/* uart_drv_stm32l5.c * * Driver for the back-end of the UART_FLASH module. * * Example implementation for stm32L5 Nucleo * using LPUART1 (VCS port through USB). * * * Copyright (C) 2023 wolfSSL Inc. * * This file is part of wolfBoot. * * wolfBoot is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * wolfBoot is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef TARGET_stm32h5 #include #include "hal/stm32h5.h" /* USE_UART1 * Set to 0 for VCP over USB * Set to 1 for Arduino D0, D1 pins on nucleo * */ #define USE_UART1 0 #define RCC_AHB2ENR1_CLOCK_ER (*(volatile uint32_t *)(RCC_BASE + 0x8C )) #define GPIOB_AHB2ENR1_CLOCK_ER (1 << 1) #define GPIOD_AHB2ENR1_CLOCK_ER (1 << 3) #define GPIOB_MODE (*(volatile uint32_t *)(GPIOB_BASE + 0x00)) #define GPIOB_OTYPE (*(volatile uint32_t *)(GPIOB_BASE + 0x04)) #define GPIOB_OSPD (*(volatile uint32_t *)(GPIOB_BASE + 0x08)) #define GPIOB_PUPD (*(volatile uint32_t *)(GPIOB_BASE + 0x0c)) #define GPIOB_ODR (*(volatile uint32_t *)(GPIOB_BASE + 0x14)) #define GPIOB_BSRR (*(volatile uint32_t *)(GPIOB_BASE + 0x18)) #define GPIOB_AFL (*(volatile uint32_t *)(GPIOB_BASE + 0x20)) #define GPIOB_AFH (*(volatile uint32_t *)(GPIOB_BASE + 0x24)) #define GPIOD_MODE (*(volatile uint32_t *)(GPIOD_BASE + 0x00)) #define GPIOD_OTYPE (*(volatile uint32_t *)(GPIOD_BASE + 0x04)) #define GPIOD_OSPD (*(volatile uint32_t *)(GPIOD_BASE + 0x08)) #define GPIOD_PUPD (*(volatile uint32_t *)(GPIOD_BASE + 0x0c)) #define GPIOD_ODR (*(volatile uint32_t *)(GPIOD_BASE + 0x14)) #define GPIOD_BSRR (*(volatile uint32_t *)(GPIOD_BASE + 0x18)) #define GPIOD_AFL (*(volatile uint32_t *)(GPIOD_BASE + 0x20)) #define GPIOD_AFH (*(volatile uint32_t *)(GPIOD_BASE + 0x24)) #define CLOCK_FREQ (64000000) static void uart1_pins_setup(void) { uint32_t reg; RCC_AHB2ENR1_CLOCK_ER|= GPIOB_AHB2ENR1_CLOCK_ER; /* Set mode = AF */ reg = GPIOB_MODE & ~ (0x03 << (UART1_RX_PIN * 2)); GPIOB_MODE = reg | (2 << (UART1_RX_PIN * 2)); reg = GPIOB_MODE & ~ (0x03 << (UART1_TX_PIN * 2)); GPIOB_MODE = reg | (2 << (UART1_TX_PIN * 2)); /* Alternate function: use low pins (6 and 7) */ reg = GPIOB_AFL & ~(0xf << (UART1_TX_PIN * 4)); GPIOB_AFL = reg | (UART1_PIN_AF << (UART1_TX_PIN * 4)); reg = GPIOB_AFL & ~(0xf << ((UART1_RX_PIN) * 4)); GPIOB_AFH = reg | (UART1_PIN_AF << ((UART1_RX_PIN) * 4)); } static void uart3_pins_setup(void) { uint32_t reg; RCC_AHB2ENR1_CLOCK_ER|= GPIOD_AHB2ENR1_CLOCK_ER; /* Set mode = AF */ reg = GPIOD_MODE & ~ (0x03 << (UART3_RX_PIN * 2)); GPIOD_MODE = reg | (2 << (UART3_RX_PIN * 2)); reg = GPIOD_MODE & ~ (0x03 << (UART3_TX_PIN * 2)); GPIOD_MODE = reg | (2 << (UART3_TX_PIN * 2)); /* Alternate function: use hi pins (8 and 9) */ reg = GPIOD_AFH & ~(0xf << ((UART3_TX_PIN - 8) * 4)); GPIOD_AFH = reg | (UART3_PIN_AF << ((UART3_TX_PIN - 8) * 4)); reg = GPIOD_AFH & ~(0xf << ((UART3_RX_PIN - 8) * 4)); GPIOD_AFH = reg | (UART3_PIN_AF << ((UART3_RX_PIN - 8) * 4)); } static int uart1_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop) { uint32_t reg; /* Enable pins and configure for AF */ uart1_pins_setup(); reg = RCC_CCIPR3 & (~ (RCC_CCIPR3_LPUART1SEL_MASK << RCC_CCIPR3_LPUART1SEL_SHIFT)); RCC_CCIPR3 = reg | (0 << RCC_CCIPR3_LPUART1SEL_SHIFT); /* PLL2 */ /* Configure clock */ UART1_BRR |= (uint16_t)(CLOCK_FREQ / bitrate) + 1; /* Configure data bits */ if (data == 8) UART1_CR1 &= ~UART_CR1_SYMBOL_LEN; else UART1_CR1 |= UART_CR1_SYMBOL_LEN; /* Configure parity */ switch (parity) { case 'O': UART1_CR1 |= UART_CR1_PARITY_ODD; /* fall through to enable parity */ /* FALL THROUGH */ case 'E': UART1_CR1 |= UART_CR1_PARITY_ENABLED; break; default: UART1_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD); } /* Set stop bits */ reg = UART1_CR2 & ~UART_CR2_STOPBITS; if (stop > 1) UART1_CR2 = reg & (2 << 12); else UART1_CR2 = reg; /* Prescaler to DIV1 */ UART1_PRE |= 2; /* Configure for RX+TX, turn on. */ UART1_CR1 |= UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE | UART_CR1_UART_ENABLE; return 0; } static void uart1_clear_errors(void) { UART1_ICR = UART1_ISR & (UART_ENE | UART_EPE | UART_ORE | UART_EFE); } static int uart1_tx(const uint8_t c) { volatile uint32_t reg; do { reg = UART1_ISR; if (reg & (UART_ENE | UART_EPE | UART_ORE | UART_EFE)) uart1_clear_errors(); } while ((reg & UART_ISR_TX_EMPTY) == 0); UART1_TDR = c; return 1; } static int uart1_rx(uint8_t *c) { volatile uint32_t reg; int i = 0; reg = UART1_ISR; if (reg & (UART_ENE | UART_EPE | UART_ORE | UART_EFE)) uart1_clear_errors(); if (reg & UART_ISR_RX_NOTEMPTY) { *c = (uint8_t)UART1_RDR; return 1; } return 0; } static int uart3_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop) { uint32_t reg; /* Enable pins and configure for AF */ uart3_pins_setup(); reg = RCC_CCIPR1 & (~ (RCC_CCIPR1_USART3SEL_MASK << RCC_CCIPR1_USART3SEL_SHIFT)); RCC_CCIPR1 = reg | (0 << RCC_CCIPR1_USART3SEL_SHIFT); /* PLL2 */ /* Configure clock */ UART3_BRR = (uint16_t)(CLOCK_FREQ / bitrate) + 1; /* Configure data bits */ if (data == 8) UART3_CR1 &= ~UART_CR1_SYMBOL_LEN; else UART3_CR1 |= UART_CR1_SYMBOL_LEN; /* Configure parity */ switch (parity) { case 'O': UART3_CR1 |= UART_CR1_PARITY_ODD; /* fall through to enable parity */ /* FALL THROUGH */ case 'E': UART3_CR1 |= UART_CR1_PARITY_ENABLED; break; default: UART3_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD); } /* Set stop bits */ reg = UART3_CR2 & ~UART_CR2_STOPBITS; if (stop > 1) UART3_CR2 = reg & (2 << 12); else UART3_CR2 = reg; /* Prescaler to DIV1 */ UART3_PRE |= 2; /* Configure for RX+TX, turn on. */ UART3_CR1 |= UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE | UART_CR1_UART_ENABLE; return 0; } static void uart3_clear_errors(void) { UART3_ICR = UART3_ISR & (UART_ENE | UART_EPE | UART_ORE | UART_EFE); } static int uart3_tx(const uint8_t c) { volatile uint32_t reg; do { reg = UART3_ISR; if (reg & (UART_ENE | UART_EPE | UART_ORE | UART_EFE)) uart3_clear_errors(); } while ((reg & UART_ISR_TX_EMPTY) == 0); UART3_TDR = c; return 1; } static int uart3_rx(uint8_t *c) { volatile uint32_t reg; int i = 0; reg = UART3_ISR; if (reg & (UART_ENE | UART_EPE | UART_ORE | UART_EFE)) uart3_clear_errors(); if (reg & UART_ISR_RX_NOTEMPTY) { *c = (uint8_t)UART3_RDR; return 1; } return 0; } int uart_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop) { #if USE_UART1 return uart1_init(bitrate, data, parity, stop); #else return uart3_init(bitrate, data, parity, stop); #endif } int uart_tx(const uint8_t c) { #if USE_UART1 return uart1_tx(c); #else return uart3_tx(c); #endif } int uart_rx(uint8_t *c) { #if USE_UART1 return uart1_rx(c); #else return uart3_rx(c); #endif } #endif /* TARGET_stm32h5 */