = (void*)WOLFBOOT_PARTITION_BOOT_ADDRESS;
static const void* update_addr = (void*)WOLFBOOT_PARTITION_UPDATE_ADDRESS;
void* hal_get_primary_address(void)
{
return (void*)kernel_addr;
}
void* hal_get_update_address(void)
{
return (void*)update_addr;
}
void* hal_get_dts_address(void)
{
return (void*)WOLFBOOT_LOAD_DTS_ADDRESS;
}
void* hal_get_dts_update_address(void)
{
return (void*)NULL;
}
void erratum_err050568(void)
{
/* Use IP bus only if systembus PLL is 300MHz (Dont use 300MHz) */
}
/* Application on Serial NOR Flash device 18.6.3 */
void xspi_init(void)
{
/* Configure module control register */
XSPI_MCR0 = XSPI_MCR0_CFG;
XSPI_MCR1 = XSPI_MCR1_CFG;
XSPI_MCR2 = XSPI_MCR2_CFG;
/* Clear RX/TX fifos */
XSPI_IPRXFCR = XSPI_IPRXFCR_CFG; /* Note: RX/TX Water Mark can be set here default is 64bit */
XSPI_IPTXFCR = XSPI_IPTXFCR_CFG; /* Increase size to reduce transfer requests */
/* Configure AHB bus control register (AHBCR) and AHB RX Buffer control register (AHBRXBUFxCR0) */
XSPI_AHBCR = XSPI_AHBCR_CFG;
XSPI_AHBRXBUFnCR0(0) = XSPI_AHBRXBUF0CR_CFG;
XSPI_AHBRXBUFnCR0(1) = XSPI_AHBRXBUF1CR_CFG;
XSPI_AHBRXBUFnCR0(2) = XSPI_AHBRXBUF2CR_CFG;
XSPI_AHBRXBUFnCR0(3) = XSPI_AHBRXBUF3CR_CFG;
XSPI_AHBRXBUFnCR0(4) = XSPI_AHBRXBUF4CR_CFG;
XSPI_AHBRXBUFnCR0(5) = XSPI_AHBRXBUF5CR_CFG;
XSPI_AHBRXBUFnCR0(6) = XSPI_AHBRXBUF6CR_CFG;
XSPI_AHBRXBUFnCR0(7) = XSPI_AHBRXBUF7CR_CFG;
/* Configure Flash control registers (FLSHxCR0,FLSHxCR1,FLSHxCR2) */
XSPI_FLSHA1CR0 = XSPI_FLSHA1CR0_CFG;
XSPI_FLSHA2CR0 = XSPI_FLSHA2CR0_CFG;
XSPI_FLSHB1CR0 = XSPI_FLSHB1CR0_CFG;
XSPI_FLSHB2CR0 = XSPI_FLSHB2CR0_CFG;
XSPI_FLSHA1CR1 = XSPI_FLSHA1CR1_CFG;
XSPI_FLSHA2CR1 = XSPI_FLSHA2CR1_CFG;
XSPI_FLSHB1CR1 = XSPI_FLSHB1CR1_CFG;
XSPI_FLSHB2CR1 = XSPI_FLSHB2CR1_CFG;
XSPI_FLSHA1CR2 = XSPI_FLSHA1CR2_CFG;
XSPI_FLSHA2CR2 = XSPI_FLSHA2CR2_CFG;
XSPI_FLSHB1CR2 = XSPI_FLSHB1CR2_CFG;
XSPI_FLSHB2CR2 = XSPI_FLSHB2CR2_CFG;
/* Configure DLL control register (DLLxCR) according to sample clock source selection */
XSPI_DLLACR = XSPI_DLLACR_CFG;
XSPI_DLLBCR = XSPI_DLLBCR_CFG;
}
void xspi_lut_lock(void)
{
XSPI_LUTKEY = LUT_KEY;
XSPI_LUT_LOCK()
}
void xspi_lut_unlock(void)
{
XSPI_LUTKEY = LUT_KEY;
XSPI_LUT_UNLOCK()
}
void hal_flash_init(void)
{
xspi_lut_unlock();
xspi_init();
/* Fast Read */
XSPI_LUT(LUT_INDEX_READ) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_READ3B);
XSPI_LUT(1) = XSPI_LUT_SEQ(STOP, LUT_PAD_SINGLE, 0x0, READ_SDR, LUT_PAD_SINGLE, 0x04);
XSPI_LUT(2) = 0x0;
XSPI_LUT(3) = 0x0;
/* Write Enable */
XSPI_LUT(LUT_INDEX_WRITE_EN) = XSPI_LUT_SEQ(STOP, LUT_PAD_SINGLE, 0x0, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_WE);
XSPI_LUT(5) = 0x0;
XSPI_LUT(6) = 0x0;
XSPI_LUT(7) = 0x0;
/* Erase */
XSPI_LUT(LUT_INDEX_SE) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_SE);
XSPI_LUT(9) = 0x0;
XSPI_LUT(10) = 0x0;
XSPI_LUT(11) = 0x0;
/* Subsector 4k Erase */
XSPI_LUT(LUT_INDEX_SSE4K) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_SE_4K);
XSPI_LUT(13) = 0x0;
XSPI_LUT(14) = 0x0;
XSPI_LUT(15) = 0x0;
/* Page Program */
XSPI_LUT(LUT_INDEX_PP) = XSPI_LUT_SEQ(RADDR_SDR, LUT_PAD_SINGLE, LUT_OP_ADDR3B, CMD_SDR, LUT_PAD(1), LUT_OP_PP);
XSPI_LUT(17) = XSPI_LUT_SEQ(STOP, LUT_PAD_SINGLE, 0x0, WRITE_SDR, LUT_PAD_SINGLE, 0x1);
XSPI_LUT(18) = 0x0;
XSPI_LUT(19) = 0x0;
/* Read Flag Status Regsiter */
XSPI_LUT(LUT_INDEX_RDSR) = XSPI_LUT_SEQ(READ_SDR, LUT_PAD_SINGLE, LUT_OP_1BYTE, CMD_SDR, LUT_PAD_SINGLE, LUT_OP_RDSR);
XSPI_LUT(21) = 0x0;
XSPI_LUT(22) = 0x0;
XSPI_LUT(23) = 0x0;
xspi_lut_lock();
}
/* Called from boot_aarch64_start.S */
void hal_ddr_init(void)
{
#ifdef ENABLE_DDR
uint64_t counter = 0;
DDR_DDRCDR_1 = DDR_DDRCDR_1_VAL;
DDR_SDRAM_CLK_CNTL = DDR_SDRAM_CLK_CNTL_VAL;
/* Setup DDR CS (chip select) bounds */
DDR_CS_BNDS(0) = DDR_CS0_BNDS_VAL;
DDR_CS_BNDS(1) = DDR_CS1_BNDS_VAL;
DDR_CS_BNDS(2) = DDR_CS2_BNDS_VAL;
DDR_CS_BNDS(3) = DDR_CS3_BNDS_VAL;
/* DDR SDRAM timing configuration */
DDR_TIMING_CFG_0 = DDR_TIMING_CFG_0_VAL;
DDR_TIMING_CFG_1 = DDR_TIMING_CFG_1_VAL;
DDR_TIMING_CFG_2 = DDR_TIMING_CFG_2_VAL;
DDR_TIMING_CFG_3 = DDR_TIMING_CFG_3_VAL;
DDR_TIMING_CFG_4 = DDR_TIMING_CFG_4_VAL;
DDR_TIMING_CFG_5 = DDR_TIMING_CFG_5_VAL;
DDR_TIMING_CFG_6 = DDR_TIMING_CFG_6_VAL;
DDR_TIMING_CFG_7 = DDR_TIMING_CFG_7_VAL;
DDR_TIMING_CFG_8 = DDR_TIMING_CFG_8_VAL;
DDR_ZQ_CNTL = DDR_ZQ_CNTL_VAL;
DDR_DQ_MAP_0 = DDR_DQ_MAP_0_VAL;
DDR_DQ_MAP_1 = DDR_DQ_MAP_1_VAL;
DDR_DQ_MAP_2 = DDR_DQ_MAP_2_VAL;
DDR_DQ_MAP_3 = DDR_DQ_MAP_3_VAL;
/* DDR SDRAM mode configuration */
DDR_SDRAM_CFG_3 = DDR_SDRAM_CFG_3_VAL;
DDR_SDRAM_MODE = DDR_SDRAM_MODE_VAL;
DDR_SDRAM_MODE_2 = DDR_SDRAM_MODE_2_VAL;
DDR_SDRAM_MODE_3 = DDR_SDRAM_MODE_3_VAL;
DDR_SDRAM_MODE_4 = DDR_SDRAM_MODE_4_VAL;
DDR_SDRAM_MODE_5 = DDR_SDRAM_MODE_5_VAL;
DDR_SDRAM_MODE_6 = DDR_SDRAM_MODE_6_VAL;
DDR_SDRAM_MODE_7 = DDR_SDRAM_MODE_7_VAL;
DDR_SDRAM_MODE_8 = DDR_SDRAM_MODE_8_VAL;
DDR_SDRAM_MODE_9 = DDR_SDRAM_MODE_9_VAL;
DDR_SDRAM_MODE_10 = DDR_SDRAM_MODE_10_VAL;
DDR_SDRAM_MODE_11 = DDR_SDRAM_MODE_11_VAL;
DDR_SDRAM_MODE_12 = DDR_SDRAM_MODE_12_VAL;
DDR_SDRAM_MODE_13 = DDR_SDRAM_MODE_13_VAL;
DDR_SDRAM_MODE_14 = DDR_SDRAM_MODE_14_VAL;
DDR_SDRAM_MODE_15 = DDR_SDRAM_MODE_15_VAL;
DDR_SDRAM_MODE_16 = DDR_SDRAM_MODE_16_VAL;
DDR_SDRAM_MD_CNTL = DDR_SDRAM_MD_CNTL_VAL;
/* DDR Configuration */
DDR_SDRAM_INTERVAL = DDR_SDRAM_INTERVAL_VAL;
DDR_DATA_INIT = DDR_DATA_INIT_VAL;
DDR_WRLVL_CNTL = DDR_WRLVL_CNTL_VAL;
DDR_WRLVL_CNTL_2 = DDR_WRLVL_CNTL_2_VAL;
DDR_WRLVL_CNTL_3 = DDR_WRLVL_CNTL_3_VAL;
DDR_SR_CNTR = 0;
DDR_SDRAM_RCW_1 = DDR_SDRAM_RCW_1_VAL;
DDR_SDRAM_RCW_2 = DDR_SDRAM_RCW_2_VAL;
DDR_SDRAM_RCW_3 = DDR_SDRAM_RCW_3_VAL;
DDR_SDRAM_RCW_4 = DDR_SDRAM_RCW_4_VAL;
DDR_SDRAM_RCW_5 = DDR_SDRAM_RCW_5_VAL;
DDR_SDRAM_RCW_6 = DDR_SDRAM_RCW_6_VAL;
DDR_DDRCDR_2 = DDR_DDRCDR_2_VAL;
DDR_SDRAM_CFG_2 = DDR_SDRAM_CFG_2_VAL;
DDR_INIT_ADDR = 0;
DDR_INIT_EXT_ADDR = 0;
DDR_ERR_DISABLE = 0;
DDR_ERR_INT_EN = DDR_ERR_INT_EN_VAL;
DDR_DDRDSR_1 = DDR_DDRDSR_1_VAL;
DDR_DDRDSR_2 = DDR_DDRDSR_2_VAL;
DDR_ERR_SBE = DDR_ERR_SBE_VAL;
DDR_CS_CONFIG(0) = DDR_CS0_CONFIG_VAL;
DDR_CS_CONFIG(1) = DDR_CS1_CONFIG_VAL;
DDR_CS_CONFIG(2) = DDR_CS2_CONFIG_VAL;
DDR_CS_CONFIG(3) = DDR_CS3_CONFIG_VAL;
/* Set values, but do not enable the DDR yet */
DDR_SDRAM_CFG = (DDR_SDRAM_CFG_VAL & ~DDR_SDRAM_CFG_MEM_EN);
hal_delay_us(500);
asm volatile("isb");
/* Enable controller */
DDR_SDRAM_CFG &= ~(DDR_SDRAM_CFG_BI);
DDR_SDRAM_CFG |= DDR_SDRAM_CFG_MEM_EN;
asm volatile("isb");
/* Wait for data initialization is complete */
while ((DDR_SDRAM_CFG_2 & DDR_SDRAM_CFG2_D_INIT)) {
counter++;
}
(void)counter;
#endif
}
void hal_flash_unlock(void) {}
void hal_flash_lock(void) {}
void ext_flash_lock(void) {}
void ext_flash_unlock(void) {}
void xspi_writereg(uint32_t* addr, uint32_t val)
{
*(volatile uint32_t *)(addr) = val;
}
void xspi_write_en(uint32_t addr)
{
XSPI_IPTXFCR = XSPI_IPRCFCR_FLUSH;
XSPI_IPCR0 = addr;
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_WRITE_EN) | 1;
XSPI_IPCMD_START();
while(!(XSPI_INTR & XSPI_IPCMDDONE));
XSPI_INTR |= XSPI_IPCMDDONE;
}
void xspi_read_sr(uint8_t* rxbuf, uint32_t addr, uint32_t len)
{
uint32_t data = 0;
/* Read IP CR regsiter */
uint32_t rxfcr = XSPI_IPRXFCR;
/* Flush RX fifo */
rxfcr = rxfcr | XSPI_IPRCFCR_FLUSH;
XSPI_IPTXFCR = rxfcr;
/* Trigger read SR command */
XSPI_IPCR0 = addr;
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_RDSR) | len;
XSPI_IPCMD_START();
while(!(XSPI_INTR & XSPI_IPCMDDONE));
XSPI_INTR |= XSPI_IPCMDDONE;
data = XSPI_RFD(0);
memcpy(rxbuf, &data, len);
XSPI_IPRXFCR = XSPI_IPRCFCR_FLUSH;
XSPI_INTR = XSPI_IPRXWA;
XSPI_INTR = XSPI_IPCMDDONE;
}
void xspi_sw_reset(void)
{
XSPI_SWRESET();
while (XSPI_MCR0 & XSPI_SW_RESET);
}
void xspi_flash_write(uintptr_t address, const uint8_t *data, uint32_t len)
{
uint32_t size = 0;
uint32_t tx_data = 0;
uint32_t size_wm = 0;
uint32_t loop_cnt = 0;
uint32_t remaining, rem_size = 0;
uint32_t i = 0, j = 0;
while (len) {
size = len > XSPI_IP_BUF_SIZE ? XSPI_IP_BUF_SIZE : len;
XSPI_IPCR0 = address;
loop_cnt = size / XSPI_IP_WM_SIZE;
/* Fill TX fifos */
for (i = 0; i < loop_cnt; i++) {
/* Wait for TX fifo ready */
while (!(XSPI_INTR & XSPI_INTR_IPTXWE_MASK));
for(j = 0; j < XSPI_IP_WM_SIZE; j+=4) {
memcpy(&tx_data, data++, 4);
xspi_writereg((uint32_t*)XSPI_TFD_BASE + j, tx_data);
}
/* Reset fifo */
XSPI_INTR = XSPI_INTR_IPTXWE_MASK;
}
remaining = size % XSPI_IP_WM_SIZE;
/* Write remaining data for non aligned data */
if (remaining) {
/* Wait for fifo Empty */
while(!(XSPI_INTR & XSPI_INTR_IPTXWE_MASK));
for(j = 0; j < remaining; j+=4) {
tx_data = 0;
rem_size = (remaining < 4) ? remaining : 4;
memcpy(&tx_data, data++, rem_size);
xspi_writereg((uint32_t*)XSPI_TFD_BASE + j, tx_data);
}
/* Reset fifo */
XSPI_INTR = XSPI_INTR_IPTXWE_MASK;
}
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_PP) | size;
XSPI_IPCMD_START();
/* Wait command done */
while (!(XSPI_INTR & XSPI_IPCMDDONE))
/* Flush fifo, set done flag */
XSPI_IPTXFCR = XSPI_IPRCFCR_FLUSH;
XSPI_INTR = XSPI_IPCMDDONE;
len -= size;
address += size;
}
}
void xspi_flash_sec_erase(uintptr_t address)
{
XSPI_IPCR0 = address;
XSPI_IPCR1 = XSPI_ISEQID(LUT_INDEX_SE) | FLASH_ERASE_SIZE;
XSPI_IPCMD_START();
while(!(XSPI_INTR & XSPI_IPCMDDONE));
XSPI_INTR &= ~XSPI_IPCMDDONE;
}
int hal_flash_write(uintptr_t address, const uint8_t *data, int len)
{
xspi_write_en(address);
xspi_flash_write(address, data, len);
return len;
}
int hal_flash_erase(uintptr_t address, int len)
{
uint32_t num_sectors = 0;
uint32_t i = 0;
uint8_t status[4] = {0, 0, 0, 0};
num_sectors = len / FLASH_ERASE_SIZE;
num_sectors += (len % FLASH_ERASE_SIZE) ? 1 : 0;
for (i = 0; i < num_sectors; i++) {
xspi_write_en(address + i * FLASH_ERASE_SIZE);
xspi_flash_sec_erase(address + i * FLASH_ERASE_SIZE);
while (!(status[0] & FLASH_READY_MSK)) {
xspi_read_sr(status, 0, 1);
}
}
xspi_sw_reset();
return len;
}
int ext_flash_write(uintptr_t address, const uint8_t *data, int len)
{
xspi_write_en(address);
xspi_flash_write(address, data, len);
return len;
}
int ext_flash_read(uintptr_t address, uint8_t *data, int len)
{
address = address & MASK_32BIT;
memcpy(data, (void*)address, len);
return len;
}
int ext_flash_erase(uintptr_t address, int len)
{
uint32_t num_sectors = 0;
uint32_t i = 0;
uint8_t status[4] = {0, 0, 0, 0};
num_sectors = len / FLASH_ERASE_SIZE;
num_sectors += (len % FLASH_ERASE_SIZE) ? 1 : 0;
for (i = 0; i < num_sectors; i++) {
xspi_write_en(address + i * FLASH_ERASE_SIZE);
xspi_flash_sec_erase(address + i * FLASH_ERASE_SIZE);
while (!(status[0] & FLASH_READY_MSK)) {
xspi_read_sr(status, 0, 1);
}
}
xspi_sw_reset();
return len;
}
void hal_prepare_boot(void)
{
#if 0
/* TODO: EL2 */
switch_el3_to_el2();
#endif
}
#ifdef TEST_HW_DDR
static int test_hw_ddr(void)
{
int status = 0;
uint64_t counter = 0;
DDR_MTPn(0) = 0xffffffff;
DDR_MTPn(1) = 0x00000001;
DDR_MTPn(2) = 0x00000002;
DDR_MTPn(3) = 0x00000003;
DDR_MTPn(4) = 0x00000004;
DDR_MTPn(5) = 0x00000005;
DDR_MTPn(6) = 0xcccccccc;
DDR_MTPn(7) = 0xbbbbbbbb;
DDR_MTPn(8) = 0xaaaaaaaa;
DDR_MTPn(9) = 0xffffffff;
DDR_MTCR = DDR_MEM_TEST_EN;
while (DDR_MTCR & DDR_MEM_TEST_EN)
counter++;
if (DDR_ERR_SBE & 0xffff || DDR_ERR_DETECT) {
status = -1;
wolfBoot_printf("DDR ECC error\n");
}
if (DDR_MTCR & DDR_MEM_TEST_FAIL) {
status = -1;
wolfBoot_printf("DDR self-test failed\n");
} else {
status = 0;
wolfBoot_printf("DDR self-test passed\n");
}
return status;
}
#endif /* TEST_HW_DDR */
#ifdef TEST_DDR
static int test_ddr(void)
{
int ret = 0;
int i;
uint32_t *ptr = (uint32_t*)(DDR_ADDRESS + TEST_DDR_OFFSET);
uint32_t tmp[TEST_DDR_SIZE/4];
memset(tmp, 0, sizeof(tmp));
/* test write to DDR */
for (i = 0; i < TEST_DDR_SIZE/4; i++) {
ptr[i] = (uint32_t)i;
}
/* test read from DDR */
for (i = 0; i < TEST_DDR_SIZE/4; i++) {
tmp[i] = ptr[i];
}
/* compare results */
for (i = 0; i < TEST_DDR_SIZE/4; i++) {
if (tmp[i] != (uint32_t)i) {
ret = -1;
break;
}
}
return ret;
}
#endif /* TEST_DDR */
#ifdef TEST_EXT_FLASH
#define TEST_ADDRESS 0x20012000
static int test_flash(void)
{
int ret;
uint32_t i;
uint8_t pageData[FLASH_PAGE_SIZE];
/* Erase sector */
ret = ext_flash_erase(TEST_ADDRESS, WOLFBOOT_SECTOR_SIZE);
wolfBoot_printf("Erase Sector: Ret %d\n", ret);
/* Write Pages */
for (i=0; i<sizeof(pageData); i++) {
pageData[i] = (i & 0xff);
}
ret = ext_flash_write(TEST_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Write Page: Ret %d\n", ret);
/* Read page */
memset(pageData, 0, sizeof(pageData));
ret = ext_flash_read(TEST_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Read Page: Ret %d\n", ret);
wolfBoot_printf("Checking...\n");
/* Check data */
for (i=0; i<sizeof(pageData); i++) {
wolfBoot_printf("check[%3d] %02x\n", i, pageData[i]);
if (pageData[i] != (i & 0xff)) {
wolfBoot_printf("Check Data @ %d failed\n", i);
return -i;
}
}
wolfBoot_printf("Flash Test Passed\n");
return ret;
}
#endif /* TEST_EXT_FLASH */
/* Function to set MMU MAIR memory attributes base on index */
void set_memory_attribute(uint32_t attr_idx, uint64_t mair_value)
{
uint64_t mair = 0;
asm volatile("mrs %0, mair_el3" : "=r"(mair));
mair &= ~(0xffUL << (attr_idx * 8));
mair |= (mair_value << (attr_idx * 8));
asm volatile("msr mair_el3, %0" : : "r"(mair));
}
void hal_init_tzpc(void)
{
TZDECPROT0_SET = 0xff; //0x86;
TZDECPROT1_SET = 0xff; //0x00;
TZPCR0SIZE = 0x00; //0x200;
/* Enable TZASC to allow secure read/write access to the DDR */
/* Really, we are allowing the full Region 0 to be R/W in secure world */
TZASC_ACTION = TZASC_ACTION_ENABLE_DECERR;
TZASC_REGION_ATTRIBUTES_0 = TZASC_REGION_ATTRIBUTES_ALLOW_SECRW;
TZASC_GATE_KEEPER = TZASC_GATE_KEEPER_REQUEST_OPEN;
}
void hal_init(void)
{
volatile uint32_t counter=0xFFFFul; /* used for delay */
#ifdef DEBUG_UART
uint32_t fw;
uart_init();
wolfBoot_printf("wolfBoot Init\n");
#endif
hal_init_tzpc();
hal_flash_init();
wolfBoot_printf("Flash init done\n");
#ifdef TEST_EXT_FLASH
test_flash();
#endif
#ifdef TPM_TEST
read_tpm_id();
wolfBoot_printf("TPM test done\n");
#endif
hal_ddr_init();
wolfBoot_printf("DDR init done\n");
#ifdef TEST_HW_DDR
test_hw_ddr();
#endif
while (counter--);
wolfBoot_printf("Delay is done\n");
#if TEST_DDR
if (test_ddr() == -1) {
wolfBoot_printf("DDR R/W test failed\n");
}
else {
wolfBoot_printf("DDR R/W test passed\n");
}
#endif
#if 0
/* TODO: MMU enable? */
mmu_enable();
wolfBoot_printf("MMU init done\n");
#endif
}

767
hal/nxp_ls1028a.h 100644
View File

@ -0,0 +1,767 @@
/* nxp_ls1028a.h
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifndef NXP_LS1028A_H
#define NXP_LS1028A_H
/* Expose AA64 defines */
#define AA64_TARGET_EL 2 /* Boot to EL2 hypervisor */
#define AA64_CNTFRQ ARMGT_CLK /* ARM Global Generic Timer */
#define AA64GIC_VERSION 3 /* GIC-500 in v3 mode */
#define AA64GICV3_GICD_BASE GICD_BASE
#define AA64GICV3_GITS_BASE GITS_BASE
#define AA64GICV3_GITST_BASE GITST_BASE
/* LS1028A Reference Manual Rev 0 12/2019 */
/* LS1028A Memory Map 0GB - 4GB Table 1 */
#define BOOTROM_BASE (0x00000000ul) /* Boot ROM */
#define BOOTROM_SIZE (64ul*1024) /* 64kB */
#define CCSR_BASE (0x01000000ul) /* CCSR register space */
#define CCSR_SIZE (240ul*1024*1024) /* 240MB */
#define OCRAM_BASE (0x18000000ul) /* On-Chip RAM */
#define OCRAM_SIZE (256ul*1024) /* 256kB */
#define CSSTM_BASE (0x19000000ul) /* CoreSight STM */
#define CSSTM_SIZE (16ul*1024*1024) /* 16MB */
#define XSPIWIN1_BASE (0x20000000ul) /* FlexSPI window 1 */
#define XSPIWIN1_SIZE (256ul*1024*1024) /* 256MB */
#define DDRWIN1_BASE (0x80000000ul) /* DRAM window 1 */
#define DDRWIN1_SIZE (2048ul*1024*1024) /* 2GB */
/* LS1028A Memory Map 4GB - 576GB Table 1*/
#define ECAMCFG_BASE (0x01F0000000ull) /* ECAM Config space */
#define ECAMREG_BASE (0x01F0800000ull) /* ECAM Register space */
#define ECAMRCIE_BASE (0x01F8000000ull) /* ECAM RCIE */
#define XSPIWIN2_BASE (0x0401000000ull) /* FlexSPI window 2 */
#define XSPIWIN2_SIZE (0x00F0000000ull) /* 3840MB */
#define DCSR_BASE (0x0700000000ull) /* DCSR */
#define DDRWIN2_BASE (0x2080000000ull) /* DDR window 2 */
#define DDRWIN2_SIZE (0x1F80000000ull) /* 126GB */
#define DDRWIN3_BASE (0x6000000000ull) /* DDR window 3 */
#define DDRWIN3_SIZE (0x2000000000ull) /* 126GB */
#define PCIE1_BASE (0x8000000000ull) /* PCIE 1 */
#define PCIE1_SIZE (0x0800000000ull) /* 32GB */
#define PCIE2_BASE (0x8800000000ull) /* PCIE 2 */
#define PCIE2_SIZE (0x0800000000ull) /* 32GB */
/* LS1028A CCSR Memory Map Table 2 */
#define DDRC_BASE (0x01080000ul) /* DDR Controller */
#define TZASC_BASE (0x01100000ul) /* Trust Zone ASC for DDR */
#define CGUCGA_BASE (0x01300000ul) /* Clock Generation Unit - CGA */
#define CGUP_BASE (0x01360000ul) /* Platform CGU */
#define CGUPTZ_BASE (0x01368000ul) /* Secure Platform CGU */
#define CLOCK_BASE (0x01370000ul) /* Clocking */
#define CGUD_BASE (0x01380000ul) /* DDR CGU */
#define DDRPHY1_BASE (0x01400000ul) /* DDR PHY for DDRC 1 */
#define DCFG_BASE (0x01E00000ul) /* Privileged Device Config */
#define PMU_BASE (0x01E30000ul) /* Power Management Unit */
#define RESET_BASE (0x01E60000ul) /* Reset */
#define SFP_BASE (0x01E80000ul) /* Security Fuse Processor */
#define SFPTZ_BASE (0x01E88000ul) /* TrustZone SFP */
#define SECMON_BASE (0x01E90000ul) /* Security Monitor */
#define SERDES_BASE (0x01EA0000ul) /* SerDes */
#define SERVP_BASE (0x01F00000ul) /* Service Processor */
#define ISC_BASE (0x01F70000ul) /* Interrupt Sampling Control */
#define TMU_BASE (0x01F80000ul) /* Thermal Monitor Unit */
#define VOLT_BASE (0x01F90000ul) /* Voltage Sense */
#define SCFG_BASE (0x01FC0000ul) /* Supplemental Configuration */
#define PINC_BASE (0x01FF0000ul) /* Pin Control */
#define I2C0_BASE (0x02000000ul) /* I2C 1 */
#define I2C_STRIDE (0x10000ul) /* For I2C 1-8 */
#define I2C_COUNT (8)
#define I2C_BASE(_n) (I2C0_BASE + ((_n) % I2C_COUNT) * I2C_STRIDE)
#define XSPIC_BASE (0x020C0000ul) /* FlexSPI */
#define SPI0_BASE (0x02100000ul) /* SPI 1 */
#define SPI_STRIDE (0x10000ul) /* For SPI 1-3 */
#define SPI_COUNT (3)
#define SPI_BASE(_n) (SPI0_BASE + ((_n) % SPI_COUNT) * SPI_STRIDE)
#define ESDHC0_BASE (0x02140000ul) /* eSDHC 1 */
#define ESDHC_STRIDE (0x10000ul) /* For eSDHC 1-2 */
#define ESDHC_COUNT (2)
#define ESDHC_BASE(_n) (ESDHC0_BASE + ((_n) % ESDHC_COUNT) * ESDHC_STRIDE)
#define CANBUS0_BASE (0x02180000ul) /* CAN 1 */
#define CANBUS_STRIDE (0x10000ul) /* For CAN 1-2 */
#define CANBUS_COUNT (8)
#define CANBUS_BASE(_n) (CANBUS0_BASE + ((_n) % CANBUS_COUNT) * CANBUS_STRIDE)
#define DUART0_BASE (0x021C0500ul) /* DUART 1 */
#define DUART_STRIDE (0x100ul) /* For DUART 1-2 */
#define DUART_COUNT (2)
#define DUART_BASE(_n) (DUART0_BASE + ((_n) % DUART_COUNT) * DUART_STRIDE)
#define OCTZPC_BASE (0x02200000ul) /* OCRAM TZPC */
#define LPUART0_BASE (0x02260000ul) /* LPUART 1 */
#define LPUART_STRIDE (0x10000ul) /* For LPUART 1-6 */
#define LPUART_COUNT (6)
#define LPUART_BASE(_n) (LPUART0_BASE + ((_n) % LPUART_COUNT) * LPUART_STRIDE)
#define EDMA_BASE (0x022C0000ul) /* eDMA */
#define EDMAMX0_BASE (0x022D0000ul) /* eDMA Channel Mux 1 */
#define EDMAMX_STRIDE (0x10000ul) /* For EDMAMX 1-2 */
#define EDMAMX_COUNT (2)
#define EDMAMX_BASE(_n) (EDMAMX0_BASE + ((_n) % EDMAMX_COUNT) * EDMAMX_STRIDE)
#define GPIO0_BASE (0x02300000ul) /* GPIO 1 */
#define GPIO_STRIDE (0x10000ul) /* For GPIO 1-3 */
#define GPIO_COUNT (3)
#define GPIO_BASE(_n) (GPIO0_BASE + ((_n) % GPIO_COUNT) * GPIO_STRIDE)
#define TZWDT_BASE (0x023C0000ul) /* Trust Zone Watchdog Timer */
#define GGRT_BASE (0x023D0000ul) /* Global Generic Reference Timer */
#define GGRTC_BASE (0x023E0000ul) /* GGRT Control */
#define GGRTS_BASE (0x023F0000ul) /* GGRT Status */
#define FLEXT0_BASE (0x02800000ul) /* Flex Timer 1 */
#define FLEXT_STRIDE (0x10000ul) /* For Flex Timer 1-8 */
#define FLEXT_COUNT (8)
#define FLEXT_BASE(_n) (FLEXT0_BASE + ((_n) % FLEXT_COUNT) * FLEXT_STRIDE)
#define USB0_BASE (0x03100000ul) /* USB 1 */
#define USB_STRIDE (0x10000ul) /* For USB 1-2 */
#define USB_COUNT (2)
#define USB_BASE(_n) (USB0_BASE + ((_n) % USB_COUNT) * USB_STRIDE)
#define SATA_BASE (0x03200000ul) /* SATA */
#define PCIE_COUNT (2)
#define PCIEPF0_BASE (0x03400000ul) /* PCI Express PF0 1 */
#define PCIELT0_BASE (0x03480000ul) /* PCIE Controller LUT 1 */
#define PCIEPC0_BASE (0x034C0000ul) /* PCIE Controller PF0 Controls 1 */
#define PCIEPF_STRIDE (0x10000ul) /* For PCIE PF0 1-2 */
#define PCIELT_STRIDE (0x10000ul) /* For PCIE LUT 1-2 */
#define PCIEPC_STRIDE (0x10000ul) /* For PCIE PF0 Controls 1-2 */
#define PCIEPF_BASE(_n) (PCIEPF0_BASE + ((_n) % PCIE_COUNT) * PCIEPF_STRIDE)
#define PCIELT_BASE(_n) (PCIELT0_BASE + ((_n) % PCIE_COUNT) * PCIELT_STRIDE)
#define PCIEPC_BASE(_n) (PCIEPC0_BASE + ((_n) % PCIE_COUNT) * PCIEPC_STRIDE)
#define CCI400_BASE (0x04090000ul) /* CCI-400 Configuration */
#define MMUGR0_BASE (0x05000000ul) /* MMU-500 Global Register Space 0 */
#define MMUGR1_BASE (0x05010000ul) /* MMU-500 Global Register Space 1 */
#define MMUGID_BASE (0x05020000ul) /* MMU-500 Implementation Defined */
#define MMUPM_BASE (0x05030000ul) /* MMU-500 Performance Monitor */
#define MMUSSD_BASE (0x05050000ul) /* MMU-500 Security State */
#define MMUTCB0_BASE (0x05400000ul) /* MMU Translation Context Bank 0 */
#define MMUTCB_STRIDE (0x10000ul) /* For MMUTCB 0-63 */
#define MMUTCB_COUNT (64)
#define MMUTCB_BASE(_n) (MMUTCB0_BASE + ((_n) % MMUTCB_COUNT) * MMUTCB_STRIDE)
#define GICD_BASE (0x06000000ul) /* GIC-500 GICD */
#define GITS_BASE (0x06020000ul) /* GIC-500 GITS Control */
#define GITST_BASE (0x06030000ul) /* GIC-500 GITS Translation */
#define CPU0RD_BASE (0x06040000ul) /* CPU0 control, Locality Perif Int*/
#define CPU0SGI_BASE (0x06050000ul) /* CPU0 SW Gen Int, Priv Perif Int */
#define CPU1RD_BASE (0x06060000ul) /* CPU1 control, physical LPIs */
#define CPU1SGI_BASE (0x06070000ul) /* CPU1 SGIs, PPIs */
#define SEC_BASE (0x08000000ul) /* General Purpose SEC Block */
#define QDMACONF_BASE (0x08380000ul) /* qDMA Configuration */
#define QDMAMGMT_BASE (0x08390000ul) /* qDMA Management */
#define QDMASA_BASE (0x083A0000ul) /* qDMA Standalone */
#define CPU0WDT_BASE (0x0C000000ul) /* Core 0 WDT */
#define CPU1WDT_BASE (0x0C010000ul) /* Core 1 WDT */
#define LCD_BASE (0x0F080000ul) /* LCD Controller */
#define GPU_BASE (0x0F0C0000ul) /* GPU */
#define SAI0_BASE (0x0F100000ul) /* Synchronous Audio Interface 1 */
#define SAI_STRIDE (0x10000ul) /* For SAI 1-6 */
#define SAI_COUNT (6)
#define SAI_BASE(_n) (SAI0_BASE + ((_n) % SAI_COUNT) * SAI_STRIDE)
#define MMPLL_BASE (0x0F1F0000ul) /* Multimedia PLL 1 */
#define EDPPHY_BASE (0x0F200000ul) /* Display PHY and PHY Controller */
/* Alternate SMMU names */
#define SMMU_GR0_BASE MMUGR0_BASE
#define SMMU_GR1_BASE MMUGR1_BASE
#define SMMU_GID_BASE MMUGID_BASE
#define SMMU_PM_BASE MMUPM_BASE
#define SMMU_SSD_BASE MMUSSD_BASE
#define SMMU_TOP MMUTCB0_BASE
#define SMMU_GLOBAL_TOP MMUTCB0_BASE
#define SMMU_CB_BASE MMUTCB0_BASE
/* Clocking */
#define SYSTEM_CLK (100000000ul) /* System clock fixed 100MHz */
#define ARMGT_CLK (SYSTEM_CLK / 4) /* ARM Generic Timer fixed 1/4 */
/* Platform CLK = SYSTEM_CLK * RCW[SYS_PLL_RAT] which is usually 4
*
* Peripherals using Platform CLK:
* OCRAM, eSDHC, CCI-400, TZC-400, SecMon, SEC, TSN L2Switch, PCIe, GIC-500,
* ENETC, GPU, RCPM, SATA, qDMA
*
* Peripherals using Platform CLK / 2:
* LPUART, Service Proc, GPIO, SPI, FTM, FlexSPI (APB), DUART, TMU, WDOG, TZPC,
* SAI, USB, CAN
*
* Peripherals using Platform CLK / 4:
* I2C
*/
#define SYS_CLK (400000000) /* Sysclock = 400Mhz set by RCW */
#define FLASH_FREQ (100000000) /* Flash clock = 100Mhz */
#define NOR_BASE (0x20000000)
/* TZC-400 CoreLink Trust Zone Address Space Controller for DDR RM 32.2*/
#define TZASC_BUILD_CONFIG *((volatile uint32_t*)(TZASC_BASE + 0x0))
#define TZASC_ACTION *((volatile uint32_t*)(TZASC_BASE + 0x4))
#define TZASC_GATE_KEEPER *((volatile uint32_t*)(TZASC_BASE + 0x8))
#define TZASC_SPECULATION_CTRL *((volatile uint32_t*)(TZASC_BASE + 0xC))
#define TZASC_INT_STATUS *((volatile uint32_t*)(TZASC_BASE + 0x10))
#define TZASC_INT_CLEAR *((volatile uint32_t*)(TZASC_BASE + 0x14))
#define TZASC_FAIL_ADDRESS_LOW *((volatile uint32_t*)(TZASC_BASE + 0x20))
#define TZASC_FAIL_ADDRESS_HIGH *((volatile uint32_t*)(TZASC_BASE + 0x24))
#define TZASC_FAIL_CONTROL *((volatile uint32_t*)(TZASC_BASE + 0x28))
#define TZASC_REGION_BASE_LOW_0 *((volatile uint32_t*)(TZASC_BASE + 0x100))
#define TZASC_REGION_BASE_HIGH_0 *((volatile uint32_t*)(TZASC_BASE + 0x104))
#define TZASC_REGION_TOP_LOW_0 *((volatile uint32_t*)(TZASC_BASE + 0x108))
#define TZASC_REGION_TOP_HIGH_0 *((volatile uint32_t*)(TZASC_BASE + 0x10C))
#define TZASC_REGION_ATTRIBUTES_0 *((volatile uint32_t*)(TZASC_BASE + 0x110))
#define TZASC_ACTION_ENABLE_DECERR 0x1 /* RM 32.4.3 */
#define TZASC_GATE_KEEPER_REQUEST_OPEN 0x1 /* RM 32.4.3 */
#define TZASC_REGION_ATTRIBUTES_ALLOW_SECRW 0xC0000001 /* RM 32.4.15 */
/* TZPC Trust Zone Protection Controller for OCRAM RM 32.6 */
#define TZPC_OCRAM (0x2200000)
#define TZPCR0SIZE *((volatile uint32_t*)(TZPC_OCRAM + 0x0))
#define TZDECPROT0_STAT *((volatile uint32_t*)(TZPC_OCRAM + 0x800))
#define TZDECPROT0_SET *((volatile uint32_t*)(TZPC_OCRAM + 0x804))
#define TZDECPROT0_CLR *((volatile uint32_t*)(TZPC_OCRAM + 0x808))
#define TZDECPROT1_STAT *((volatile uint32_t*)(TZPC_OCRAM + 0x80C))
#define TZDECPROT1_SET *((volatile uint32_t*)(TZPC_OCRAM + 0x810))
#define TZDECPROT1_CLR *((volatile uint32_t*)(TZPC_OCRAM + 0x814))
#define TZPCPERIPHID0 *((volatile uint32_t*)(TZPC_OCRAM + 0xFE0))
#define TZPCPERIPHID1 *((volatile uint32_t*)(TZPC_OCRAM + 0xFE4))
#define TZPCPERIPHID2 *((volatile uint32_t*)(TZPC_OCRAM + 0xFE8))
#define TZPCPERIPHID3 *((volatile uint32_t*)(TZPC_OCRAM + 0xFEC))
#define TZPCPCELLID0 *((volatile uint32_t*)(TZPC_OCRAM + 0xFF0))
#define TZPCPCELLID1 *((volatile uint32_t*)(TZPC_OCRAM + 0xFF4))
#define TZPCPCELLID2 *((volatile uint32_t*)(TZPC_OCRAM + 0xFF8))
#define TZPCPCELLID3 *((volatile uint32_t*)(TZPC_OCRAM + 0xFFC))
#define TZWT_BASE (0x23C0000)
/* LS1028A PC16552D Dual UART */
#define UART_BASE(n) (0x21C0500 + (n * 100))
#define UART_RBR(n) *((volatile uint8_t*)(UART_BASE(n) + 0)) /* receiver buffer register */
#define UART_THR(n) *((volatile uint8_t*)(UART_BASE(n) + 0)) /* transmitter holding register */
#define UART_IER(n) *((volatile uint8_t*)(UART_BASE(n) + 1)) /* interrupt enable register */
#define UART_FCR(n) *((volatile uint8_t*)(UART_BASE(n) + 2)) /* FIFO control register */
#define UART_IIR(n) *((volatile uint8_t*)(UART_BASE(n) + 2)) /* interrupt ID register */
#define UART_LCR(n) *((volatile uint8_t*)(UART_BASE(n) + 3)) /* line control register */
#define UART_LSR(n) *((volatile uint8_t*)(UART_BASE(n) + 5)) /* line status register */
#define UART_SCR(n) *((volatile uint8_t*)(UART_BASE(n) + 7)) /* scratch register */
/* enabled when UART_LCR_DLAB set */
#define UART_DLB(n) *((volatile uint8_t*)(UART_BASE(n) + 0)) /* divisor least significant byte register */
#define UART_DMB(n) *((volatile uint8_t*)(UART_BASE(n) + 1)) /* divisor most significant byte register */
#define UART_FCR_TFR (0x04) /* Transmitter FIFO reset */
#define UART_FCR_RFR (0x02) /* Receiver FIFO reset */
#define UART_FCR_FEN (0x01) /* FIFO enable */
#define UART_LCR_DLAB (0x80) /* Divisor latch access bit */
#define UART_LCR_WLS (0x03) /* Word length select: 8-bits */
#define UART_LSR_TEMT (0x40) /* Transmitter empty */
#define UART_LSR_THRE (0x20) /* Transmitter holding register empty */
/* LS1028 XSPI Flex SPI Memory map - RM 18.7.2.1 */
#define XSPI_BASE (0x20C0000UL)
#define XSPI_MCRn(x) *((volatile uint32_t*)(XSPI_BASE + (x * 0x4))) /* Module Control Register */
#define XSPI_MCR0 *((volatile uint32_t*)(XSPI_BASE + 0x0)) /* Module Control Register */
#define XSPI_MCR1 *((volatile uint32_t*)(XSPI_BASE + 0x4)) /* Module Control Register */
#define XSPI_MCR2 *((volatile uint32_t*)(XSPI_BASE + 0x8)) /* Module Control Register */
#define XSPI_AHBCR *((volatile uint32_t*)(XSPI_BASE + 0xC)) /* Bus Control Register */
#define XSPI_INTEN *((volatile uint32_t*)(XSPI_BASE + 0x10)) /* Interrupt Enable Register */
#define XSPI_INTR *((volatile uint32_t*)(XSPI_BASE + 0x14)) /* Interrupt Register */
#define XSPI_LUTKEY *((volatile uint32_t*)(XSPI_BASE + 0x18)) /* LUT Key Register */
#define XSPI_LUTCR *((volatile uint32_t*)(XSPI_BASE + 0x1C)) /* LUT Control Register */
#define XSPI_AHBRXBUFnCR0(x) *((volatile uint32_t*)(XSPI_BASE + 0x20 + (x * 0x4))) /* AHB RX Buffer Control Register */
#define XSPI_FLSHA1CR0 *((volatile uint32_t*)(XSPI_BASE + 0x60)) /* Flash A1 Control Register */
#define XSPI_FLSHA2CR0 *((volatile uint32_t*)(XSPI_BASE + 0x64)) /* Flash A2 Control Register */
#define XSPI_FLSHB1CR0 *((volatile uint32_t*)(XSPI_BASE + 0x68)) /* Flash B1 Control Register */
#define XSPI_FLSHB2CR0 *((volatile uint32_t*)(XSPI_BASE + 0x6C)) /* Flash B2 Control Register */
#define XSPI_FLSHA1CR1 *((volatile uint32_t*)(XSPI_BASE + 0x70)) /* Flash A1 Control Register */
#define XSPI_FLSHA2CR1 *((volatile uint32_t*)(XSPI_BASE + 0x74)) /* Flash A2 Control Register */
#define XSPI_FLSHB1CR1 *((volatile uint32_t*)(XSPI_BASE + 0x78)) /* Flash B1 Control Register */
#define XSPI_FLSHB2CR1 *((volatile uint32_t*)(XSPI_BASE + 0x7C)) /* Flash B2 Control Register */
#define XSPI_FLSHA1CR2 *((volatile uint32_t*)(XSPI_BASE + 0x80)) /* Flash A1 Control Register */
#define XSPI_FLSHA2CR2 *((volatile uint32_t*)(XSPI_BASE + 0x84)) /* Flash A2 Control Register */
#define XSPI_FLSHB1CR2 *((volatile uint32_t*)(XSPI_BASE + 0x88)) /* Flash B1 Control Register */
#define XSPI_FLSHB2CR2 *((volatile uint32_t*)(XSPI_BASE + 0x8C)) /* Flash B2 Control Register */
#define XSPI_FLSHCR4 *((volatile uint32_t*)(XSPI_BASE + 0x94)) /* Flash A1 Control Register */
#define XSPI_IPCR0 *((volatile uint32_t*)(XSPI_BASE + 0xA0)) /* IP Control Register 0 */
#define XSPI_IPCR1 *((volatile uint32_t*)(XSPI_BASE + 0xA4)) /* IP Control Register 1 */
#define XSPI_IPCMD *((volatile uint32_t*)(XSPI_BASE + 0xB0)) /* IP Command Register */
#define XSPI_DLPR *((volatile uint32_t*)(XSPI_BASE + 0xB4)) /* Data Lean Pattern Register */
#define XSPI_IPRXFCR *((volatile uint32_t*)(XSPI_BASE + 0xB8)) /* IPC RX FIFO Control Register */
#define XSPI_IPTXFCR *((volatile uint32_t*)(XSPI_BASE + 0xBC)) /* IPC TX FIFO Control Register */
#define XSPI_DLLACR *((volatile uint32_t*)(XSPI_BASE + 0xC0)) /* DLLA Control Register */
#define XSPI_DLLBCR *((volatile uint32_t*)(XSPI_BASE + 0xC4)) /* DLLB Control Register */
#define XSPI_STS0 *((volatile uint32_t*)(XSPI_BASE + 0xE0)) /* Status Register 0 */
#define XSPI_STS1 *((volatile uint32_t*)(XSPI_BASE + 0xE4)) /* Status Register 1 */
#define XSPI_STS2 *((volatile uint32_t*)(XSPI_BASE + 0xE8)) /* Status Register 2 */
#define XSPI_AHBSPNDST *((volatile uint32_t*)(XSPI_BASE + 0xEC)) /* AHB Suspend Status Register */
#define XSPI_IPRXFSTS *((volatile uint32_t*)(XSPI_BASE + 0xF0)) /* IPC RX FIFO Status Register */
#define XSPI_IPTXFSTS *((volatile uint32_t*)(XSPI_BASE + 0xF4)) /* IPC TX FIFO Status Register */
#define XSPI_RFD(x) *((volatile uint32_t*)(XSPI_BASE + 0x100 + (x * 0x4))) /* RX FIFO Data Register */
#define XSPI_TFD_BASE (XSPI_BASE + 0x180) /* TX FIFO Data Register Base Address */
#define XSPI_TFD(x) *((volatile uint32_t*)(XSPI_BASE + 0x180 + (x * 0x4))) /* TX FIFO Data Register */
#define XSPI_LUT(x) *((volatile uint32_t*)(XSPI_BASE + 0x200 + (x * 0x4))) /* LUT Register */
#define XSPI_SFAR XSPI_IPCR0 /* Serial Flash Address Register determined by AHB burst address */
/* XSPI register instructions */
#define XSPI_SWRESET() XSPI_MCRn(0) |= 0x1; /* XSPI Software Reset */
#define XSPI_ENTER_STOP() XSPI_MCRn(0) |= 0x1 << 1; /* XSPI Module Disable */
#define XSPI_EXIT_STOP() XSPI_MCRn(0) |= 0x0 << 1; /* XSPI Module Enable */
#define XSPI_LUT_LOCK() XSPI_LUTCR = 0x1; /* XSPI LUT Lock */
#define XSPI_LUT_UNLOCK() XSPI_LUTCR = 0x2; /* XSPI LUT Unlock */
#define XSPI_ISEQID(x) (x << 16) /* Sequence Index In LUT */
#define XSPI_ISEQNUM(x) (x << 24) /* Number of Sequences to Execute ISEQNUM+1 */
#define XSPI_IPAREN() (0x1 << 31) /* Peripheral Chip Select Enable */
#define XSPI_IDATSZ(x) (x << 0) /* Number of Data Bytes to Send */
#define XSPI_IPCMD_START() (XSPI_IPCMD = 0x1) /* Start IP Command */
#define XSPI_IPCMDDONE (0x1)
#define XSPI_IPRXWA (0x1 << 5)
#define XSPI_IPRCFCR_FLUSH (0x1)
#define XSPI_IP_BUF_SIZE (256)
#define XSPI_IP_WM_SIZE (8)
#define XSPI_INTR_IPTXWE_MASK (0x1 << 6)
#define XSPI_SW_RESET (0x1)
/* XSPI Parameters */
#define XSPI_MAX_BANKS (8)
#define XSPI_MAX_LUT_ENTRIES (64)
#define XSPI_FIFO_DEPTH (32)
#define XSPI_FIFO_SIZE (XSPI_FIFO_DEPTH * 4)
/* IPRXFCR Masks*/
#define XSPI_IPRXFCR_RXWMRK_MASK(x) (x << 2) /* XSPI RX Watermark */
#define XSPI_IPRXFCR_RXDMAEN_MASK (0x1 << 1) /* XSPI RX DMA Enable */
#define XSPI_IPRXFCR_CLRIPRXF_MASK (0x1 << 0) /* XSPI Clear RX FIFO */
/* MCR Masks */
#define XSPI_MCR_SWRESET_MASK (0x1) /* XSPI Software Reset */
#define XSPI_MCR_MDIS_MASK (0x1 << 1) /* XSPI Module Disable */
#define XSPI_MCR_RXCLKSRC_MASK (0x3 << 4) /* XSPI RX Clock Source */
#define XSPI_MCR_ARDFEN_MASK (0x1 << 6) /* XSPI AHB RX FIFO DMA Enable */
#define XSPI_MCR_ATDFEN_MASK (0x1 << 7) /* XSPI AHB TX FIFO DMA Enable */
#define XSPI_MCR_SERCLKDIV_MASK (0x7 << 8) /* XSPI Serial Clock Divider */
#define XSPI_MCR_HSEN_MASK (0x1 << 11) /* XSPI Half Speed Serial Clock Enable */
#define XSPI_MCR_DOZEEN_MASK (0x1 << 12) /* XSPI Doze Enable */
#define XSPI_MCR_COMBINATIONEN_MASK (0x1 << 13) /* XSPI Combination Mode Enable */
#define XSPI_MCR_SCKFREERUNEN_MASK (0x1 << 14) /* XSPI Serial Clock Free Run Enable */
#define XSPI_MCR_LEARNEN_MASK (0x1 << 15) /* XSPI Learn Mode Enable */
/* XSPI Init */
/*#define XSPI_MCR0_CFG 0xFFFF80C0*/
#define XSPI_MCR0_CFG 0xFFFF0000
#define XSPI_MCR1_CFG 0xFFFFFFFF
#define XSPI_MCR2_CFG 0x200081F7
#define XSPI_INTEN_CFG 0x00000061
#define XSPI_AHBCR_CFG 0x00000038
#define XSPI_AHBRXBUF0CR_CFG 0x80000100
#define XSPI_AHBRXBUF1CR_CFG 0x80010100
#define XSPI_AHBRXBUF2CR_CFG 0x80020100
#define XSPI_AHBRXBUF3CR_CFG 0x80030100
#define XSPI_AHBRXBUF4CR_CFG 0x80040100
#define XSPI_AHBRXBUF5CR_CFG 0x80050100
#define XSPI_AHBRXBUF6CR_CFG 0x80060100
#define XSPI_AHBRXBUF7CR_CFG 0x80070100
/* Flash Size */
#define XSPI_FLSHA1CR0_CFG 0x80000
#define XSPI_FLSHA2CR0_CFG 0x80000
#define XSPI_FLSHB1CR0_CFG 0x80000
#define XSPI_FLSHB2CR0_CFG 0x80000
/* XSPI Timing */
#define XSPI_FLSHA1CR1_CFG 0x00000063
#define XSPI_FLSHA2CR1_CFG 0x00000063
#define XSPI_FLSHB1CR1_CFG 0x00000063
#define XSPI_FLSHB2CR1_CFG 0x00000063
#define XSPI_FLSHA1CR2_CFG 0x00000C00
#define XSPI_FLSHA2CR2_CFG 0x00000C00
#define XSPI_FLSHB1CR2_CFG 0x00000C00
#define XSPI_FLSHB2CR2_CFG 0x00000C00
#define XSPI_IPRXFCR_CFG 0x00000001
#define XSPI_IPTXFCR_CFG 0x00000001
#define XSPI_DLLACR_CFG 0x100
#define XSPI_DLLBCR_CFG 0x100
#define XSPI_AHB_UPDATE 0x20
/* Initalize LUT for NOR flash
* MT35XU02GCBA1G12-0SIT ES
* 256 MB, PBGA24 x1/x8 SPI serial NOR flash memory
* Supports 166 MHz SDR speed and 200 MHz DDR speed
* Powers up in x1 mode and can be switched to x8 mode
* All padding is x1 mode or (1)
*/
/* NOR Flash parameters */
#define FLASH_BANK_SIZE (256 * 1024 * 1024) /* 256MB total size */
#define FLASH_PAGE_SIZE (256) /* program size */
#define FLASH_ERASE_SIZE (128 * 1024) /* erase sector size */
#define FLASH_SECTOR_CNT (FLASH_BANK_SIZE / FLASH_ERASE_SIZE)
#define FLASH_ERASE_TOUT 60000 /* Flash Erase Timeout (ms) */
#define FLASH_WRITE_TOUT 500 /* Flash Write Timeout (ms) */
#define FLASH_READY_MSK (0x1 << 0)
#define MASK_32BIT 0xffffffff
/* LUT register helper */
#define XSPI_LUT_SEQ(code1, pad1, op1, code0, pad0, op0) \
(((code1) << 26) | ((pad1) << 24) | ((op1) << 16) | \
(code0) << 10 | ((pad0) << 8) | (op0))
/* FlexSPI Look up Table defines */
#define LUT_KEY 0x5AF05AF0
/* Calculate the number of PAD bits for LUT register*/
#define LUT_PAD(x) (x - 1)
#define LUT_PAD_SINGLE LUT_PAD(1)
#define LUT_PAD_OCTAl LUT_PAD(4)
#define CMD_SDR 0x01
#define CMD_DDR 0x21
#define RADDR_SDR 0x02
#define RADDR_DDR 0x22
#define CADDR_SDR 0x03
#define CADDR_DDR 0x23
#define MODE1_SDR 0x04
#define MODE1_DDR 0x24
#define MODE2_SDR 0x05
#define MODE2_DDR 0x25
#define MODE4_SDR 0x06
#define MODE4_DDR 0x26
#define MODE8_SDR 0x07
#define MODE8_DDR 0x27
#define WRITE_SDR 0x08
#define WRITE_DDR 0x28
#define READ_SDR 0x09
#define READ_DDR 0x29
#define LEARN_SDR 0x0A
#define LEARN_DDR 0x2A
#define DATSZ_SDR 0x0B
#define DATSZ_DDR 0x2B
#define DUMMY_SDR 0x0C
#define DUMMY_DDR 0x2C
#define DUMMY_RWDS_SDR 0x0D
#define DUMMY_RWDS_DDR 0x2D
#define JMP_ON_CS 0x1F
#define STOP 0
/* MT35XU02GCBA1G12 Operation definitions */
#define LUT_OP_WE 0x06 /* Write Enable */
#define LUT_OP_WD 0x04 /* Write Disable */
#define LUT_OP_WNVCR 0xB1 /* Write Non-Volatile Configuration Register */
#define LUT_OP_CLSFR 0x50 /* Clear Status Flag Register */
#define LUT_OP_WSR 0x01 /* Write Status Register */
#define LUT_OP_RSR 0x05 /* Read Status Register */
#define LUT_OP_RID 0x9F /* Read ID */
#define LUT_OP_PP 0x02 /* Page Program */
#define LUT_OP_PP4B 0x12 /* Page Program */
#define LUT_OP_FPP 0x82 /* Fast Page Program */
#define LUT_OP_SE 0xD8 /* Sector Erase */
#define LUT_OP_SE_4K 0x20 /* 4K Sector Erase */
#define LUT_OP_SE_4K4B 0x21 /* 4K Sector Erase */
#define LUT_OP_SE_32K 0x52 /* 32K Sector Erase */
#define LUT_OP_SE_32K4B 0x5C /* 32K Sector Erase */
#define LUT_OP_4SE 0xDC /* 4 byte Sector Erase */
#define LUT_OP_CE 0xC4 /* Chip Erase */
#define LUT_OP_READ3B 0x03 /* Read */
#define LUT_OP_READ4B 0x13 /* Read */
#define LUT_OP_FAST_READ 0x0B /* Fast Read */
#define LUT_OP_FAST_READ4B 0x0C /* Fast Read */
#define LUT_OP_OCTAL_READ 0x8B /* Octal Read */
#define LUT_OP_ADDR3B 0x18 /* 3 byte address */
#define LUT_OP_ADDR4B 0x20 /* 4 byte address */
#define LUT_OP_RDSR 0x05 /* Read Status Register */
#define LUT_OP_1BYTE 0x01 /* 1 byte */
#define LUT_INDEX_READ 0
#define LUT_INDEX_WRITE_EN 4
#define LUT_INDEX_SE 8
#define LUT_INDEX_SSE4K 12
#define LUT_INDEX_PP 16
#define LUT_INDEX_RDSR 20
/* MT40A1G8SA-075:E --> DDR4: static, 1GB, 1600 MHz (1.6 GT/s) */
#define DDR_ADDRESS 0x80000000
#define DDR_FREQ 1600
#define DDR_SIZE (2 * 1024 * 1024 * 1024)
#define DDR_N_RANKS 1
#define DDR_RANK_DENS 0x100000000
#define DDR_SDRAM_WIDTH 32
#define DDR_EC_SDRAM_W 0
#define DDR_N_ROW_ADDR 15
#define DDR_N_COL_ADDR 10
#define DDR_N_BANKS 2
#define DDR_EDC_CONFIG 2
#define DDR_BURSTL_MASK 0x0c
#define DDR_TCKMIN_X_PS 750
#define DDR_TCMMAX_PS 1900
#define DDR_CASLAT_X 0x0001FFE00
#define DDR_TAA_PS 13500
#define DDR_TRCD_PS 13500
#define DDR_TRP_PS 13500
#define DDR_TRAS_PS 32000
#define DDR_TRC_PS 45500
#define DDR_TWR_PS 15000
#define DDR_TRFC1_PS 350000
#define DDR_TRFC2_PS 260000
#define DDR_TRFC4_PS 160000
#define DDR_TFAW_PS 21000
#define DDR_TRFC_PS 260000
#define DDR_TRRDS_PS 3000
#define DDR_TRRDL_PS 4900
#define DDR_TCCDL_PS 5000
#define DDR_REF_RATE_PS 7800000
#define DDR_CS0_BNDS_VAL 0x000000FF
#define DDR_CS1_BNDS_VAL 0x00000000
#define DDR_CS2_BNDS_VAL 0x00000000
#define DDR_CS3_BNDS_VAL 0x00000000
#define DDR_CS0_CONFIG_VAL 0x80040422
#define DDR_CS1_CONFIG_VAL 0x00000000
#define DDR_CS2_CONFIG_VAL 0x00000000
#define DDR_CS3_CONFIG_VAL 0x00000000
#define DDR_TIMING_CFG_3_VAL 0x01111000
#define DDR_TIMING_CFG_0_VAL 0x91550018
#define DDR_TIMING_CFG_1_VAL 0xBAB40C42
#define DDR_TIMING_CFG_2_VAL 0x0048C111
#define DDR_SDRAM_CFG_VAL 0xE50C0004
#define DDR_SDRAM_CFG_2_VAL 0x00401110
#define DDR_SDRAM_MODE_VAL 0x03010210
#define DDR_SDRAM_MODE_2_VAL 0x00000000
#define DDR_SDRAM_MD_CNTL_VAL 0x0600041F
#define DDR_SDRAM_INTERVAL_VAL 0x18600618
#define DDR_DATA_INIT_VAL 0xDEADBEEF
#define DDR_SDRAM_CLK_CNTL_VAL 0x02000000
#define DDR_INIT_ADDR_VAL 0x00000000
#define DDR_INIT_EXT_ADDR_VAL 0x00000000
#define DDR_TIMING_CFG_4_VAL 0x00000002
#define DDR_TIMING_CFG_5_VAL 0x03401400
#define DDR_TIMING_CFG_6_VAL 0x00000000
#define DDR_TIMING_CFG_7_VAL 0x23300000
#define DDR_ZQ_CNTL_VAL 0x8A090705
#define DDR_WRLVL_CNTL_VAL 0x8675F605
#define DDR_SR_CNTL_VAL 0x00000000
#define DDR_SDRAM_RCW_1_VAL 0x00000000
#define DDR_SDRAM_RCW_2_VAL 0x00000000
#define DDR_WRLVL_CNTL_2_VAL 0x06070700
#define DDR_WRLVL_CNTL_3_VAL 0x00000008
#define DDR_SDRAM_RCW_3_VAL 0x00000000
#define DDR_SDRAM_RCW_4_VAL 0x00000000
#define DDR_SDRAM_RCW_5_VAL 0x00000000
#define DDR_SDRAM_RCW_6_VAL 0x00000000
#define DDR_SDRAM_MODE_3_VAL 0x00010210
#define DDR_SDRAM_MODE_4_VAL 0x00000000
#define DDR_SDRAM_MODE_5_VAL 0x00010210
#define DDR_SDRAM_MODE_6_VAL 0x00000000
#define DDR_SDRAM_MODE_7_VAL 0x00010210
#define DDR_SDRAM_MODE_8_VAL 0x00000000
#define DDR_SDRAM_MODE_9_VAL 0x00000500
#define DDR_SDRAM_MODE_10_VAL 0x04000000
#define DDR_SDRAM_MODE_11_VAL 0x00000400
#define DDR_SDRAM_MODE_12_VAL 0x04000000
#define DDR_SDRAM_MODE_13_VAL 0x00000400
#define DDR_SDRAM_MODE_14_VAL 0x04000000
#define DDR_SDRAM_MODE_15_VAL 0x00000400
#define DDR_SDRAM_MODE_16_VAL 0x04000000
#define DDR_TIMING_CFG_8_VAL 0x02114600
#define DDR_SDRAM_CFG_3_VAL 0x00000000
#define DDR_DQ_MAP_0_VAL 0x5b65b658
#define DDR_DQ_MAP_1_VAL 0xd96d8000
#define DDR_DQ_MAP_2_VAL 0x00000000
#define DDR_DQ_MAP_3_VAL 0x01600000
#define DDR_DDRDSR_1_VAL 0x00000000
#define DDR_DDRDSR_2_VAL 0x00000000
#define DDR_DDRCDR_1_VAL 0x80040000
#define DDR_DDRCDR_2_VAL 0x0000A181
#define DDR_ERR_INT_EN_VAL 0x00000000
#define DDR_ERR_SBE_VAL 0x00000000
/* 12.4 DDR Memory Map */
#define DDR_BASE (0x1080000)
#define DDR_PHY_BASE (0x1400000)
#define DDR_CS_BNDS(n) *((volatile uint32_t*)(DDR_BASE + 0x000 + (n * 8))) /* Chip select n memory bounds */
#define DDR_CS_CONFIG(n) *((volatile uint32_t*)(DDR_BASE + 0x080 + (n * 4))) /* Chip select n configuration */
#define DDR_TIMING_CFG_3 *((volatile uint32_t*)(DDR_BASE + 0x100)) /* DDR SDRAM timing configuration 3 */
#define DDR_TIMING_CFG_0 *((volatile uint32_t*)(DDR_BASE + 0x104)) /* DDR SDRAM timing configuration 0 */
#define DDR_TIMING_CFG_1 *((volatile uint32_t*)(DDR_BASE + 0x108)) /* DDR SDRAM timing configuration 1 */
#define DDR_TIMING_CFG_2 *((volatile uint32_t*)(DDR_BASE + 0x10C)) /* DDR SDRAM timing configuration 2 */
#define DDR_SDRAM_CFG *((volatile uint32_t*)(DDR_BASE + 0x110)) /* DDR SDRAM control configuration */
#define DDR_SDRAM_CFG_2 *((volatile uint32_t*)(DDR_BASE + 0x114)) /* DDR SDRAM control configuration 2 */
#define DDR_SDRAM_MODE *((volatile uint32_t*)(DDR_BASE + 0x118)) /* DDR SDRAM mode configuration */
#define DDR_SDRAM_MODE_2 *((volatile uint32_t*)(DDR_BASE + 0x11C)) /* DDR SDRAM mode configuration 2 */
#define DDR_SDRAM_MD_CNTL *((volatile uint32_t*)(DDR_BASE + 0x120)) /* DDR SDRAM mode control */
#define DDR_SDRAM_INTERVAL *((volatile uint32_t*)(DDR_BASE + 0x124)) /* DDR SDRAM interval configuration */
#define DDR_DATA_INIT *((volatile uint32_t*)(DDR_BASE + 0x128)) /* DDR training initialization value */
#define DDR_SDRAM_CLK_CNTL *((volatile uint32_t*)(DDR_BASE + 0x130)) /* DDR SDRAM clock control */
#define DDR_INIT_ADDR *((volatile uint32_t*)(DDR_BASE + 0x148)) /* DDR training initialization address */
#define DDR_INIT_EXT_ADDR *((volatile uint32_t*)(DDR_BASE + 0x14C)) /* DDR training initialization extended address */
#define DDR_TIMING_CFG_4 *((volatile uint32_t*)(DDR_BASE + 0x160)) /* DDR SDRAM timing configuration 4 */
#define DDR_TIMING_CFG_5 *((volatile uint32_t*)(DDR_BASE + 0x164)) /* DDR SDRAM timing configuration 5 */
#define DDR_TIMING_CFG_6 *((volatile uint32_t*)(DDR_BASE + 0x168)) /* DDR SDRAM timing configuration 6 */
#define DDR_TIMING_CFG_7 *((volatile uint32_t*)(DDR_BASE + 0x16C)) /* DDR SDRAM timing configuration 7 */
#define DDR_ZQ_CNTL *((volatile uint32_t*)(DDR_BASE + 0x170)) /* DDR ZQ calibration control */
#define DDR_WRLVL_CNTL *((volatile uint32_t*)(DDR_BASE + 0x174)) /* DDR write leveling control */
#define DDR_SR_CNTR *((volatile uint32_t*)(DDR_BASE + 0x17C)) /* DDR Self Refresh Counter */
#define DDR_SDRAM_RCW_1 *((volatile uint32_t*)(DDR_BASE + 0x180)) /* DDR Register Control Word 1 */
#define DDR_SDRAM_RCW_2 *((volatile uint32_t*)(DDR_BASE + 0x184)) /* DDR Register Control Word 2 */
#define DDR_WRLVL_CNTL_2 *((volatile uint32_t*)(DDR_BASE + 0x190)) /* DDR write leveling control 2 */
#define DDR_WRLVL_CNTL_3 *((volatile uint32_t*)(DDR_BASE + 0x194)) /* DDR write leveling control 3 */
#define DDR_SDRAM_RCW_3 *((volatile uint32_t*)(DDR_BASE + 0x1A0)) /* DDR Register Control Word 3 */
#define DDR_SDRAM_RCW_4 *((volatile uint32_t*)(DDR_BASE + 0x1A4)) /* DDR Register Control Word 4 */
#define DDR_SDRAM_RCW_5 *((volatile uint32_t*)(DDR_BASE + 0x1A8)) /* DDR Register Control Word 5 */
#define DDR_SDRAM_RCW_6 *((volatile uint32_t*)(DDR_BASE + 0x1AC)) /* DDR Register Control Word 6 */
#define DDR_SDRAM_MODE_3 *((volatile uint32_t*)(DDR_BASE + 0x200)) /* DDR SDRAM mode configuration 3 */
#define DDR_SDRAM_MODE_4 *((volatile uint32_t*)(DDR_BASE + 0x204)) /* DDR SDRAM mode configuration 4 */
#define DDR_SDRAM_MODE_5 *((volatile uint32_t*)(DDR_BASE + 0x208)) /* DDR SDRAM mode configuration 5 */
#define DDR_SDRAM_MODE_6 *((volatile uint32_t*)(DDR_BASE + 0x20C)) /* DDR SDRAM mode configuration 6 */
#define DDR_SDRAM_MODE_7 *((volatile uint32_t*)(DDR_BASE + 0x210)) /* DDR SDRAM mode configuration 7 */
#define DDR_SDRAM_MODE_8 *((volatile uint32_t*)(DDR_BASE + 0x214)) /* DDR SDRAM mode configuration 8 */
#define DDR_SDRAM_MODE_9 *((volatile uint32_t*)(DDR_BASE + 0x220)) /* DDR SDRAM mode configuration 9 */
#define DDR_SDRAM_MODE_10 *((volatile uint32_t*)(DDR_BASE + 0x224)) /* DDR SDRAM mode configuration 10 */
#define DDR_SDRAM_MODE_11 *((volatile uint32_t*)(DDR_BASE + 0x228)) /* DDR SDRAM mode configuration 11 */
#define DDR_SDRAM_MODE_12 *((volatile uint32_t*)(DDR_BASE + 0x22C)) /* DDR SDRAM mode configuration 12 */
#define DDR_SDRAM_MODE_13 *((volatile uint32_t*)(DDR_BASE + 0x230)) /* DDR SDRAM mode configuration 13 */
#define DDR_SDRAM_MODE_14 *((volatile uint32_t*)(DDR_BASE + 0x234)) /* DDR SDRAM mode configuration 14 */
#define DDR_SDRAM_MODE_15 *((volatile uint32_t*)(DDR_BASE + 0x238)) /* DDR SDRAM mode configuration 15 */
#define DDR_SDRAM_MODE_16 *((volatile uint32_t*)(DDR_BASE + 0x23C)) /* DDR SDRAM mode configuration 16 */
#define DDR_TIMING_CFG_8 *((volatile uint32_t*)(DDR_BASE + 0x250)) /* DDR SDRAM timing configuration 8 */
#define DDR_SDRAM_CFG_3 *((volatile uint32_t*)(DDR_BASE + 0x260)) /* DDR SDRAM configuration 3 */
#define DDR_DQ_MAP_0 *((volatile uint32_t*)(DDR_BASE + 0x400)) /* DDR DQ Map 0 */
#define DDR_DQ_MAP_1 *((volatile uint32_t*)(DDR_BASE + 0x404)) /* DDR DQ Map 1 */
#define DDR_DQ_MAP_2 *((volatile uint32_t*)(DDR_BASE + 0x408)) /* DDR DQ Map 2 */
#define DDR_DQ_MAP_3 *((volatile uint32_t*)(DDR_BASE + 0x40C)) /* DDR DQ Map 3 */
#define DDR_DDRDSR_1 *((volatile uint32_t*)(DDR_BASE + 0xB20)) /* DDR Debug Status Register 1 */
#define DDR_DDRDSR_2 *((volatile uint32_t*)(DDR_BASE + 0xB24)) /* DDR Debug Status Register 2 */
#define DDR_DDRCDR_1 *((volatile uint32_t*)(DDR_BASE + 0xB28)) /* DDR Control Driver Register 1 */
#define DDR_DDRCDR_2 *((volatile uint32_t*)(DDR_BASE + 0xB2C)) /* DDR Control Driver Register 2 */
#define DDR_MTCR *((volatile uint32_t*)(DDR_BASE + 0xD00)) /* Memory Test Control Register */
#define DDR_MTPn(n) *((volatile uint32_t*)(DDR_BASE + 0xD20 + (n) * 4)) /* Memory Test Pattern Register */
#define DDR_MTP0 *((volatile uint32_t*)(DDR_BASE + 0xD20)) /* Memory Test Pattern Register 0 */
#define DDR_MT_ST_ADDR *((volatile uint32_t*)(DDR_BASE + 0xD64)) /* Memory Test Start Address */
#define DDR_MT_END_ADDR *((volatile uint32_t*)(DDR_BASE + 0xD6C)) /* Memory Test End Address */
#define DDR_ERR_DETECT *((volatile uint32_t*)(DDR_BASE + 0xE40)) /* Memory error detect */
#define DDR_ERR_DISABLE *((volatile uint32_t*)(DDR_BASE + 0xE44)) /* Memory error disable */
#define DDR_ERR_INT_EN *((volatile uint32_t*)(DDR_BASE + 0xE48)) /* Memory error interrupt enable */
#define DDR_ERR_SBE *((volatile uint32_t*)(DDR_BASE + 0xE58)) /* Single-Bit ECC memory error management */
#define DDR_SDRAM_CFG_MEM_EN 0x80000000 /* SDRAM interface logic is enabled */
#define DDR_SDRAM_CFG_BI 0x00000001
#define DDR_SDRAM_CFG2_D_INIT 0x00000010 /* data initialization in progress */
#define DDR_MEM_TEST_EN 0x80000000 /* Memory test enable */
#define DDR_MEM_TEST_FAIL 0x00000001 /* Memory test fail */
#define TEST_DDR_SIZE 1024 * 5
#define TEST_DDR_OFFSET 0x10000000
/* MMU Access permission and shareability
Device mem encoding 0b0000dd00
dd = 00, 01, 10, 11
Nomral Mem encoding 0bxxxxiiii
xxxx = 00RW, 0100, 01RW, 10RW, 11RW, where RW = Outer Read/Write policy
iiii = 00RW, 0100, 01RW, 10RW, 11RW, where RW = Inner Read/Write policy
R or W is 0 for No alloc, 1 for alloc
*/
#define ATTR_SH_IS (0x3 << 8) /* Inner Shareable */
#define ATTR_SH_OS (0x2 << 8) /* Outer Shareable */
#define ATTR_UXN (0x1 << 54) /* EL0 cannot execute */
#define ATTR_PXN (0x1 << 53) /* EL1 cannot execute */
#define ATTR_AF (0x1 << 10) /* Access Flag */
#define ATTR_AP_RW_PL1 (0x1 << 6) /* EL1 Read-Write */
#define ATTR_AP_RW_PL0 (0x0 << 6) /* EL0 Read-Write */
#define ATTR_AP_RO_PL1 (0x5 << 6) /* EL1 Read-Only */
#define ATTR_AP_RO_PL0 (0x4 << 6) /* EL0 Read-Only */
#define ATTR_NS (0x1 << 5) /* Non-secure */
#define ATTR_AP_RW (ATTR_AP_RW_PL1 | ATTR_AP_RW_PL0)
/* Memory attribute MAIR reg cfg */
#define ATTR_IDX_NORMAL_MEM 0
#define MAIR_ATTR_NORMAL_MEM 0xFF /* Normal, Write-Back, Read-Write-Allocate */
#define ATTR_IDX_DEVICE_MEM 1
#define MAIR_ATTR_DEVICE_MEM 0x04 /* Device-nGnRnE */
#define ATTRIBUTE_DEVICE (ATTR_IDX_DEVICE_MEM << 2) | ATTR_AP_RW | ATTR_SH_IS
#define ATTRIBUTE_NORMAL_MEM (ATTR_IDX_NORMAL_MEM << 2) | ATTR_AP_RW | ATTR_SH_IS
/* SPI interface */
#define SPI_MCR(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x000))
#define SPI_TCR(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x008))
#define SPI_CTAR0(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x00C))
#define SPI_CTAR1(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x010))
#define SPI_SR(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x02C))
#define SPI_RSER(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x030))
#define SPI_PUSHR(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x034))
#define SPI_POPR(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x038))
#define SPI_TXFR0(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x03C))
#define SPI_TXFR1(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x040))
#define SPI_TXFR2(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x044))
#define SPI_TXFR3(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x048))
#define SPI_RXFR0(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x07C))
#define SPI_RXFR1(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x080))
#define SPI_RXFR2(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x084))
#define SPI_RXFR3(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x088))
#define SPI_CTARE0(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x11C))
#define SPI_CTARE1(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x120))
#define SPI_SREX(_n) *((volatile unsigned int*)(SPI_BASE(_n)+0x13C))
/* Configuration is a simple, 8-bit frame that is expected to be
* accessed with single byte transactions.
*/
/* MCR config */
/* Master, no frz, inactive CS high, flush FIFO, halt */
#define SPI_MCR_MASTER_HALT 0x80010301ul
/* Master, no frz, inactive CS high, running */
#define SPI_MCR_MASTER_RUNNING 0x80010000ul
/* CTAR config*/
/* no double baud, 8-bit frame, mode 00, MSB, default delays
* PBR=2, BR=32 for total divisor 64
* 200MHz platform clock yields 3.125MHz SPI clk */
#define SPI_CTAR_8_00MODE_64DIV 0x38000005
/* no double baud, 8-bit frame, mode 00, MSB, default delays
* PBR=2, BR=4 for total divisor 8
* 200MHz platform clock yields 25MHz SPI clk */
#define SPI_CTAR_8_00MODE_8DIV 0x38000001
/* SPI has TX/RX FIFO with limited depth, overwrite on overflow */
#define SPI_FIFO_DEPTH 4
/* CMD/DATA FIFO entry*/
/* no keep pcs asserted, use CTAR0, not EOQ, no clear TC, no parity*/
#define SPI_PUSHR_LAST 0x00000000
/* keep pcs asserted, use CTAR0, not EOQ, no clear TC, no parity*/
#define SPI_PUSHR_CONT 0x80000000
/* CS selection (0-3). Not all SPI interfaces have 4 CS's */
#define SPI_PUSHR_PCS_SHIFT (16)
#define SPI_PUSHR_PCS(_n) ((1ul<<(_n)) << SPI_PUSHR_PCS_SHIFT)
/* Status register bits*/
#define SPI_SR_TCF (1ul << 31)
#define SPI_SR_TFFF (1ul << 25)
#define SPI_SR_RXCTR (0xFul << 4)
#endif /* !NXP_LS1028A_H */

111
hal/nxp_ls1028a.ld 100644
View File

@ -0,0 +1,111 @@
OUTPUT_FORMAT("elf64-littleaarch64", "elf64-littleaarch64", "elf64-littleaarch64")
OUTPUT_ARCH(aarch64)
ENTRY(_vector_table)
MEMORY
{
/*The flash address range on LS1028A RDB is 0x20000000 - 0x23FFFFFF.*/
FLASH (rx) : ORIGIN = @WOLFBOOT_ORIGIN@, LENGTH = @BOOTLOADER_PARTITION_SIZE@
/* DDR4 - 2GB */
DRAM (rwx) : ORIGIN = 0x80001000 , LENGTH = 0xBFFFFFFF
/* OCRAM 256K for startup RAM */
OCRAM (rwx) : ORIGIN = 0x18000000, LENGTH = 256K
}
SECTIONS
{
PROVIDE (_DDR_ADDRESS = 0x80001000);
PROVIDE (_OCRAM_ADDRESS = 0x18000000);
PROVIDE (_FLASH_ADDRESS = @WOLFBOOT_ORIGIN@);
PROVIDE (_CORE_NUMBER = 0);
PROVIDE (_MEMORY_SIZE = LENGTH(OCRAM));
PROVIDE (_FLASH_SIZE = LENGTH(FLASH));
PROVIDE (STACK_SIZE = 64K);
.boot :
{
PROVIDE(_vector_table = .);
._vector_table = .;
. = ALIGN(0x800);
KEEP(*(.vector_table))
KEEP(*(.boot*))
} > FLASH
/* Read-only sections, merged into text segment: */
.interp : { *(.interp) }
.note.gnu.build-id : { *(.note.gnu.build-id) }
.hash : { *(.hash) }
.gnu.hash : { *(.gnu.hash) }
.dynsym : { *(.dynsym) }
.dynstr : { *(.dynstr) }
.gnu.version : { *(.gnu.version) }
.gnu.version_d : { *(.gnu.version_d) }
.gnu.version_r : { *(.gnu.version_r) }
.rela.init : { *(.rela.init) }
.rela.fini : { *(.rela.fini) }
.rela.rodata : { *(.rela.rodata .rela.rodata.* .rela.gnu.linkonce.r.*) }
.rela.data.rel.ro : { *(.rela.data.rel.ro .rela.data.rel.ro.* .rela.gnu.linkonce.d.rel.ro.*) }
.rela.data : { *(.rela.data .rela.data.* .rela.gnu.linkonce.d.*) }
.rela.tdata : { *(.rela.tdata .rela.tdata.* .rela.gnu.linkonce.td.*) }
.rela.tbss : { *(.rela.tbss .rela.tbss.* .rela.gnu.linkonce.tb.*) }
.rela.ctors : { *(.rela.ctors) }
.rela.dtors : { *(.rela.dtors) }
.rela.got : { *(.rela.got) }
.rela.bss : { *(.rela.bss .rela.bss.* .rela.gnu.linkonce.b.*) }
.text :
{
_start_text = .;
*(.text*)
*(.note.*)
. = ALIGN(8);
_end_text = .;
} > FLASH
.rodata :
{
_rodata_start = .;
*(.rodata)
*(.rodata.*)
. = ALIGN(8);
_rodata_end = .;
} > FLASH
PROVIDE(_stored_data = .);
.data :
{
_start_data = .;
KEEP(*(.data .data.* .gnu.linkonce.d.*))
. = ALIGN(8);
KEEP(*(.ramcode))
. = ALIGN(8);
_end_data = .;
} > OCRAM AT > FLASH
.bss :
{
_start_bss = .;
__bss_start__ = .;
*(.dynbss)
*(.bss .bss.* .gnu.linkonce.b.*)
*(COMMON)
. = ALIGN(8);
_end_bss = .;
__bss_end__ = .;
_end = .;
} > OCRAM
. = ALIGN(16);
.stack :
{
_start_stack = .;
. = . + STACK_SIZE;
_end_stack = .;
} > OCRAM
PROVIDE(_stack_base = .);
}

View File

@ -34,15 +34,29 @@ extern void hal_espi_init(uint32_t cs, uint32_t clock_hz, uint32_t mode);
extern int hal_espi_xfer(int cs, const uint8_t* tx, uint8_t* rx, uint32_t sz, int flags); extern int hal_espi_xfer(int cs, const uint8_t* tx, uint8_t* rx, uint32_t sz, int flags);
extern void hal_espi_deinit(void); extern void hal_espi_deinit(void);
#if defined(TARGET_nxp_ls1028a)
/* Functions from hal/nxp_ls1028a.c */
extern void nxp_ls1028a_spi_init(unsigned int sel);
extern int nxp_ls1028a_spi_xfer(unsigned int sel, unsigned int cs,
const unsigned char *out, unsigned char *in,
unsigned int size, int cont);
extern void nxp_ls1028a_spi_deinit(unsigned int sel);
#endif
#include <wolftpm/tpm2_types.h> #include <wolftpm/tpm2_types.h>
static int initialized = 0;
void spi_init(int polarity, int phase) void spi_init(int polarity, int phase)
{ {
static int initialized = 0;
if (!initialized) { if (!initialized) {
initialized++; initialized++;
#if defined(TARGET_nxp_p1021) || defined(TARGET_nxp_t1024)
hal_espi_init(SPI_CS_TPM, TPM2_SPI_MAX_HZ, (polarity | (phase << 1))); hal_espi_init(SPI_CS_TPM, TPM2_SPI_MAX_HZ, (polarity | (phase << 1)));
#elif defined(TARGET_nxp_ls1028a)
nxp_ls1028a_spi_init(SPI_SEL_TPM);
#endif
} }
(void)polarity; (void)polarity;
(void)phase; (void)phase;
@ -50,12 +64,26 @@ void spi_init(int polarity, int phase)
void spi_release(void) void spi_release(void)
{ {
if (initialized) {
initialized--;
#if defined(TARGET_nxp_p1021) || defined(TARGET_nxp_t1024)
hal_espi_deinit(); hal_espi_deinit();
#elif defined(TARGET_nxp_ls1028a)
nxp_ls1028a_spi_deinit(SPI_SEL_TPM);
#endif
}
} }
int spi_xfer(int cs, const uint8_t* tx, uint8_t* rx, uint32_t sz, int flags) int spi_xfer(int cs, const uint8_t* tx, uint8_t* rx, uint32_t sz, int flags)
{ {
#if defined(TARGET_nxp_p1021) || defined(TARGET_nxp_t1024)
return hal_espi_xfer(cs, tx, rx, sz, flags); return hal_espi_xfer(cs, tx, rx, sz, flags);
#elif defined(TARGET_nxp_ls1028a)
return nxp_ls1028a_spi_xfer(SPI_SEL_TPM, cs, tx, rx, sz, flags);
#endif
} }
#endif /* WOLFBOOT_TPM */ #endif /* WOLFBOOT_TPM */
#endif /* TARGET_ */ #endif /* TARGET_ */

View File

@ -29,4 +29,17 @@
#endif #endif
#endif #endif
#if defined(TARGET_nxp_ls1028a)
/* LS1028A SPI to the MikroBus uses SPI3 (sel is 2) and CS 0 */
#ifndef SPI_SEL_TPM
#define SPI_SEL_TPM 2
#endif
#ifndef SPI_CS_TPM
#define SPI_CS_TPM 0
#endif
#endif
#endif /* !SPI_DRV_NXP_H_INCLUDED */ #endif /* !SPI_DRV_NXP_H_INCLUDED */

View File

@ -59,7 +59,8 @@
#include "hal/spi/spi_drv_nrf5340.h" #include "hal/spi/spi_drv_nrf5340.h"
#endif #endif
#if defined(TARGET_nxp_p1021) || defined(TARGET_nxp_t1024) #if defined(TARGET_nxp_p1021) || defined(TARGET_nxp_t1024) || \
defined(TARGET_nxp_ls1028a)
#include "hal/spi/spi_drv_nxp.h" #include "hal/spi/spi_drv_nxp.h"
#endif #endif

View File

@ -25,17 +25,20 @@
#include "loader.h" #include "loader.h"
#include "wolfboot/wolfboot.h" #include "wolfboot/wolfboot.h"
/* Linker exported variables */
extern unsigned int __bss_start__; extern unsigned int __bss_start__;
extern unsigned int __bss_end__; extern unsigned int __bss_end__;
static volatile unsigned int cpu_id; extern unsigned int _stored_data;
extern unsigned int *END_STACK; extern unsigned int _start_data;
extern unsigned int _end_data;
extern void main(void); extern void main(void);
extern void gicv2_init_secure(void); extern void gicv2_init_secure(void);
void boot_entry_C(void) void boot_entry_C(void)
{ {
register unsigned int *dst; register unsigned int *dst, *src;
/* Initialize the BSS section to 0 */ /* Initialize the BSS section to 0 */
dst = &__bss_start__; dst = &__bss_start__;
while (dst < (unsigned int *)&__bss_end__) { while (dst < (unsigned int *)&__bss_end__) {
@ -43,6 +46,17 @@ void boot_entry_C(void)
dst++; dst++;
} }
/* Copy data section from flash to RAM if necessary */
src = (unsigned int*)&_stored_data;
dst = (unsigned int*)&_start_data;
if(src!=dst) {
while (dst < (unsigned int *)&_end_data) {
*dst = *src;
dst++;
src++;
}
}
/* Run wolfboot! */ /* Run wolfboot! */
main(); main();
} }

View File

@ -20,65 +20,230 @@
*/ */
#define GICD_BASE 0xF9010000 /* Include target-specific defines here to override any AA64 defaults */
#if defined(TARGET_LS1028A)
#include "../hal/nxp_ls1028a.h"
#endif
/* AARCH64 default configurations */
#if !defined(AA64_TARGET_EL)
#define AA64_TARGET_EL 2
#endif
#if !defined(AA64GIC_VERSION)
#define AA64GIC_VERSION 2
#endif
#if (AA64GIC_VERSION==2)
#if !defined(AA64GICV2_GICD_BASE)
#define AA64GICV2_GICD_BASE 0xF9010000
#endif
#if !defined(AA64_GICC_BASE)
#define AA64GICV2_GICC_BASE 0xF9020000
#endif
#endif
/* CURRENT_EL ARMv8 Current Exception Level Register */
#define CURRENT_EL_MASK (0x3 << 2) /* Current EL */
#define CURRENT_EL_EL0 0x0
#define CURRENT_EL_EL1 0x4
#define CURRENT_EL_EL2 0x8
#define CURRENT_EL_EL3 0xC
/* ID_AA64PFR0_EL1 ARMv8 Processor Feature Register 0*/
#define ID_AA64PFRO_EL3_MASK (0xF<<12) /* EL3 is implemented: 0x0000 no */
/* 0x1000 AA64, 0x2000 AA64+AA32 */
#define ID_AA64PFRO_EL2_MASK (0xF<<8) /* EL2 is implemented: 0x000 no */
/* 0x100 AA64, 0x200 AA64+AA32 */
#define ID_AA64PFRO_EL1_MASK (0xF<<4) /* EL1 is implemented: */
/* 0x10 AA64, 0x20 AA64+AA32 */
#define ID_AA64PFRO_EL0_MASK (0xF<<0) /* EL0 is implemented: */
/* 0x1 AA64, 0x2 AA64+AA32 */
#define ID_AA64PFRO_FGT_MASK (0xFull<<56) /* Fine Grained Traps: */
/* 0x0 no, !0x0: yes */
/* GICv2 Register Offsets */
#define GICD_CTLR 0x0000 #define GICD_CTLR 0x0000
#define GICD_TYPER 0x0004 #define GICD_TYPER 0x0004
#define GICD_SGIR 0x0F00 #define GICD_SGIR 0x0F00
#define GICD_IGROUPRn 0x0080 #define GICD_IGROUPRn 0x0080
#define GICC_BASE 0xF9020000
#define GICC_PMR 0x0004 #define GICC_PMR 0x0004
#ifndef USE_BUILTIN_STARTUP #ifndef USE_BUILTIN_STARTUP
.section ".boot" /* This is the entry function. If this is the start of a cold boot, the CPU
* will be at the highest exception level (EL) and the CPU must be configured
* for each of the levels down to the target EL: either EL2 for a hypervisor
* or EL1 for a standard OS.
*
* Configuration only enables secure EL3 and forces all lower levels NS.
*
* AA64_TARGET_EL: 1 or 2
* AA64_GICVERSION: 0- no external GIC, 2: GICv2, 3: GICv3
* AA64_ENABLE_EL3_SMC: Enable SMC call handling in EL3
* AA64_ENABLE_EL3_PM: Enable handling of power management (TWE, TWI)
*/
.section ".boot", "ax"
.global _vector_table .global _vector_table
_vector_table: _vector_table:
mov x21, x0 // read ATAG/FDT address /* If we are booted as a Linux direct boot, then X0 will have FDT */
mov x21, x0 /* save ATAG/FDT address */
4: ldr x1, =_vector_table // get start of .text in x1
// Read current EL
mrs x0, CurrentEL
and x0, x0, #0x0C
// EL == 3?
cmp x0, #12 /* Get highest EL implemented in this CPU */
bl aa64_get_highest_el
mov x19, x0 /* save highest EL in x19 */
/* Get current EL */
bl aa64_get_current_el
mov x20, x0 /* save current EL in x20 */
cmp x19, x20 /* EL is at highest? */
bne 3f
bl aa64_setup_el_highest
3: cmp x20, #0x3 /* at EL3? */
bne 2f bne 2f
3: mrs x2, scr_el3 bl aa64_setup_el3
orr x2, x2, 0x0F // scr_el3 |= NS|IRQ|FIQ|EA
msr scr_el3, x2
msr cptr_el3, xzr // enable FP/SIMD 2: cmp x20, #0x1 /* EL == 1? */
// EL == 1?
2: cmp x0, #4
beq 1f beq 1f
// EL == 2? /* EL2 Setup */
mov x2, #3 << 20 mov x2, #3 << 20
msr cptr_el2, x2 /* Enable FP/SIMD */ msr cptr_el2, x2 /* Disable FP/SIMD traps for EL2 */
b 0f b 0f
/* EL1 Setup */
1: mov x0, #3 << 20 1: mov x0, #3 << 20
msr cpacr_el1, x0 // Enable FP/SIMD for EL1 msr cpacr_el1, x0 /* Disable FP/SIMD traps for EL1 */
msr sp_el1, x1 msr sp_el1, x1
/* Suspend slave CPUs */ /* Suspend slave CPUs */
0: mrs x3, mpidr_el1 // read MPIDR_EL1 0: mrs x3, mpidr_el1 /* read MPIDR_EL1 */
and x3, x3, #3 // CPUID = MPIDR_EL1 & 0x03 and x3, x3, #3 /* CPUID = MPIDR_EL1 & 0x03 */
cbz x3, 8f // if 0, branch forward cbz x3, 8f /* if 0, branch forward */
7: wfi // infinite sleep 7: wfi /* infinite sleep */
b 7b b 7b
8: mov sp, x1 // set stack pointer 8: ldr x1, =_vector_table /* ??? get start of .text in x1 */
bl boot_entry_C // boot_entry_C never returns mov sp, x1 /* XXX set stack pointer */
b 7b // go to sleep anyhow in case.
#ifdef CORTEX_A72
bl init_A72
#endif
bl boot_entry_C /* boot_entry_C never returns */
b 7b /* go to sleep anyhow in case. */
#endif /* USE_BUILTIN_STARTUP */ #endif /* USE_BUILTIN_STARTUP */
/* Return the highest EL implemented on this CPU in x0
* No stack usage. No clobbers. */
.global aa64_get_highest_el
.type aa64_get_highest_el, @function
aa64_get_highest_el:
mrs x0, ID_AA64PFR0_EL1
tst x0, ID_AA64PFR0_EL3_MASK
cbz 2f /* Highest is not EL3? */
mov x0, #0x3
ret
2: tst x0, ID_AA64PFR0_EL2_MASK
cbz 1f /* Highest is not EL2? */
mov x0, #0x2
ret
1: mov x0, #0x1 /* Highest is EL1 */
ret
/* Return the current EL on this CPU in x0
* No stack usage. No clobbers. */
.global aa64_get_current_el
.type aa64_get_current_el, @function
aa64_get_current_el:
mrs x0, CURRENT_EL
tst x0, CURRENT_EL3_MASK
cbz 2f /* Current is not EL3? */
mov x0, #0x3
ret
2: tst x0, CURRENT_EL2_MASK
cbz 1f /* Current is not EL2? */
mov x0, #0x2
ret
1: tst x0, CURRENT_EL1_MASK
cbz 0f /* Current is not EL1? */
mov x0, #0x1
ret
0: mov x0, #0x0 /* Current is EL0 */
ret
/* Perform chip setup when at the highest EL
* No stack. Clobbers: x0 */
.global aa64_setup_el_highest
.type aa64_setup_el_highest, @function
aa64_setup_el_highest
#if defined(AA64_CNTFRQ)
/* Set the counter-timer frequency to AA64_CNTFRQ*/
mov x0, AA64_CNTFRQ
msr cntfrq_el0, x0
#endif
ret
/* Perform chip setup when at the EL3
* No stack. Clobbers: x0 */
.global aa64_setup_el3
.type aa64_setup_el3, @function
aa64_setup_el3
mrs x0, scr_el3 /* Get Secure Config Reg scr_el3 */
bic x0, x0, #(1 << 18) /* EEL2 Disable Secure EL2 */
#if !defined (AA64_ENABLE_EL3_PM)
bic x0, x0, #(1 << 13) /* TWE Disable trap WFE to EL3 */
bic x0, x0, #(1 << 12) /* TWI Disable trap WFI to EL3 */
#else
orr x0, x0, #(1 << 13) /* TWE Enable trap WFE to EL3 */
orr x0, x0, #(1 << 12) /* TWI Enable trap WFI to EL3 */
#endif
orr x0, x0, #(1 << 11) /* ST Disable trap SEL1 acc CNTPS to EL3 */
orr x0, x0, #(1 << 10) /* RW Next lower level is AArch64 */
orr x0, x0, #(1 << 9) /* SIF Disable Sec Ins Fetch from NS mem */
#if defined(AA64_TARGET_EL) && (AA64_TARGET_EL==2)
orr x0, x0, #(1 << 8) /* HCE Enable Hypervisor Call HVC */
#else
bic x0, x0, #(1 << 8) /* HCE Disable Hypervisor Call HVC */
#endif
#if !defined(AA64_ENABLE_EL3_SMC)
orr x0, x0, #(1 << 7) /* SMD Disable Secure Monitor Call SMC */
#else
bic x0, x0, #(1 << 7) /* SMD Enable Secure Monitor Call SMC */
#endif
bic x0, x0, #(1 << 3) /* EA Disable EA and SError to EL3 */
bic x0, x0, #(1 << 2) /* FIQ Disable FIQ to EL3 */
bic x0, x0, #(1 << 1) /* IRQ Disable IRQ to EL3 */
orr x0, x0, #(1 << 0) /* NS EL0, EL1, and EL2 are NS */
msr scr_el3, x0 /* Set scr_el3 */
mrs x0, cptr_el3 /* Get EL3 Feature Trap Reg CPTR_EL3 */
bic x0, x0, #(1 << 31) /* TCPAC Disable config traps to EL3 */
bic x0, x0, #(1 << 30) /* TAM Disable AM traps to EL3 */
bic x0, x0, #(1 << 20) /* TTA Disable trace traps to EL3 */
bic x0, x0, #(1 << 12) /* ESM Disable SVCR traps to EL3 */
bic x0, x0, #(1 << 10) /* TFP Disable FP/SIMD traps to EL3 */
bic x0, x0, #(1 << 20) /* EZ Disable ZCR traps to EL3 */
msr cptr_el3, x0 /* Set cptr_el3 */
#if defined(AA64_TARGET_EL) && (AA64_TARGET_EL==2)
orr x0, x0, #(1 << 8) /* HCE Enable Hypervisor Call HVC */
#else
bic x0, x0, #(1 << 8) /* HCE Disable Hypervisor Call HVC */
#endif
ret
/* Initialize GIC 400 (GICv2) */ /* Initialize GIC 400 (GICv2) */
.global gicv2_init_secure .global gicv2_init_secure
gicv2_init_secure: gicv2_init_secure:
ldr x0, =GICD_BASE ldr x0, =AA64_GICD_BASE
mov w9, #0x3 /* EnableGrp0 | EnableGrp1 */ mov w9, #0x3 /* EnableGrp0 | EnableGrp1 */
str w9, [x0, GICD_CTLR] /* Secure GICD_CTLR */ str w9, [x0, GICD_CTLR] /* Secure GICD_CTLR */
ldr w9, [x0, GICD_TYPER] ldr w9, [x0, GICD_TYPER]
@ -91,7 +256,7 @@ gicv2_init_secure:
sub w10, w10, #0x1 sub w10, w10, #0x1
cbnz w10, 0b cbnz w10, 0b
ldr x1, =GICC_BASE /* GICC_CTLR */ ldr x1, =AA64_GICC_BASE /* GICC_CTLR */
mov w0, #3 /* EnableGrp0 | EnableGrp1 */ mov w0, #3 /* EnableGrp0 | EnableGrp1 */
str w0, [x1] str w0, [x1]
@ -99,3 +264,272 @@ gicv2_init_secure:
str w0, [x1, #4] /* GICC_PMR */ str w0, [x1, #4] /* GICC_PMR */
1: 1:
ret ret
.global invalidate_ivac
invalidate_ivac:
ldr x0, =_OCRAM_ADDRESS
ldr x1, =_MEMORY_SIZE
add x1, x1, x0
mrs x2, ctr_el0
ubfx x4, x2, #16, #4
mov x3, #4
lsl x3, x3, x4
sub x4, x3, #1
bic x4, x0, x4
inval_loop:
dc ivac, x4
add x4, x4, x3
cmp x4, x1
blt inval_loop
dsb sy
ret
.global disable_mmu
disable_mmu:
mrs x0, sctlr_el3
bic x0, x0, x1
msr sctlr_el3, x0
isb
dsb sy
ret
.global switch_el3_to_el2
switch_el3_to_el2:
mov x0, #0x531
msr scr_el3, x0
msr cptr_el3, xzr /* Disable el3 traps */
mov x0, #0x33ff
msr cptr_el2, x0 /* Disable el2 traps */
mrs x0, sctlr_el2
mov x1, #(1 << 0) | (1 << 2) | (1 << 12)
bic x0, x0, x1
msr sctlr_el2, x0
mrs x0, sctlr_el3
bic x0, x0, x1
msr sctlr_el3, x0
bl invalidate_ivac
ldp x29, x30, [sp]
mrs x0, vbar_el3
msr vbar_el2, x0
mov x0, #0x3c9
msr spsr_el3, x0
msr elr_el3, x30
ret
.global cortex_a72_erratta
cortex_a72_erratta:
/* Initalization code for NXP LS1028a (A72) */
.global init_A72
init_A72:
ldr x1, =_vector_table_el3 /* Initalize vec table */
msr vbar_el3, x1
el3_state:
mrs x0, scr_el3 /* Get scr_el3 */
bic x0, x0, #(1 << 18) /* EEL2 Disable Secure EL2 */
#if !defined (AA64_ENABLE_EL3_PM)
bic x0, x0, #(1 << 13) /* TWE Disable trap WFE to EL3 */
bic x0, x0, #(1 << 12) /* TWI Disable trap WFI to EL3 */
#else
orr x0, x0, #(1 << 13) /* TWE Enable trap WFE to EL3 */
orr x0, x0, #(1 << 12) /* TWI Enable trap WFI to EL3 */
#endif
orr x0, x0, #(1 << 11) /* ST Disable trap SEL1 access CNTPS to EL3 */
orr x0, x0, #(1 << 10) /* RW Next lower level is AArch64 */
orr x0, x0, #(1 << 9) /* SIF Disable secure ins. fetches from NS */
#if defined(AA64_TARGET_EL) && (AA64_TARGET_EL==2)
orr x0, x0, #(1 << 8) /* HCE Enable Hypervisor Call HVC */
#else
bic x0, x0, #(1 << 8) /* HCE Disable Hypervisor Call HVC */
#endif
#if !defined(AA64_ENABLE_EL3_SMC)
orr x0, x0, #(1 << 7) /* SMD Disable Secure Monitor Call SMC */
#else
bic x0, x0, #(1 << 7) /* SMD Enable Secure Monitor Call SMC */
#endif
orr x0, x0, #(1 << 3) /* EA Enable EA and SError to EL3 for now */
orr x0, x0, #(1 << 2) /* FIQ Enable FIQ to EL3 for now */
orr x0, x0, #(1 << 1) /* IRQ Enable IRQ to EL3 for now */
orr x0, x0, #(1 << 0) /* NS EL0, EL1, and EL2 are NS */
msr scr_el3, x0 /* Set scr_el3 */
mrs x0, sctlr_el3 /* sctlr_el3 config */
bic x0, x0, #(1 << 19) /* Disable EL3 translation XN */
bic x0, x0, #(1 << 12) /* Disable I cache */
bic x0, x0, #(1 << 3) /* Disable SP Alignment check */
bic x0, x0, #(1 << 2) /* Disable D cache */
bic x0, x0, #(1 << 1) /* Disable Alignment check */
bic x0, x0, #(1 << 0) /* Disable MMU */
msr sctlr_el3, x0
isb
invalidate_cache:
msr csselr_el1, x0
mrs x4, ccsidr_el1 /* read cache size */
and x1, x4, #0x7
and x1, x1, #0x4 /* cache line size */
ldr x3, =0x7ff
and x2, x3, x4, lsr #13 /* number of cache sets */
ldr x3, =0x3ff
and x3, x3, x4, lsr #3 /* cache associativity number */
clz w4, w3
mov x5, #0
way_loop:
mov x6, #0
set_loop:
lsl x7, x5, x4
orr x7, x0, x7
lsl x8, x6, x1
orr x7, x7, x8
dc cisw, x7 /* invalidate cache */
add x6, x6, #1
cmp x6, x2
ble set_loop /* loop until all sets are invalidated */
add x5, x5, #1
cmp x5, x3
ble way_loop /* loop until all ways are invalidated */
msr cptr_el3, xzr
init_stack:
ldr x0, =_stack_base /* Set and align stack */
sub x0, x0, #16
and x0, x0, #-16
mov sp, x0
ldr x1, =STACK_SIZE
msr sp_el2, x0
msr sp_el1, x0
msr sp_el0, x0
mov x29, 0 /* Setup an initial dummy frame with saved fp=0 and saved lr=0 */
stp x29, x29, [sp, #-16]!
mov x29, sp
bl invalidate_ivac
b boot_entry_C
.global mmu_enable
mmu_enable:
tlbi alle3 /* Invalidate table entries */
dsb sy
isb
/* Set tcr reg */
ldr x0, =0x0
orr x0, x0, #24 /* Size of the memory region */
orr x0, x0, #(1 << 17) /* PS 40 bit */
orr x0, x0, #(1 << 16) /* TG0 4KB */
orr x0, x0, #(2 << 12) /* SH0 Outer Shareable */
orr x0, x0, #(1 << 10) /* normal outer WBWA cacheable */
orr x0, x0, #(1 << 8) /* normal inner WBWA cacheable */
msr tcr_el3, x0
ldr x1, =0x44E048E000098AA4 //0xFF440C0400
msr mair_el3, x1
ldr x0, =ttb0_base
msr ttbr0_el3, x0
mrs x0, S3_1_c15_c2_1
orr x0, x0, #(1 << 6) /* Must set SPMEN */
msr S3_1_c15_c2_1, x0
isb
/* Set sctlr reg */
mrs x0, sctlr_el3
orr x1, x0, #(1 << 12) /* I - instruction cache enable */
orr x1, x0, #(1 << 2) /* C - data & unified cache enable */
orr x1, x0, #(1 << 0) /* M - MMU enable */
msr sctlr_el3, x1
dsb sy
isb
ret
/* Exception Vector Table EL3 */
.balign 0x800
.global _vector_table_el3
_vector_table_el3:
el3_sp0_sync:
eret
.balign 0x80
el3_sp0_irq:
eret
.balign 0x80
el3_spi_fiq:
eret
.balign 0x80
el3_sp0_serror:
eret
.balign 0x80
el3_spx_sync:
eret
.balign 0x80
el3_spx_irq:
eret
.balign 0x80
el3_spx_fiq:
eret
.balign 0x80
el3_spx_serror:
eret
.balign 0x80
lower_el3_aarch64_sync:
eret
.balign 0x80
lower_el3_aarch64_irq:
eret
.balign 0x80
lower_el3_aarch64_fiq:
eret
.balign 0x80
lower_el3_aarch64_serror:
eret
/* Memory Table Macros */
.macro PUT_64BIT_WORD high, low
.word \low
.word \high
.endm
.macro TABLE_ENTRY PA, attributes
PUT_64BIT_WORD \attributes, \PA + 0x3
.endm
.macro BLOCK_1GB PA, attr_hi, attr_lo
PUT_64BIT_WORD \attr_hi, ((\PA) & 0xc0000000) | \attr_lo | 0x1
.endm
.macro BLOCK_2MB PA, attr_hi, attr_lo
PUT_64BIT_WORD \attr_hi, ((\PA) & 0xffe00000) | \attr_lo | 0x1
.endm
/* Note: In EL3/2 has direct physical to virutal mapping */
.align 12
.global ttb0_base
ttb0_base:
TABLE_ENTRY level1_pagetable, 0
BLOCK_1GB 0x80000000, 0, 0x740
BLOCK_1GB 0xC0000000, 0, 0x740
.align 12
.global level1_pagetable
level1_pagetable:
.set ADDR, 0x0
.rept 0x200
BLOCK_2MB (ADDR << 20), 0, 0x74c
.set ADDR, ADDR + 2
.endr

View File

@ -0,0 +1,55 @@
MEMORY
{
FLASH (rx) : ORIGIN = @WOLFBOOT_TEST_APP_ADDRESS@, LENGTH = 256K
DRAM (rwx) : ORIGIN = 0x80001000 , LENGTH = 0xBFFFFFFF
OCRAM (rwx) : ORIGIN = 0x18020100, LENGTH = 128K
}
ENTRY(main);
SECTIONS
{
.text :
{
_start_text = .;
KEEP(*(.boot*))
*(.text*)
*(.rodata*)
*(.note.*)
. = ALIGN(4);
_end_text = .;
} > OCRAM
.edidx :
{
. = ALIGN(4);
*(.ARM.exidx*)
} > OCRAM
PROVIDE(_stored_data = .);
.data :
{
_start_data = .;
KEEP(*(.data*))
. = ALIGN(4);
KEEP(*(.ramcode))
. = ALIGN(4);
_end_data = .;
} > OCRAM
.bss (NOLOAD) :
{
_start_bss = .;
__bss_start__ = .;
*(.bss*)
*(COMMON)
. = ALIGN(4);
_end_bss = .;
__bss_end__ = .;
_end = .;
} > OCRAM
. = ALIGN(4);
}
END_STACK = _start_text;

View File

@ -427,6 +427,10 @@ ifeq ($(TARGET),x86_fsp_qemu)
LDFLAGS= LDFLAGS=
endif endif
ifeq ($(TARGET),nxp_ls1028a)
LSCRIPT_TEMPLATE:=AARCH64-ls1028a.ld
endif
CFLAGS+=-I../lib/wolfssl CFLAGS+=-I../lib/wolfssl
ifeq ($(WOLFHSM_CLIENT),1) ifeq ($(WOLFHSM_CLIENT),1)

View File

@ -0,0 +1,116 @@
/* app_nxp_ls1028a.c
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include "wolfboot/wolfboot.h"
/* P1021 */
#define CCSRBAR (0x1000000)
#define SYS_CLK (400000000)
/* P1021 PC16552D Dual UART */
#define BAUD_RATE 115200
#define UART_SEL 0 /* select UART 0 or 1 */
#define UART_BASE(n) (0x21C0500 + (n * 100))
#define UART_RBR(n) *((volatile uint8_t*)(UART_BASE(n) + 0)) /* receiver buffer register */
#define UART_THR(n) *((volatile uint8_t*)(UART_BASE(n) + 0)) /* transmitter holding register */
#define UART_IER(n) *((volatile uint8_t*)(UART_BASE(n) + 1)) /* interrupt enable register */
#define UART_FCR(n) *((volatile uint8_t*)(UART_BASE(n) + 2)) /* FIFO control register */
#define UART_IIR(n) *((volatile uint8_t*)(UART_BASE(n) + 2)) /* interrupt ID register */
#define UART_LCR(n) *((volatile uint8_t*)(UART_BASE(n) + 3)) /* line control register */
#define UART_LSR(n) *((volatile uint8_t*)(UART_BASE(n) + 5)) /* line status register */
#define UART_SCR(n) *((volatile uint8_t*)(UART_BASE(n) + 7)) /* scratch register */
/* enabled when UART_LCR_DLAB set */
#define UART_DLB(n) *((volatile uint8_t*)(UART_BASE(n) + 0)) /* divisor least significant byte register */
#define UART_DMB(n) *((volatile uint8_t*)(UART_BASE(n) + 1)) /* divisor most significant byte register */
#define UART_FCR_TFR (0x04) /* Transmitter FIFO reset */
#define UART_FCR_RFR (0x02) /* Receiver FIFO reset */
#define UART_FCR_FEN (0x01) /* FIFO enable */
#define UART_LCR_DLAB (0x80) /* Divisor latch access bit */
#define UART_LCR_WLS (0x03) /* Word length select: 8-bits */
#define UART_LSR_TEMT (0x40) /* Transmitter empty */
#define UART_LSR_THRE (0x20) /* Transmitter holding register empty */
static void uart_init(void)
{
/* calc divisor for UART
* example config values:
* clock_div, baud, base_clk 163 115200 300000000
* +0.5 to round up
*/
uint32_t div = (((SYS_CLK / 2.0) / (16 * BAUD_RATE)) + 0.5);
while (!(UART_LSR(UART_SEL) & UART_LSR_TEMT))
;
/* set ier, fcr, mcr */
UART_IER(UART_SEL) = 0;
UART_FCR(UART_SEL) = (UART_FCR_TFR | UART_FCR_RFR | UART_FCR_FEN);
/* enable baud rate access (DLAB=1) - divisor latch access bit*/
UART_LCR(UART_SEL) = (UART_LCR_DLAB | UART_LCR_WLS);
/* set divisor */
UART_DLB(UART_SEL) = (div & 0xff);
UART_DMB(UART_SEL) = ((div >> 8) & 0xff);
/* disable rate access (DLAB=0) */
UART_LCR(UART_SEL) = (UART_LCR_WLS);
}
static void uart_write(const char* buf, uint32_t sz)
{
uint32_t pos = 0;
while (sz-- > 0) {
while (!(UART_LSR(UART_SEL) & UART_LSR_THRE))
;
UART_THR(UART_SEL) = buf[pos++];
}
}
static const char* hex_lut = "0123456789abcdef";
__attribute__((section(".boot")))
void main(void)
{
int i = 0;
int j = 0;
int k = 0;
char snum[8];
uint32_t bootver;
uint32_t updv;
uart_write("Test App\n", 9);
/* Wait for reboot */
while(1) {
for (j=0; j<1000000; j++);
i++;
uart_write("\r\n0x", 4);
for (k=0; k<8; k++) {
snum[7 - k] = hex_lut[(i >> 4*k) & 0xf];
}
uart_write(snum, 8);
}
}