/* app_stm32l0.c * * Test bare-metal boot-led-on application * * Copyright (C) 2021 wolfSSL Inc. * * This file is part of wolfBoot. * * wolfBoot is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * wolfBoot is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #include #include #include #include "led.h" #include "target.h" #include "wolfboot/wolfboot.h" #ifdef SPI_FLASH #include "spi_flash.h" #endif #ifdef TARGET_stm32l0 #define UART2 (0x40004400) #define UART2_CR1 (*(volatile uint32_t *)(UART2 + 0x00)) #define UART2_CR2 (*(volatile uint32_t *)(UART2 + 0x04)) #define UART2_CR3 (*(volatile uint32_t *)(UART2 + 0x08)) #define UART2_BRR (*(volatile uint32_t *)(UART2 + 0x0c)) #define UART2_ISR (*(volatile uint32_t *)(UART2 + 0x1c)) #define UART2_ICR (*(volatile uint32_t *)(UART2 + 0x20)) #define UART2_RDR (*(volatile uint32_t *)(UART2 + 0x24)) #define UART2_TDR (*(volatile uint32_t *)(UART2 + 0x28)) #define UART_CR1_UART_ENABLE (1 << 0) #define UART_CR1_SYMBOL_LEN (1 << 12) #define UART_CR1_PARITY_ENABLED (1 << 10) #define UART_CR1_OVER8 (1 << 15) #define UART_CR1_PARITY_ODD (1 << 9) #define UART_CR1_TX_ENABLE (1 << 3) #define UART_CR1_RX_ENABLE (1 << 2) #define UART_CR2_STOPBITS (3 << 12) #define UART_CR2_LINEN (1 << 14) #define UART_CR2_CLKEN (1 << 11) #define UART_CR3_HDSEL (1 << 3) #define UART_CR3_SCEN (1 << 5) #define UART_CR3_IREN (1 << 1) #define UART_ISR_TX_EMPTY (1 << 7) #define UART_ISR_RX_NOTEMPTY (1 << 5) #define RCC_IOPENR (*(volatile uint32_t *)(0x4002102C)) #define APB1_CLOCK_ER (*(volatile uint32_t *)(0x40021038)) #define IOPAEN (1 << 0) #define IOPCEN (1 << 2) #define UART2_APB1_CLOCK_ER_VAL (1 << 17) #define GPIOA_BASE 0x50000000 #define GPIOA_MODE (*(volatile uint32_t *)(GPIOA_BASE + 0x00)) #define GPIOA_OTYPE (*(volatile uint32_t *)(GPIOA_BASE + 0x04)) #define GPIOA_OSPD (*(volatile uint32_t *)(GPIOA_BASE + 0x08)) #define GPIOA_PUPD (*(volatile uint32_t *)(GPIOA_BASE + 0x0c)) #define GPIOA_ODR (*(volatile uint32_t *)(GPIOA_BASE + 0x14)) #define GPIOA_BSRR (*(volatile uint32_t *)(GPIOA_BASE + 0x18)) #define GPIOA_AFL (*(volatile uint32_t *)(GPIOA_BASE + 0x20)) #define GPIOA_AFH (*(volatile uint32_t *)(GPIOA_BASE + 0x24)) #define GPIO_MODE_AF (2) #define UART2_PIN_AF 4 #define UART2_RX_PIN 2 #define UART2_TX_PIN 3 #ifndef CPU_FREQ #define CPU_FREQ (24000000) #endif static void uart2_pins_setup(void) { uint32_t reg; RCC_IOPENR |= IOPAEN; /* Set mode = AF */ reg = GPIOA_MODE & ~ (0x03 << (UART2_RX_PIN * 2)); GPIOA_MODE = reg | (2 << (UART2_RX_PIN * 2)); reg = GPIOA_MODE & ~ (0x03 << (UART2_TX_PIN * 2)); GPIOA_MODE = reg | (2 << (UART2_TX_PIN * 2)); /* Alternate function: use low pins (2 and 3) */ reg = GPIOA_AFL & ~(0xf << (UART2_TX_PIN * 4)); GPIOA_AFL = reg | (UART2_PIN_AF << (UART2_TX_PIN * 4)); reg = GPIOA_AFL & ~(0xf << (UART2_RX_PIN * 4)); GPIOA_AFL = reg | (UART2_PIN_AF << (UART2_RX_PIN * 4)); } int uart_setup(uint32_t bitrate) { uint32_t reg; /* Enable pins and configure for AF */ uart2_pins_setup(); /* Turn on the device */ APB1_CLOCK_ER |= UART2_APB1_CLOCK_ER_VAL; /* Enable 16-bit oversampling */ UART2_CR1 &= (~UART_CR1_OVER8); /* Configure clock */ UART2_BRR |= (uint16_t)(CPU_FREQ / bitrate); /* Configure data bits to 8 */ UART2_CR1 &= ~UART_CR1_SYMBOL_LEN; /* Disable parity */ UART2_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD); /* Set stop bits */ UART2_CR2 = UART2_CR2 & ~UART_CR2_STOPBITS; /* Clear flags for async mode */ UART2_CR2 &= ~(UART_CR2_LINEN | UART_CR2_CLKEN); UART2_CR3 &= ~(UART_CR3_SCEN | UART_CR3_HDSEL | UART_CR3_IREN); /* Configure for RX+TX, turn on. */ UART2_CR1 |= UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE | UART_CR1_UART_ENABLE; return 0; } int uart_write(const uint8_t c) { volatile uint32_t reg; do { reg = UART2_ISR; } while ((reg & UART_ISR_TX_EMPTY) == 0); UART2_TDR = c; return 1; } int uart_read(uint8_t *c, int len) { volatile uint32_t reg; int i = 0; reg = UART2_ISR; if (reg & UART_ISR_RX_NOTEMPTY) { *c = (uint8_t)UART2_RDR; return 1; } return 0; } void uart_print(const char *s) { int i = 0; while (s[i]) { uart_write(s[i++]); } } /* Matches all keys: * - chacha (32 + 12) * - aes128 (16 + 16) * - aes256 (32 + 16) */ /* Longest key possible: AES256 (32 key + 16 IV = 48) */ char enc_key[] = "0123456789abcdef0123456789abcdef" "0123456789abcdef"; void main(void) { uint32_t version; volatile uint32_t i, j; uart_setup(115200); uart_print("STM32L0 Test Application\n\r"); #ifdef SPI_FLASH spi_flash_probe(); #endif version = wolfBoot_current_firmware_version(); if ((version % 2) == 1) { uint32_t sz; #if EXT_ENCRYPTED wolfBoot_set_encrypt_key((uint8_t *)enc_key,(uint8_t *)(enc_key + 32)); #endif wolfBoot_update_trigger(); } else { wolfBoot_success(); } for (i = 0; i < version; i++) { boot_led_on(); for (j = 0; j < 200000; j++) ; boot_led_off(); for (j = 0; j < 200000; j++) ; } boot_led_on(); /* Wait for reboot */ while(1) ; } #endif /** PLATFROM_stm32l0 **/