/* stm32h5.c * * Copyright (C) 2024 wolfSSL Inc. * * This file is part of wolfBoot. * * wolfBoot is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfBoot is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #include #include #include #include "hal.h" #include "hal/stm32h5.h" static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates) { uint32_t reg = FLASH_ACR; if ((reg & FLASH_ACR_LATENCY_MASK) < waitstates) do { FLASH_ACR = (reg & ~(FLASH_ACR_LATENCY_MASK | (FLASH_ACR_WRHIGHFREQ_MASK << FLASH_ACR_WRHIGHFREQ_SHIFT))) | waitstates | (0x02 << FLASH_ACR_WRHIGHFREQ_SHIFT) ; } while ((FLASH_ACR & FLASH_ACR_LATENCY_MASK) != waitstates); } static void RAMFUNCTION hal_flash_wait_complete(void) { while ((FLASH_SR & FLASH_SR_BSY) == FLASH_SR_BSY) ; #if (TZ_SECURE()) while ((FLASH_NS_SR & FLASH_SR_BSY) == FLASH_SR_BSY) ; #endif } static void RAMFUNCTION hal_flash_wait_buffer_empty(void) { while ((FLASH_SR & FLASH_SR_DBNE) == FLASH_SR_DBNE) ; #if (TZ_SECURE()) while ((FLASH_NS_SR & FLASH_SR_DBNE) == FLASH_SR_DBNE) ; #endif } void RAMFUNCTION hal_flash_clear_errors(uint8_t bank) { FLASH_CCR |= ( FLASH_CCR_CLR_WBNE | FLASH_CCR_CLR_DBNE | FLASH_CCR_CLR_INCE| FLASH_CCR_CLR_PGSE | FLASH_CCR_CLR_OPTE | FLASH_CCR_CLR_OPTWE | FLASH_CCR_CLR_WRPE | FLASH_CCR_CLR_EOP); } int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len) { int i = 0; uint32_t *src, *dst; uint32_t dword[2]; volatile uint32_t *sr, *cr; cr = &FLASH_CR; sr = &FLASH_SR; hal_flash_clear_errors(0); src = (uint32_t *)data; dst = (uint32_t *)address; #if (TZ_SECURE()) if ( ((address < FLASH_BANK2_BASE) && (address >= WOLFBOOT_PARTITION_BOOT_ADDRESS)) || (address >= WOLFBOOT_PARTITION_UPDATE_ADDRESS)) hal_tz_claim_nonsecure_area(address, len); /* Convert into secure address space */ dst = (uint32_t *)((address & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE); #endif while (i < len) { dword[0] = src[i >> 2]; dword[1] = src[(i >> 2) + 1]; *cr |= FLASH_CR_PG; dst[i >> 2] = dword[0]; ISB(); dst[(i >> 2) + 1] = dword[1]; hal_flash_wait_complete(); if ((*sr & FLASH_SR_EOP) != 0) *sr |= FLASH_SR_EOP; *cr &= ~FLASH_CR_PG; i+=8; } #if (TZ_SECURE()) hal_tz_release_nonsecure_area(); #endif return 0; } void RAMFUNCTION hal_flash_unlock(void) { hal_flash_wait_complete(); if ((FLASH_CR & FLASH_CR_LOCK) != 0) { FLASH_KEYR = FLASH_KEY1; DMB(); FLASH_KEYR = FLASH_KEY2; DMB(); while ((FLASH_CR & FLASH_CR_LOCK) != 0) ; } } void RAMFUNCTION hal_flash_lock(void) { hal_flash_wait_complete(); if ((FLASH_CR & FLASH_CR_LOCK) == 0) FLASH_CR |= FLASH_CR_LOCK; } void RAMFUNCTION hal_flash_opt_unlock(void) { hal_flash_wait_complete(); if ((FLASH_OPTCR & FLASH_OPTCR_OPTLOCK) != 0) { FLASH_OPTKEYR = FLASH_OPTKEY1; DMB(); FLASH_OPTKEYR = FLASH_OPTKEY2; DMB(); while ((FLASH_CR & FLASH_CR_LOCK) != 0) ; } } void RAMFUNCTION hal_flash_opt_lock(void) { FLASH_OPTCR |= FLASH_OPTCR_OPTSTRT; hal_flash_wait_complete(); if ((FLASH_OPTCR & FLASH_OPTCR_OPTLOCK) == 0) FLASH_OPTCR |= FLASH_OPTCR_OPTLOCK; } int RAMFUNCTION hal_flash_erase(uint32_t address, int len) { uint32_t end_address; uint32_t p; hal_flash_clear_errors(0); if (len == 0) return -1; if (address < 0x08000000) return -1; end_address = address + len - 1; for (p = address; p < end_address; p += FLASH_PAGE_SIZE) { uint32_t reg; uint32_t base; uint32_t bnksel = 0; base = FLASHMEM_ADDRESS_SPACE; reg = FLASH_CR & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_BER)); if(p >= (FLASH_BANK2_BASE) && (p <= (FLASH_TOP) )) { #if TZ_SECURE() /* When in secure mode, skip erasing non-secure pages: will be erased upon claim */ return 0; #endif base = FLASH_BANK2_BASE; bnksel = 1; } else { FLASH_CR &= ~FLASH_CR_SER ; return 0; /* Address out of range */ } reg |= ((((p - base) >> 13) << FLASH_CR_PNB_SHIFT) | FLASH_CR_SER | (bnksel << 31)); FLASH_CR = reg; DMB(); FLASH_CR |= FLASH_CR_STRT; hal_flash_wait_complete(); } /* If the erase operation is completed, disable the associated bits */ FLASH_CR &= ~FLASH_CR_SER ; return 0; } static void clock_pll_off(void) { uint32_t reg32; /* Select HSI as SYSCLK source. */ RCC_CFGR1 &= ~(0x07 << RCC_CFGR1_SW_SHIFT); DMB(); /* Turn off PLL1 */ RCC_PLL1CFGR &= ~RCC_PLL1CFGR_PLL1PEN; DMB(); RCC_CR &= ~RCC_CR_PLL1ON; DMB(); /* Wait until PLL1 is disabled */ while ((RCC_CR & RCC_CR_PLL1RDY) != 0) ; } /*This implementation will setup MSI 48 MHz as PLL Source Mux, PLLCLK as System Clock Source*/ static void clock_pll_on(void) { uint32_t reg32; uint32_t plln, pllm, pllq, pllp, pllr, hpre, apb1pre, apb2pre, apb3pre, flash_waitstates; /* Select clock parameters (CPU Speed = 125 MHz) */ pllm = 4; plln = 125; /* TODO: increase to 250 MHz */ pllp = 2; pllq = 2; pllr = 2; flash_waitstates = 5; /* Disable PLL1 */ RCC_CR &= ~RCC_CR_PLL1ON; /* Wait until PLL1 is disabled */ while ((RCC_CR & RCC_CR_PLL1RDY) != 0) ; /* Set flash wait states */ flash_set_waitstates(flash_waitstates); /* PLL Oscillator configuration */ RCC_CR |= RCC_CR_HSEON | RCC_CR_HSEBYP | RCC_CR_HSEEXT; /* Wait until HSE is Ready */ while ((RCC_CR & RCC_CR_HSERDY) == 0) ; /* Configure PLL1 div/mul factors */ reg32 = RCC_PLL1CFGR; reg32 &= ~((0x3F << RCC_PLL1CFGR_PLL1M_SHIFT) | (0x03)); reg32 |= (pllm << RCC_PLL1CFGR_PLL1M_SHIFT) | RCC_PLL1CFGR_PLL1SRC_HSE; RCC_PLL1CFGR = reg32; DMB(); RCC_PLL1DIVR = ((plln - 1) << RCC_PLL1DIVR_DIVN_SHIFT) | ((pllp - 1) << RCC_PLL1DIVR_DIVP_SHIFT) | ((pllq - 1) << RCC_PLL1DIVR_DIVQ_SHIFT) | ((pllr - 1) << RCC_PLL1DIVR_DIVR_SHIFT); DMB(); /* Disable Fractional PLL */ RCC_PLL1CFGR &= ~RCC_PLL1CFGR_PLL1FRACEN; DMB(); /* Configure Fractional PLL factor */ RCC_PLL1FRACR = 0x00000000; DMB(); /* Enable Fractional PLL */ RCC_PLL1CFGR |= RCC_PLL1CFGR_PLL1FRACEN; DMB(); /* Select PLL1 Input frequency range: VCI */ RCC_PLL1CFGR |= RCC_PLL1CFGR_RGE_1_2 << RCC_PLL1CFGR_PLL1RGE_SHIFT; /* Select PLL1 Output frequency range: VCO = 0 */ RCC_PLL1CFGR &= ~RCC_PLL1CFGR_PLL1VCOSEL; DMB(); /* Enable PLL1 system clock out (DIV: P) */ RCC_PLL1CFGR |= RCC_PLL1CFGR_PLL1PEN; /* Enable PLL1 */ RCC_CR |= RCC_CR_PLL1ON; /* Set up APB3, 2, 1 and AHB prescalers */ hpre = RCC_AHB_PRESCALER_DIV_NONE; apb1pre = RCC_APB_PRESCALER_DIV_NONE; apb2pre = RCC_APB_PRESCALER_DIV_NONE; apb3pre = RCC_APB_PRESCALER_DIV_NONE; reg32 = RCC_CFGR2; reg32 &= ~( (0x0F << RCC_CFGR2_HPRE_SHIFT) | (0x07 << RCC_CFGR2_PPRE1_SHIFT) | (0x07 << RCC_CFGR2_PPRE2_SHIFT) | (0x07 << RCC_CFGR2_PPRE3_SHIFT)); reg32 |= ((hpre) << RCC_CFGR2_HPRE_SHIFT) | ((apb1pre) << RCC_CFGR2_PPRE1_SHIFT) | ((apb2pre) << RCC_CFGR2_PPRE2_SHIFT) | ((apb3pre) << RCC_CFGR2_PPRE3_SHIFT); RCC_CFGR2 = reg32; DMB(); /* Wait until PLL1 is Ready */ while ((RCC_CR & RCC_CR_PLL1RDY) == 0) ; /* Set PLL as clock source */ reg32 = RCC_CFGR1 & (~RCC_CFGR1_SW_MASK); RCC_CFGR1 = reg32 | RCC_CFGR1_SW_PLL1; DMB(); /* Wait until selection of PLL as source is complete */ while ((RCC_CFGR1 & (RCC_CFGR1_SW_PLL1 << RCC_CFGR1_SWS_SHIFT)) == 0) ; } #if (TZ_SECURE()) static void periph_unsecure(void) { uint32_t pin; /*Enable clock for User LED GPIOs */ RCC_AHB2_CLOCK_ER|= LED_AHB2_ENABLE; /* Enable clock for LPUART1 */ RCC_APB2_CLOCK_ER |= UART1_APB2_CLOCK_ER_VAL; PWR_CR2 |= PWR_CR2_IOSV; /*Un-secure User LED GPIO pins */ GPIO_SECCFGR(GPIOG_BASE) &= ~(1 << 4); GPIO_SECCFGR(GPIOB_BASE) &= ~(1 << 0); GPIO_SECCFGR(GPIOF_BASE) &= ~(1 << 4); #if 0 /* Unsecure LPUART1 */ TZSC_PRIVCFGR2 &= ~(TZSC_PRIVCFG2_LPUARTPRIV); GPIO_SECCFGR(GPIOG_BASE) &= ~(1<> 31; hal_flash_clear_errors(0); hal_flash_unlock(); hal_flash_opt_unlock(); if (cur_opts) FLASH_OPTSR_PRG &= ~(FLASH_OPTSR_SWAP_BANK); else FLASH_OPTSR_PRG |= FLASH_OPTSR_SWAP_BANK; FLASH_OPTCR |= FLASH_OPTCR_OPTSTRT; DMB(); hal_flash_opt_lock(); hal_flash_lock(); stm32h5_reboot(); } static uint8_t bootloader_copy_mem[BOOTLOADER_SIZE]; static void fork_bootloader(void) { uint32_t data = (uint32_t) FLASHMEM_ADDRESS_SPACE; uint32_t dst = FLASH_BANK2_BASE; uint32_t r = 0, w = 0; int i; #if TZ_SECURE() data = (uint32_t)((data & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE); dst = (uint32_t)((dst & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE); #endif /* Return if content already matches */ if (memcmp((void *)data, (const char*)dst, BOOTLOADER_SIZE) == 0) return; /* Read the wolfBoot image in RAM */ memcpy(bootloader_copy_mem, (void*)data, BOOTLOADER_SIZE); /* Mass-erase */ hal_flash_unlock(); hal_flash_erase(dst, BOOTLOADER_SIZE); hal_flash_write(dst, bootloader_copy_mem, BOOTLOADER_SIZE); hal_flash_lock(); } #endif void hal_init(void) { #if TZ_SECURE() hal_tz_sau_init(); hal_gtzc_init(); #endif clock_pll_on(); #if defined(DUALBANK_SWAP) && defined(__WOLFBOOT) if ((FLASH_OPTSR_CUR & (FLASH_OPTSR_SWAP_BANK)) == 0) fork_bootloader(); #endif } void hal_prepare_boot(void) { clock_pll_off(); #if (TZ_SECURE()) periph_unsecure(); #endif } #ifdef FLASH_OTP_ROT /* Public API */ int hal_flash_otp_write(uint32_t flashAddress, const void* data, uint16_t length) { volatile uint16_t tmp; uint16_t *pdata = (uint16_t *)data; uint16_t idx = 0, len_align; uint16_t last_word; if (!(flashAddress >= FLASH_OTP_BASE && flashAddress <= FLASH_OTP_END)) { return -1; } hal_flash_wait_complete(); hal_flash_wait_buffer_empty(); hal_flash_unlock(); hal_flash_clear_errors(0); /* Truncate to 2B alignment */ length = (length / 2 * 2); while (idx < length && flashAddress <= FLASH_OTP_END-1) { hal_flash_wait_complete(); /* Set PG bit */ FLASH_CR |= FLASH_CR_PG; /* Program an OTP word (32 bits) */ *(volatile uint16_t*)flashAddress = *pdata; ISB(); DSB(); /* Read it back */ tmp = *(volatile uint16_t*)flashAddress; if (tmp != *pdata) { /* Provisioning failed. OTP already programmed? */ while(1) ; } /* Clear PG bit */ FLASH_CR &= ~FLASH_CR_PG; flashAddress += sizeof(uint16_t); pdata++; idx += sizeof(uint16_t); } hal_flash_lock(); return 0; } int hal_flash_otp_read(uint32_t flashAddress, void* data, uint32_t length) { uint16_t i; uint16_t *pdata = (uint16_t *)data; if (!(flashAddress >= FLASH_OTP_BASE && flashAddress <= FLASH_OTP_END)) { return -1; } for (i = 0; (i < length) && (flashAddress <= (FLASH_OTP_END-1)); i += sizeof(uint16_t)) { *pdata = *(volatile uint16_t*)flashAddress; flashAddress += sizeof(uint16_t); pdata++; } return 0; } #endif /* FLASH_OTP_ROT */