wolfBoot/test-app/app_stm32f7.c

330 lines
9.2 KiB
C

/* stm32f7.c
*
* Test bare-metal application with UART update
*
* Copyright (C) 2018 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "system.h"
#include "wolfboot/wolfboot.h"
#include "hal.h"
#include "target.h"
/* UART module */
#define UART1_PIN_AF 7
#define UART1_RX_PIN 10
#define UART1_TX_PIN 9
#define UART1 (0x40011000)
#define UART1_CR1 (*(volatile uint32_t *)(UART1 + 0x00))
#define UART1_CR2 (*(volatile uint32_t *)(UART1 + 0x04))
#define UART1_BRR (*(volatile uint32_t *)(UART1 + 0x0C))
#define UART1_ISR (*(volatile uint32_t *)(UART1 + 0x1C))
#define UART1_RDR (*(volatile uint32_t *)(UART1 + 0x24))
#define UART1_TDR (*(volatile uint32_t *)(UART1 + 0x28))
#define UART_CR1_UART_ENABLE (1 << 0)
#define UART_CR1_TX_ENABLE (1 << 3)
#define UART_CR1_RX_ENABLE (1 << 2)
#define UART_CR1_SYMBOL_LEN (1 << 28)
#define UART_CR1_PARITY_ENABLED (1 << 10)
#define UART_CR1_PARITY_ODD (1 << 9)
#define UART_ISR_TX_EMPTY (1 << 7)
#define UART_ISR_RX_NOTEMPTY (1 << 5)
#define CLOCK_SPEED (216000000)
#define APB2_CLOCK_ER (*(volatile uint32_t *)(0x40023844))
#define UART1_APB2_CLOCK_ER (1 << 4)
#define AHB1_CLOCK_ER (*(volatile uint32_t *)(0x40023830))
#define GPIOA_AHB1_CLOCK_ER (1 << 0)
#define GPIOD_AHB1_CLOCK_ER (1 << 3)
#define GPIOA_BASE 0x40020000
#define GPIOD_BASE 0x40020c00
#define GPIOA_MODE (*(volatile uint32_t *)(GPIOA_BASE + 0x00))
#define GPIOA_AFL (*(volatile uint32_t *)(GPIOA_BASE + 0x20))
#define GPIOA_AFH (*(volatile uint32_t *)(GPIOA_BASE + 0x24))
#define GPIOA_BSRR (*(volatile uint32_t *)(GPIOA_BASE + 0x18))
#define GPIOA_PUPD (*(volatile uint32_t *)(GPIOA_BASE + 0x0c))
#define GPIOD_MODE (*(volatile uint32_t *)(GPIOD_BASE + 0x00))
#define GPIOD_OTYPE (*(volatile uint32_t *)(GPIOD_BASE + 0x04))
#define GPIOD_OSPD (*(volatile uint32_t *)(GPIOD_BASE + 0x08))
#define GPIOD_PUPD (*(volatile uint32_t *)(GPIOD_BASE + 0x0c))
#define GPIOD_ODR (*(volatile uint32_t *)(GPIOD_BASE + 0x14))
#define GPIOD_BSRR (*(volatile uint32_t *)(GPIOD_BASE + 0x18))
#define GPIOD_AFL (*(volatile uint32_t *)(GPIOD_BASE + 0x20))
#define GPIOD_AFH (*(volatile uint32_t *)(GPIOD_BASE + 0x24))
void hal_erase_bank2(void);
void uart_write(const char c)
{
uint32_t reg;
do {
reg = UART1_ISR;
} while ((reg & UART_ISR_TX_EMPTY) == 0);
UART1_TDR = c;
}
void uart_print(const char *s)
{
int i = 0;
while(s[i])
uart_write(s[i++]);
}
static void uart_pins_setup(void)
{
uint32_t reg;
AHB1_CLOCK_ER |= GPIOA_AHB1_CLOCK_ER;
/* Set mode = AF */
reg = GPIOA_MODE & ~ (0x03 << (UART1_RX_PIN * 2));
GPIOA_MODE = reg | (2 << (UART1_RX_PIN * 2));
reg = GPIOA_MODE & ~ (0x03 << (UART1_TX_PIN * 2));
GPIOA_MODE = reg | (2 << (UART1_TX_PIN * 2));
/* Alternate function: use hi pins (9 and 10) */
reg = GPIOA_AFH & ~(0xf << ((UART1_TX_PIN - 8) * 4));
GPIOA_AFH = reg | (UART1_PIN_AF << ((UART1_TX_PIN - 8) * 4));
reg = GPIOA_AFH & ~(0xf << ((UART1_RX_PIN - 8) * 4));
GPIOA_AFH = reg | (UART1_PIN_AF << ((UART1_RX_PIN - 8) * 4));
}
int uart_setup(uint32_t bitrate, uint8_t data, char parity, uint8_t stop)
{
uint32_t reg;
/* Enable pins and configure for AF7 */
uart_pins_setup();
/* Turn on the device */
APB2_CLOCK_ER |= UART1_APB2_CLOCK_ER;
/* Configure for TX + RX */
UART1_CR1 |= (UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE);
/* Configure clock */
UART1_BRR = CLOCK_SPEED / bitrate;
/* Configure data bits */
if (data == 8)
UART1_CR1 &= ~UART_CR1_SYMBOL_LEN;
else
UART1_CR1 |= UART_CR1_SYMBOL_LEN;
/* Configure parity */
switch (parity) {
case 'O':
UART1_CR1 |= UART_CR1_PARITY_ODD;
/* fall through to enable parity */
case 'E':
UART1_CR1 |= UART_CR1_PARITY_ENABLED;
break;
default:
UART1_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD);
}
/* Set stop bits (not supported)*/
(void)stop;
/* Turn on uart */
UART1_CR1 |= UART_CR1_UART_ENABLE;
return 0;
}
char uart_read(void)
{
char c;
volatile uint32_t reg;
do {
reg = UART1_ISR;
} while ((reg & UART_ISR_RX_NOTEMPTY) == 0);
c = (char)(UART1_RDR & 0xff);
return c;
}
#define MSGSIZE 16
#define PAGESIZE (256)
static uint8_t page[PAGESIZE];
static const char ERR='!';
static const char START='*';
static const char UPDATE='U';
static const char ACK='#';
static uint8_t msg[MSGSIZE];
static void ack(uint32_t _off)
{
uint8_t *off = (uint8_t *)(&_off);
int i;
uart_write(ACK);
for (i = 0; i < 4; i++) {
uart_write(off[i]);
}
}
static int check(uint8_t *pkt, int size)
{
int i;
uint16_t c = 0;
uint16_t c_rx = *((uint16_t *)(pkt + 2));
uint16_t *p = (uint16_t *)(pkt + 4);
for (i = 0; i < ((size - 4) >> 1); i++)
c += p[i];
if (c == c_rx)
return 0;
return -1;
}
void uart_update_mgr(void)
{
uint32_t tlen = 0;
volatile uint32_t recv_seq;
uint32_t r_total = 0;
uint32_t tot_len = 0;
uint32_t next_seq = 0;
uint32_t version = 0;
uint8_t *v_array = (uint8_t *)&version;
int i;
memset(page, 0xFF, PAGESIZE);
hal_flash_unlock();
version = wolfBoot_current_firmware_version();
// if ((version & 0x01) == 0)
// wolfBoot_success();
uart_write(START);
for (i = 3; i >= 0; i--) {
uart_write(v_array[i]);
}
while (1) {
r_total = 0;
do {
while(r_total < 2) {
msg[r_total++] = uart_read();
if ((r_total == 2) && ((msg[0] != 0xA5) || msg[1] != 0x5A)) {
r_total = 0;
continue;
}
}
msg[r_total++] = uart_read();
if ((tot_len == 0) && r_total == 2 + sizeof(uint32_t))
break;
if ((r_total > 8) && (tot_len <= ((r_total - 8) + next_seq)))
break;
} while (r_total < MSGSIZE);
if (tot_len == 0) {
tlen = msg[2] + (msg[3] << 8) + (msg[4] << 16) + (msg[5] << 24);
if (tlen > 2048 * 1024) {
uart_write(ERR);
uart_write(ERR);
uart_write(ERR);
uart_write(ERR);
uart_write(START);
recv_seq = 0;
tot_len = 0;
continue;
}
tot_len = tlen;
hal_erase_bank2();
ack(0);
continue;
}
if (check(msg, r_total) < 0) {
ack(next_seq);
continue;
}
recv_seq = msg[4] + (msg[5] << 8) + (msg[6] << 16) + (msg[7] << 24);
if (recv_seq == next_seq)
{
int psize = r_total - 8;
int page_idx = recv_seq % PAGESIZE;
memcpy(&page[recv_seq % PAGESIZE], msg + 8, psize);
page_idx += psize;
if ((page_idx == PAGESIZE) || (next_seq + psize >= tot_len)) {
uint32_t dst = (0x08120000, recv_seq + psize) - page_idx;
hal_flash_write(dst, page, PAGESIZE);
memset(page, 0xFF, PAGESIZE);
}
next_seq += psize;
}
ack(next_seq);
if (next_seq >= tot_len) {
/* Update complete */
//wolfBoot_update_trigger();
hal_flash_lock();
break;
}
}
/* Wait for reboot */
while(1)
;
}
#define LED_BOOT_PIN (4)
#define LED_USR_PIN (12)
static void boot_led_on(void)
{
uint32_t reg;
uint32_t pin = LED_BOOT_PIN;
AHB1_CLOCK_ER |= GPIOD_AHB1_CLOCK_ER;
reg = GPIOD_MODE & ~(0x03 << (pin * 2));
GPIOD_MODE = reg | (1 << (pin * 2));
reg = GPIOD_PUPD & ~(0x03 << (pin * 2));
GPIOD_PUPD = reg | (1 << (pin * 2));
GPIOD_BSRR |= (1 << pin);
}
static void boot_led_off(void)
{
GPIOD_BSRR |= (1 << (LED_BOOT_PIN + 16));
}
void usr_led_on(void)
{
uint32_t reg;
uint32_t pin = LED_USR_PIN;
AHB1_CLOCK_ER |= GPIOA_AHB1_CLOCK_ER;
reg = GPIOA_MODE & ~(0x03 << (pin * 2));
GPIOA_MODE = reg | (1 << (pin * 2));
reg = GPIOA_PUPD & ~(0x03 << (pin * 2));
GPIOA_PUPD = reg | (1 << (pin * 2));
GPIOA_BSRR |= (1 << pin);
}
void usr_led_off(void)
{
GPIOA_BSRR |= (1 << (LED_USR_PIN + 16));
}
void main(void)
{
hal_init();
boot_led_on();
usr_led_on();
boot_led_off();
// usr_led_off();
uart_setup(115200, 8, 'N', 1);
uart_update_mgr();
while(1)
;
}