/* mcxa.c * * Copyright (C) 2021 wolfSSL Inc. * * This file is part of wolfBoot. * * wolfBoot is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfBoot is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #include #include #include "image.h" /* FSL includes */ #include "fsl_common.h" /* Clock + RAM voltage settings */ #include "fsl_clock.h" #include "fsl_spc.h" /* Flash driver */ #include "fsl_romapi.h" #define BOARD_BOOTCLOCKFRO96M_CORE_CLOCK 96000000U /*!< Core clock frequency: 96000000Hz */ static flash_config_t pflash; //static ftfx_cache_config_t pcache; static int flash_init = 0; #ifdef __WOLFBOOT /* Assert hook needed by Kinetis SDK */ void __assert_func(const char *a, int b, const char *c, const char *d) { while(1) ; } /* The following clock setting function is autogenerated by the MCUXpresso IDE */ void BOARD_BootClockFRO96M(void) { uint32_t coreFreq; spc_active_mode_core_ldo_option_t ldoOption; spc_sram_voltage_config_t sramOption; /* Get the CPU Core frequency */ coreFreq = CLOCK_GetCoreSysClkFreq(); /* The flow of increasing voltage and frequency */ if (coreFreq <= BOARD_BOOTCLOCKFRO96M_CORE_CLOCK) { /* Set the LDO_CORE VDD regulator level */ ldoOption.CoreLDOVoltage = kSPC_CoreLDO_NormalVoltage; ldoOption.CoreLDODriveStrength = kSPC_CoreLDO_NormalDriveStrength; (void)SPC_SetActiveModeCoreLDORegulatorConfig(SPC0, &ldoOption); /* Configure Flash to support different voltage level and frequency */ FMU0->FCTRL = (FMU0->FCTRL & ~((uint32_t)FMU_FCTRL_RWSC_MASK)) | (FMU_FCTRL_RWSC(0x2U)); /* Specifies the operating voltage for the SRAM's read/write timing margin */ sramOption.operateVoltage = kSPC_sramOperateAt1P1V; sramOption.requestVoltageUpdate = true; (void)SPC_SetSRAMOperateVoltage(SPC0, &sramOption); } CLOCK_SetupFROHFClocking(96000000U); /*!< Enable FRO HF(96MHz) output */ CLOCK_SetupFRO12MClocking(); /*!< Setup FRO12M clock */ CLOCK_AttachClk(kFRO_HF_to_MAIN_CLK); /* !< Switch MAIN_CLK to FRO_HF */ /* The flow of decreasing voltage and frequency */ if (coreFreq > BOARD_BOOTCLOCKFRO96M_CORE_CLOCK) { /* Configure Flash to support different voltage level and frequency */ FMU0->FCTRL = (FMU0->FCTRL & ~((uint32_t)FMU_FCTRL_RWSC_MASK)) | (FMU_FCTRL_RWSC(0x2U)); /* Specifies the operating voltage for the SRAM's read/write timing margin */ sramOption.operateVoltage = kSPC_sramOperateAt1P1V; sramOption.requestVoltageUpdate = true; (void)SPC_SetSRAMOperateVoltage(SPC0, &sramOption); /* Set the LDO_CORE VDD regulator level */ ldoOption.CoreLDOVoltage = kSPC_CoreLDO_NormalVoltage; ldoOption.CoreLDODriveStrength = kSPC_CoreLDO_NormalDriveStrength; (void)SPC_SetActiveModeCoreLDORegulatorConfig(SPC0, &ldoOption); } /*!< Set up clock selectors - Attach clocks to the peripheries */ /*!< Set up dividers */ CLOCK_SetClockDiv(kCLOCK_DivAHBCLK, 1U); /* !< Set AHBCLKDIV divider to value 1 */ CLOCK_SetClockDiv(kCLOCK_DivFRO_HF_DIV, 1U); /* !< Set FROHFDIV divider to value 1 */ } void hal_init(void) { /* Clock setting */ BOARD_BootClockFRO96M(); /* Clear the FLASH configuration structure */ memset(&pflash, 0, sizeof(pflash)); /* FLASH driver init */ FLASH_Init(&pflash); } void hal_prepare_boot(void) { } #endif int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len) { int w = 0; int ret; const uint8_t empty_qword[16] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; while (len > 0) { if ((len < 16) || address & 0x0F) { uint8_t aligned_qword[16]; uint32_t address_align = address - (address & 0x0F); uint32_t start_off = address - address_align; int i; memcpy(aligned_qword, (void*)address_align, 16); for (i = start_off; ((i < 16) && (i < len + (int)start_off)); i++) aligned_qword[i] = data[w++]; if (memcmp(aligned_qword, empty_qword, 16) != 0) { ret = FLASH_ProgramPhrase(&pflash, address_align, aligned_qword, 16); if (ret != kStatus_Success) return -1; } address += i; len -= i; } else { uint32_t len_align = len - (len & 0x0F); ret = FLASH_ProgramPhrase(&pflash, address, (uint8_t*)data + w, len_align); if (ret != kStatus_Success) return -1; len -= len_align; address += len_align; } } return 0; } void RAMFUNCTION hal_flash_unlock(void) { } void RAMFUNCTION hal_flash_lock(void) { } int RAMFUNCTION hal_flash_erase(uint32_t address, int len) { while ((address % 4) != 0) address --; if (FLASH_EraseSector(&pflash, address, len, kFLASH_ApiEraseKey) != kStatus_Success) return -1; return 0; }