/* stm32u5.c * * Copyright (C) 2021 wolfSSL Inc. * * This file is part of wolfBoot. * * wolfBoot is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * wolfBoot is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #include #include #include #include "hal/stm32u5.h" #include "hal.h" static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates) { uint32_t reg = FLASH_ACR; if ((reg & FLASH_ACR_LATENCY_MASK) != waitstates) FLASH_ACR = (reg & ~FLASH_ACR_LATENCY_MASK) | waitstates; } static RAMFUNCTION void flash_wait_complete(uint8_t bank) { while ((FLASH_NS_SR & (FLASH_SR_BSY | FLASH_SR_WDW)) != 0) ; #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)) while ((FLASH_SR & (FLASH_SR_BSY | FLASH_SR_WDW)) != 0) ; #endif } static void RAMFUNCTION flash_clear_errors(uint8_t bank) { FLASH_NS_SR |= (FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR | FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR #if !(defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)) | FLASH_SR_OPTWERR #endif ); #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)) FLASH_SR |= (FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR | FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR | FLASH_SR_OPTWERR); #endif } int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len) { int i = 0; uint32_t *src, *dst; uint32_t qword[4]; volatile uint32_t *sr, *cr; flash_clear_errors(0); src = (uint32_t*)data; dst = (uint32_t*)address; #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) if ((((FLASH_OPTR & FLASH_OPTR_DBANK) == 0) && (address <= FLASH_TOP)) || (address < FLASH_BANK2_BASE)) { cr = &FLASH_CR; sr = &FLASH_SR; /* Convert into secure address space */ dst = (uint32_t *)((address & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE); } else if (address >= (FLASH_BANK2_BASE) && (address <= (FLASH_TOP) )) { cr = &FLASH_NS_CR; sr = &FLASH_NS_SR; } else { return 0; /* Address out of range */ } #else cr = &FLASH_NS_CR; sr = &FLASH_NS_SR; #endif while (i < len) { qword[0] = src[i >> 2]; qword[1] = src[(i >> 2) + 1]; qword[2] = src[(i >> 2) + 2]; qword[3] = src[(i >> 2) + 3]; *cr |= FLASH_CR_PG; dst[i >> 2] = qword[0]; ISB(); dst[(i >> 2) + 1] = qword[1]; ISB(); dst[(i >> 2) + 2] = qword[2]; ISB(); dst[(i >> 2) + 3] = qword[3]; ISB(); flash_wait_complete(0); if ((*sr & FLASH_SR_EOP) != 0) *sr |= FLASH_SR_EOP; *cr &= ~FLASH_CR_PG; i += 16; } return 0; } void RAMFUNCTION hal_flash_unlock(void) { flash_wait_complete(0); #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)) if ((FLASH_CR & FLASH_CR_LOCK) != 0) { FLASH_KEYR = FLASH_KEY1; DMB(); FLASH_KEYR = FLASH_KEY2; DMB(); while ((FLASH_CR & FLASH_CR_LOCK) != 0) ; } #endif if ((FLASH_NS_CR & FLASH_CR_LOCK) != 0) { FLASH_NS_KEYR = FLASH_KEY1; DMB(); FLASH_NS_KEYR = FLASH_KEY2; DMB(); while ((FLASH_NS_CR & FLASH_CR_LOCK) != 0) ; } } void RAMFUNCTION hal_flash_lock(void) { flash_wait_complete(0); #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)) if ((FLASH_CR & FLASH_CR_LOCK) == 0) FLASH_CR |= FLASH_CR_LOCK; #endif if ((FLASH_NS_CR & FLASH_CR_LOCK) == 0) FLASH_NS_CR |= FLASH_CR_LOCK; } void RAMFUNCTION hal_flash_opt_unlock(void) { flash_wait_complete(0); if ((FLASH_NS_CR & FLASH_CR_OPTLOCK) != 0) { FLASH_NS_OPTKEYR = FLASH_OPTKEY1; DMB(); FLASH_NS_OPTKEYR = FLASH_OPTKEY2; DMB(); while ((FLASH_NS_CR & FLASH_CR_LOCK) != 0) ; } } void RAMFUNCTION hal_flash_opt_lock(void) { FLASH_NS_CR |= FLASH_CR_OPTSTRT; flash_wait_complete(0); FLASH_NS_CR |= FLASH_CR_OBL_LAUNCH; if ((FLASH_NS_CR & FLASH_CR_OPTLOCK) == 0) FLASH_NS_CR |= FLASH_CR_OPTLOCK; } int RAMFUNCTION hal_flash_erase(uint32_t address, int len) { uint32_t end_address; uint32_t p; volatile uint32_t *cr = &FLASH_NS_CR; flash_clear_errors(0); if (len == 0) return -1; if (address < ARCH_FLASH_OFFSET) return -1; end_address = address + len - 1; for (p = address; p < end_address; p += FLASH_PAGE_SIZE) { uint32_t reg; uint32_t base; uint32_t bker = 0; cr = &FLASH_NS_CR; if ((((FLASH_OPTR & FLASH_OPTR_DBANK) == 0) && (p <= FLASH_TOP)) || (p < FLASH_BANK2_BASE)) { #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) cr = &FLASH_CR; #endif base = FLASHMEM_ADDRESS_SPACE; } else if (p >= (FLASH_BANK2_BASE) && (p <= (FLASH_TOP) )) { bker = FLASH_CR_BKER; base = FLASH_BANK2_BASE; } else { *cr &= ~FLASH_CR_PER ; return 0; /* Address out of range */ } reg = *cr & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_BKER)); reg |= ((((p - base) >> 13) << FLASH_CR_PNB_SHIFT) | FLASH_CR_PER | bker ); *cr = reg; DMB(); *cr |= FLASH_CR_STRT; flash_wait_complete(0); } /* If the erase operation is completed, disable the associated bits */ *cr &= ~FLASH_CR_PER ; return 0; } static void clock_pll_off(void) { uint32_t reg32, flash_waitstates ; /* Select MSI as SYSCLK source. */ reg32 = RCC_CFGR1; reg32 &= ~((1 << 1) | (1 << 0)); RCC_CFGR1 = (reg32 | RCC_CFGR_SW_MSI); DMB(); /* Wait for MSI clock to be selected. */ while ((RCC_CFGR1 & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_MSI) {}; flash_waitstates = 1; flash_set_waitstates(flash_waitstates); /* Turn off PLL */ RCC_CR &= ~RCC_CR_HSION; RCC_CR &= ~RCC_CR_PLL1ON; DMB(); } /* This implementation will setup MSI 48 MHz as PLL Source Mux, PLLCLK as * System Clock Source */ static void clock_pll_on(int powersave) { uint32_t reg32; uint32_t pll1n, pll1m, pll1mboost, pll1q, pll1p, pll1r, pll1fracn, pll1rge; uint32_t hpre, apb1pre, apb2pre, apb3pre, flash_waitstates; /* Reset the RCC clock configuration to the default reset state ----------*/ /* Set MSION bit */ RCC_CR = RCC_CR_MSISON; /* Reset CFGR register */ RCC_CFGR1 = 0U; RCC_CFGR2 = 0U; RCC_CFGR3 = 0U; /* Reset HSEON, CSSON , HSION, PLLxON bits */ RCC_CR &= ~(RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLL1ON | RCC_CR_PLL2ON | RCC_CR_PLL3ON); /* Reset PLLCFGR register */ RCC_PLL1CFGR = 0U; /* Reset HSEBYP bit */ RCC_CR &= ~(RCC_CR_HSEBYP); /* Disable all interrupts */ RCC_CIER = 0U; FLASH_ACR|=FLASH_ACR_PRFTEN; RCC_AHB3ENR |= RCC_AHB3ENR_PWREN; RCC_AHB1ENR |= RCC_AHB1ENR_GTZC1EN; RCC_AHB3ENR |= RCC_AHB3ENR_GTZC2EN; PWR_UCPDR |= PWR_UCPDR_DBDIS; PWR_SVMCR |= PWR_SVMCR_IOS2V; PWR_VOSR &= ~( (PWR_VOSR_VOS_1 << PWR_VOSR_VOS_SHIFT) | PWR_VOSR_BOOSTEN ); PWR_VOSR|= ((PWR_VOSR_VOS_1<< PWR_VOSR_VOS_SHIFT) | PWR_VOSR_BOOSTEN); /* Wait until VOSRDY is raised */ reg32 = PWR_VOSR; while ((PWR_VOSR & PWR_VOSR_VOSRDY) == 0) {}; RCC_ICSCR1|= RCC_ICSCR1_MSIRGSEL; reg32 = RCC_ICSCR1; reg32 &= ~( (0xF << RCC_ICSCR1_MSIRANGE_SHIFT)); reg32|= (RCC_ICSCR1_MSIRG_0 << RCC_ICSCR1_MSIRANGE_SHIFT); RCC_ICSCR1 = reg32; reg32 = RCC_ICSCR1; DMB(); /* Adjusts the Multiple Speed oscillator (MSI) calibration value */ reg32 = RCC_ICSCR2; reg32 &= ~((0x1F << RCC_ICSCR2_MSITRIM0_SHIFT)); reg32 |= (RCC_ICSCR2_MSITRIM0_DEFAULT << RCC_ICSCR2_MSITRIM0_SHIFT); RCC_ICSCR2 = reg32; reg32 = RCC_ICSCR2; DMB(); flash_waitstates = 1; flash_set_waitstates(flash_waitstates); /*----------------------------- HSI Configuration ------------------------*/ /* Enable the Internal High Speed oscillator (HSI) */ RCC_CR |= RCC_CR_HSION; /* Wait till HSI is ready */ while ((RCC_CR & RCC_CR_HSIRDY) == 0) {}; /* Adjusts the Internal High Speed oscillator (HSI) calibration value */ reg32 = RCC_ICSCR3; reg32 &= ~((1 << 20) | (1 << 19) | (1 << 18) | (1 << 17) | (1 << 16) ); reg32 |= (RCC_ICSCR3_HSITRIM_DEFAULT << RCC_ICSCR3_HSITRIM_SHIFT); RCC_ICSCR3 = reg32; reg32 = RCC_ICSCR3; DMB(); /*-------------------------------- PLL Configuration ---------------------*/ /* Select clock parameters (CPU Speed = 160 MHz) */ pll1m = 3; pll1mboost = RCC_PLL1CFGR_PLL1MBOOST_DIV4; pll1n = 10; pll1p = 2; pll1q = 2; pll1r = 1; pll1fracn = 0; pll1rge = RCC_PLL1VCIRANGE_1; hpre = RCC_AHB_PRESCALER_DIV_NONE; apb1pre = RCC_APB_PRESCALER_DIV_NONE; apb2pre = RCC_APB_PRESCALER_DIV_NONE; apb3pre = RCC_APB_PRESCALER_DIV_NONE; /* Disable the main PLL */ RCC_CR &= ~RCC_CR_PLL1ON; /* Wait till PLL is ready */ while ((RCC_CR & RCC_CR_PLL1RDY) != 0) {}; /* Enable PWR CLK */ RCC_AHB3ENR|= RCC_AHB3ENR_PWREN; /*Disable EPOD to configure PLL1MBOOST*/ PWR_VOSR &= ~PWR_VOSR_BOOSTEN; /* Configure the main PLL clock source, multiplication and division factors */ reg32 = RCC_PLL1CFGR ; reg32 &= ~((1 << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) | (1 << 9) | (1 << 8) | (1 << 1) | (1 << 0)); reg32 |= RCC_PLLCKSELR_PLLSRC_MSI; reg32 |= ((pll1m-1) << RCC_PLL1CFGR_PLLM_SHIFT); reg32 |= ((pll1mboost) << RCC_PLL1CFGR_PLL1MBOOST_SHIFT); RCC_PLL1CFGR = reg32; reg32 =0; reg32 |= ((pll1n-1) << RCC_PLL1DIVR_PLLN_SHIFT); reg32 |= ((pll1p-1) << RCC_PLL1DIVR_PLLP_SHIFT); reg32 |= ((pll1q-1) << RCC_PLL1DIVR_PLLQ_SHIFT); reg32 |= ((pll1r-1) << RCC_PLL1DIVR_PLLR_SHIFT); RCC_PLL1DIVR = reg32; DMB(); /* Disable PLL1FRACN */ RCC_PLL1CFGR&= ~RCC_PLL1CFGR_PLL1FRACEN; /* Configure PLL PLL1FRACN */ reg32 = RCC_PLL1FRACR ; reg32 &= ~((1 << 15) | (1 << 14) | (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) | (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3)); reg32 |= ((pll1fracn) << RCC_PLL1FRACR_SHIFT); RCC_PLL1FRACR = reg32; /* Enable PLL1FRACN */ RCC_PLL1CFGR|= RCC_PLL1CFGR_PLL1FRACEN; /* Select PLL1 input reference frequency range: VCI */ reg32 = RCC_PLL1CFGR ; reg32 &= ~((1 << 3) | (1 << 2)); reg32 |= ((pll1rge) << RCC_PLL1CFGR_PLL1RGE_SHIFT); RCC_PLL1CFGR = reg32; /* Enable the EPOD to reach max frequency */ PWR_VOSR |= PWR_VOSR_BOOSTEN; /* Disable PWR clk */ RCC_AHB3ENR&=~RCC_AHB3ENR_PWREN; /* Enable PLL System Clock output */ RCC_PLL1CFGR|=RCC_PLL1CFGR_PLL1REN; /* Enable the main PLL */ RCC_CR|=RCC_CR_PLL1ON; /* Wait till PLL is ready */ while ((RCC_CR & RCC_CR_PLL1RDY) == 0) {}; /* Increasing the number of wait states because of higher CPU frequency */ flash_waitstates = 4; flash_set_waitstates(flash_waitstates); /* Enable PWR CLK */ RCC_AHB3ENR|= RCC_AHB3ENR_PWREN; /* Wait till BOOST is ready */ while ((PWR_VOSR & PWR_VOSR_BOOSTRDY) == 0) {}; /*Disable PWR clk */ RCC_AHB3ENR&=~RCC_AHB3ENR_PWREN; /* Select PLL as SYSCLK source. */ reg32 = RCC_CFGR1; reg32 &= ~((1 << 1) | (1 << 0)); RCC_CFGR1 = (reg32 | RCC_CFGR_SW_PLL); DMB(); /* Wait for PLL clock to be selected. */ while ((RCC_CFGR1 & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_PLL) {}; /* HCLK Configuration */ reg32 = RCC_CFGR2 ; reg32 &= ~((1 << 3) | (1 << 2) | (1 << 1) | (1 << 0)); reg32 |= hpre; RCC_CFGR2 = reg32; DMB(); /* PRE1 and PRE2 conf */ reg32 = RCC_CFGR2 ; reg32 &= ~((1 << 6) | (1 << 5) | (1 << 4)); reg32 |= ((apb1pre) << RCC_CFGR2_PPRE1_SHIFT) ; reg32 &= ~((1 << 10) | (1 << 9) | (1 << 8)); reg32 |= ((apb2pre) << RCC_CFGR2_PPRE2_SHIFT) ; RCC_CFGR2 = reg32; DMB(); /* PRE3 conf */ reg32 = RCC_CFGR3; reg32 &= ~((1 << 6) | (1 << 5) | (1 << 4)); reg32 |= ((apb3pre) << RCC_CFGR3_PPRE3_SHIFT) ; RCC_CFGR3 = reg32; DMB(); /* Disable PWR clk */ RCC_AHB3ENR&=~RCC_AHB3ENR_PWREN; } static void RAMFUNCTION stm32u5_reboot(void) { AIRCR = AIRCR_SYSRESETREQ | AIRCR_VKEY; while(1) ; } void RAMFUNCTION hal_flash_dualbank_swap(void) { uint32_t cur_opts; hal_flash_unlock(); hal_flash_opt_unlock(); cur_opts = (FLASH_OPTR & FLASH_OPTR_SWAP_BANK) >> 20; if (cur_opts) FLASH_OPTR &= (~FLASH_OPTR_SWAP_BANK); else FLASH_OPTR |= FLASH_OPTR_SWAP_BANK; hal_flash_opt_lock(); hal_flash_lock(); stm32u5_reboot(); } static void led_unsecure() { uint32_t pin; /* Enable clock for User LED GPIOs */ RCC_AHB2ENR1_CLOCK_ER|= GPIOH_AHB2ENR1_CLOCK_ER; /* Un-secure User LED GPIO pins */ GPIOH_SECCFGR&=~(1<