wolfBoot/test-app/app_stm32h5.c

872 lines
23 KiB
C

/* app_stm32h5.c
*
* Test bare-metal application.
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/stat.h>
#include "system.h"
#include "hal.h"
#include "hal/stm32h5.h"
#include "uart_drv.h"
#include "wolfboot/wolfboot.h"
#include "keystore.h"
#include "target.h"
#ifdef SECURE_PKCS11
#include "wcs/user_settings.h"
#include "wolfssl/wolfcrypt/settings.h"
#include "wolfssl/wolfcrypt/wc_pkcs11.h"
#include "wolfssl/wolfcrypt/random.h"
#include "wolfcrypt/benchmark/benchmark.h"
#include "wolfcrypt/test/test.h"
extern const char pkcs11_library_name[];
extern const CK_FUNCTION_LIST wolfpkcs11nsFunctionList;
#endif
volatile unsigned int jiffies = 0;
/* Usart irq-based read function */
static uint8_t uart_buf_rx[1024];
static uint32_t uart_rx_bytes = 0;
static uint32_t uart_processed = 0;
static int uart_rx_isr(unsigned char *c, int len);
static int uart_poll(void);
#define LED_BOOT_PIN (4) /* PG4 - Nucleo - Red Led */
#define LED_USR_PIN (0) /* PB0 - Nucleo - Green Led */
#define LED_EXTRA_PIN (4) /* PF4 - Nucleo - Orange Led */
#define NVIC_USART3_IRQN (60)
/*Non-Secure */
#define RCC_BASE (0x44020C00) /* RM0481 - Table 3 */
#define GPIOG_BASE 0x42021800
#define GPIOB_BASE 0x42020400
#define GPIOF_BASE 0x42021400
#define GPIOG_MODER (*(volatile uint32_t *)(GPIOG_BASE + 0x00))
#define GPIOG_PUPDR (*(volatile uint32_t *)(GPIOG_BASE + 0x0C))
#define GPIOG_BSRR (*(volatile uint32_t *)(GPIOG_BASE + 0x18))
#define GPIOB_MODER (*(volatile uint32_t *)(GPIOB_BASE + 0x00))
#define GPIOB_PUPDR (*(volatile uint32_t *)(GPIOB_BASE + 0x0C))
#define GPIOB_BSRR (*(volatile uint32_t *)(GPIOB_BASE + 0x18))
#define GPIOF_MODER (*(volatile uint32_t *)(GPIOF_BASE + 0x00))
#define GPIOF_PUPDR (*(volatile uint32_t *)(GPIOF_BASE + 0x0C))
#define GPIOF_BSRR (*(volatile uint32_t *)(GPIOF_BASE + 0x18))
#define RCC_AHB2ENR1_CLOCK_ER (*(volatile uint32_t *)(RCC_BASE + 0x8C ))
#define GPIOG_AHB2ENR1_CLOCK_ER (1 << 6)
#define GPIOF_AHB2ENR1_CLOCK_ER (1 << 5)
#define GPIOB_AHB2ENR1_CLOCK_ER (1 << 1)
#define GPIOD_AHB2ENR1_CLOCK_ER (1 << 3)
/* SysTick */
static uint32_t cpu_freq = 250000000;
#define SYSTICK_BASE (0xE000E010)
#define SYSTICK_CSR (*(volatile uint32_t *)(SYSTICK_BASE + 0x00))
#define SYSTICK_RVR (*(volatile uint32_t *)(SYSTICK_BASE + 0x04))
#define SYSTICK_CVR (*(volatile uint32_t *)(SYSTICK_BASE + 0x08))
#define SYSTICK_CALIB (*(volatile uint32_t *)(SYSTICK_BASE + 0x0C))
int clock_gettime (clockid_t clock_id, struct timespec *tp)
{
(void)clock_id;
tp->tv_sec = jiffies / 1000;
tp->tv_nsec = (jiffies % 1000) * 1000000;
return 0;
}
static void systick_enable(void)
{
SYSTICK_RVR = ((cpu_freq / 1000) - 1);
SYSTICK_CVR = 0;
SYSTICK_CSR |= 0x07;
}
void isr_systick(void)
{
jiffies++;
}
static void boot_led_on(void)
{
uint32_t reg;
uint32_t pin = LED_BOOT_PIN;
RCC_AHB2ENR1_CLOCK_ER|= GPIOG_AHB2ENR1_CLOCK_ER;
/* Delay after an RCC peripheral clock enabling */
reg = RCC_AHB2ENR1_CLOCK_ER;
reg = GPIOG_MODER & ~(0x03 << (pin * 2));
GPIOG_MODER = reg | (1 << (pin * 2));
GPIOG_PUPDR &= ~(0x03 << (pin * 2));
GPIOG_BSRR |= (1 << (pin));
}
static void boot_led_off(void)
{
GPIOG_BSRR |= (1 << (LED_BOOT_PIN + 16));
}
void usr_led_on(void)
{
uint32_t reg;
uint32_t pin = LED_USR_PIN;
RCC_AHB2ENR1_CLOCK_ER|= GPIOB_AHB2ENR1_CLOCK_ER;
/* Delay after an RCC peripheral clock enabling */
reg = RCC_AHB2ENR1_CLOCK_ER;
reg = GPIOB_MODER & ~(0x03 << (pin * 2));
GPIOB_MODER = reg | (1 << (pin * 2));
GPIOB_PUPDR &= ~(0x03 << (pin * 2));
GPIOB_BSRR |= (1 << (pin));
}
void usr_led_off(void)
{
GPIOB_BSRR |= (1 << (LED_USR_PIN + 16));
}
void extra_led_on(void)
{
uint32_t reg;
uint32_t pin = LED_EXTRA_PIN;
RCC_AHB2ENR1_CLOCK_ER|= GPIOF_AHB2ENR1_CLOCK_ER;
/* Delay after an RCC peripheral clock enabling */
reg = RCC_AHB2ENR1_CLOCK_ER;
reg = GPIOF_MODER & ~(0x03 << (pin * 2));
GPIOF_MODER = reg | (1 << (pin * 2));
GPIOF_PUPDR &= ~(0x03 << (pin * 2));
GPIOF_BSRR |= (1 << (pin));
}
void extra_led_off(void)
{
GPIOF_BSRR |= (1 << (LED_EXTRA_PIN + 16));
}
static char CaBuf[2048];
static uint8_t my_pubkey[200];
extern int ecdsa_sign_verify(int devId);
/* Command line commands */
static int cmd_help(const char *args);
static int cmd_info(const char *args);
static int cmd_success(const char *args);
static int cmd_login_pkcs11(const char *args);
static int cmd_random(const char *args);
static int cmd_benchmark(const char *args);
static int cmd_test(const char *args);
static int cmd_timestamp(const char *args);
static int cmd_update(const char *args);
static int cmd_update_xmodem(const char *args);
static int cmd_reboot(const char *args);
#define CMD_BUFFER_SIZE 256
#define CMD_NAME_MAX 64
/* Command parser */
struct console_command {
int (*fn)(const char *args);
const char name[CMD_NAME_MAX];
const char help[CMD_BUFFER_SIZE];
};
struct console_command COMMANDS[] =
{
{ cmd_help, "help", "shows this help message"},
{ cmd_info, "info", "display information about the system and partitions"},
{ cmd_success, "success", "confirm a successful update"},
{ cmd_login_pkcs11, "pkcs11", "enable and test crypto calls with PKCS11 in secure mode" },
{ cmd_random, "random", "generate a random number"},
{ cmd_timestamp, "timestamp", "print the current timestamp"},
{ cmd_benchmark, "benchmark", "run the wolfCrypt benchmark"},
{ cmd_test, "test", "run the wolfCrypt test"},
{ cmd_update_xmodem, "update", "update the firmware via XMODEM"},
{ cmd_reboot, "reboot", "reboot the system"},
{ NULL, "", ""}
};
#define AIRCR *(volatile uint32_t *)(0xE000ED0C)
#define AIRCR_VKEY (0x05FA << 16)
# define AIRCR_SYSRESETREQ (1 << 2)
int cmd_reboot(const char *args)
{
(void)args;
AIRCR = AIRCR_SYSRESETREQ | AIRCR_VKEY;
while(1)
asm volatile("wfi");
return 0; /* Never happens */
}
#define XSOH 0x01
#define XEOT 0x04
#define XACK 0x06
#define XNAK 0x15
#define XCAN 0x18
static uint8_t crc8(uint8_t *data, size_t len)
{
uint8_t checksum = 0;
for (int i = 0; i < len; i++) {
checksum += data[i];
}
return checksum;
}
#define XMODEM_PAYLOAD_SIZE 128
#define XMODEM_PACKET_SIZE (3 + XMODEM_PAYLOAD_SIZE + 1)
#define XMODEM_TIMEOUT 1000 /* milliseconds */
static void xcancel(void)
{
int i;
for (i = 0; i < 10; i++)
uart_tx(XCAN);
}
static uint8_t xpkt_payload[XMODEM_PAYLOAD_SIZE];
static int cmd_update_xmodem(const char *args)
{
int ret = -1;
uint8_t xpkt[XMODEM_PACKET_SIZE];
uint32_t dst_flash = (uint32_t)WOLFBOOT_PARTITION_UPDATE_ADDRESS;
uint8_t pkt_num = 0, pkt_num_expected=0xFF;
uint32_t pkt_size = XMODEM_PACKET_SIZE;
uint32_t update_ver = 0;
uint32_t now = jiffies;
uint32_t i = 0;
uint8_t pkt_num_inv;
uint8_t crc, calc_crc;
int transfer_started = 0;
printf("Erasing update partition...");
fflush(stdout);
hal_flash_unlock();
hal_flash_erase(dst_flash, WOLFBOOT_PARTITION_SIZE);
printf("Done.\r\n");
printf("Waiting for XMODEM transfer...\r\n");
while (1) {
now = jiffies;
i = 0;
while(i < XMODEM_PACKET_SIZE) {
ret = uart_rx_isr(&xpkt[i], XMODEM_PACKET_SIZE - i);
if (ret == 0) {
if(jiffies > (now + XMODEM_TIMEOUT)) {
now = jiffies;
if (i == 0)
uart_tx(XNAK);
i = 0;
} else {
asm volatile("wfi");
}
} else {
now = jiffies;
i += ret;
}
}
if (xpkt[0] == XEOT) {
ret = 0;
uart_tx(XACK);
extra_led_on();
break;
}
if (xpkt[0] != XSOH) {
continue;
}
pkt_num = xpkt[1];
pkt_num_inv = ~xpkt[2];
if (pkt_num == pkt_num_inv) {
if (!transfer_started) /* sync */ {
(pkt_num_expected = pkt_num);
transfer_started = 1;
} else if (pkt_num_expected != pkt_num) {
uart_tx(XNAK);
continue;
}
if ((pkt_num / 0x10) & 0x01)
extra_led_on();
else
extra_led_off();
/* Packet is valid */
crc = xpkt[XMODEM_PACKET_SIZE - 1];
calc_crc = crc8(xpkt, XMODEM_PACKET_SIZE - 1);
if (crc == calc_crc) {
uint32_t t_size;
/* CRC is valid */
memcpy(xpkt_payload, xpkt + 3, XMODEM_PAYLOAD_SIZE);
ret = hal_flash_write(dst_flash, xpkt_payload, XMODEM_PAYLOAD_SIZE);
if (ret != 0) {
xcancel();
printf("Error writing to flash\r\n");
break;
}
uart_tx(XACK);
pkt_num++;
pkt_num_expected++;
dst_flash += XMODEM_PAYLOAD_SIZE;
t_size = *((uint32_t *)(WOLFBOOT_PARTITION_UPDATE_ADDRESS + 4));
t_size += IMAGE_HEADER_SIZE;
if ((uint32_t)dst_flash >= (WOLFBOOT_PARTITION_UPDATE_ADDRESS + t_size)) {
ret = 0;
extra_led_off();
break;
}
uart_tx(XACK);
} else {
uart_tx(XNAK);
}
} else {
uart_tx(XNAK); /* invalid packet number received */
}
}
for (i = 0; i < 10; i++)
uart_tx('\r');
printf("End of transfer. ret: %d\r\n", ret);
update_ver = wolfBoot_update_firmware_version();
if (update_ver != 0) {
printf("New firmware version: 0x%lx\r\n", update_ver);
printf("Triggering update...\r\n");
wolfBoot_update_trigger();
printf("Update completed successfully.\r\n");
} else {
printf("No valid image in update partition\r\n");
}
hal_flash_lock();
return ret;
}
static int cmd_help(const char *args)
{
int i;
for (i = 0;; i++) {
if(COMMANDS[i].fn == NULL)
break;
printf("%s : %s\r\n", COMMANDS[i].name, COMMANDS[i].help);
}
return 0;
}
const char part_state_names[6][16] = {
"NEW",
"UPDATING",
"FFLAGS",
"TESTING",
"CONFIRMED",
"[Invalid state]"
};
static const char *part_state_name(uint8_t state)
{
switch(state) {
case IMG_STATE_NEW:
return part_state_names[0];
case IMG_STATE_UPDATING:
return part_state_names[1];
case IMG_STATE_FINAL_FLAGS:
return part_state_names[2];
case IMG_STATE_TESTING:
return part_state_names[3];
case IMG_STATE_SUCCESS:
return part_state_names[4];
default:
return part_state_names[5];
}
}
static int cmd_info(const char *args)
{
int i, j;
uint32_t cur_fw_version, update_fw_version;
uint32_t n_keys;
uint16_t hdrSz;
uint8_t boot_part_state = IMG_STATE_NEW, update_part_state = IMG_STATE_NEW;
cur_fw_version = wolfBoot_current_firmware_version();
update_fw_version = wolfBoot_update_firmware_version();
wolfBoot_get_partition_state(PART_BOOT, &boot_part_state);
wolfBoot_get_partition_state(PART_UPDATE, &update_part_state);
printf("\r\n");
printf("System information\r\n");
printf("====================================\r\n");
printf("Flash banks are %sswapped.\r\n", ((FLASH_OPTSR_CUR & (FLASH_OPTSR_SWAP_BANK)) == 0)?"not ":"");
printf("Firmware version : 0x%lx\r\n", wolfBoot_current_firmware_version());
printf("Current firmware state: %s\r\n", part_state_name(boot_part_state));
if (update_fw_version != 0) {
if (update_part_state == IMG_STATE_UPDATING)
printf("Candidate firmware version : 0x%lx\r\n", update_fw_version);
else
printf("Backup firmware version : 0x%lx\r\n", update_fw_version);
printf("Update state: %s\r\n", part_state_name(update_part_state));
if (update_fw_version > cur_fw_version) {
printf("'reboot' to initiate update.\r\n");
} else {
printf("Update image older than current.\r\n");
}
} else {
printf("No image in update partition.\r\n");
}
printf("\r\n");
printf("Bootloader OTP keystore information\r\n");
printf("====================================\r\n");
n_keys = keystore_num_pubkeys();
printf("Number of public keys: %lu\r\n", n_keys);
for (i = 0; i < n_keys; i++) {
uint32_t size = keystore_get_size(i);
uint32_t type = keystore_get_key_type(i);
uint32_t mask = keystore_get_mask(i);
uint8_t *keybuf = keystore_get_buffer(i);
printf("\r\n");
printf(" Public Key #%d: size %lu, type %lx, mask %08lx\r\n", i,
size, type, mask);
printf(" ====================================\r\n ");
for (j = 0; j < size; j++) {
printf("%02X ", keybuf[j]);
if (j % 16 == 15) {
printf("\r\n ");
}
}
printf("\r\n");
}
return 0;
}
static int cmd_success(const char *args)
{
wolfBoot_success();
printf("update success confirmed.\r\n");
return 0;
}
static int cmd_random(const char *args)
{
#ifdef WOLFCRYPT_SECURE_MODE
WC_RNG rng;
int ret;
uint32_t rand;
ret = wc_InitRng(&rng);
if (ret != 0) {
printf("Failed to initialize RNG\r\n");
return -1;
}
ret = wc_RNG_GenerateBlock(&rng, (byte *)&rand, sizeof(rand));
if (ret != 0) {
printf("Failed to generate random number\r\n");
wc_FreeRng(&rng);
return -1;
}
printf("Today's lucky number: 0x%08lX\r\n", rand);
printf("Brought to you by wolfCrypt's DRBG fed by HW TRNG in Secure world\r\n");
wc_FreeRng(&rng);
#else
printf("Feature only supported with WOLFCRYPT_TZ=1\n");
#endif
return 0;
}
static int cmd_timestamp(const char *args)
{
struct timespec tp = {};
clock_gettime(0, &tp);
printf("Current timestamp: %llu.%03lu\r\n", tp.tv_sec, tp.tv_nsec/1000000);
printf("Current systick: %u\r\n", jiffies);
printf("VTOR: %08lx\r\n", (*(volatile uint32_t *)(0xE000ED08)));
return 0;
}
static int cmd_login_pkcs11(const char *args)
{
int ret = -1;
#ifdef SECURE_PKCS11
unsigned int devId = 0;
Pkcs11Token token;
Pkcs11Dev PKCS11_d;
unsigned long session;
char TokenPin[] = "0123456789ABCDEF";
char UserPin[] = "ABCDEF0123456789";
char SoPinName[] = "SO-PIN";
static int pkcs11_initialized = 0;
if (pkcs11_initialized) {
printf("PKCS11 already initialized.\r\n");
return 0;
}
printf("PKCS11 Login\r\n");
printf("Initializing wolfCrypt...");
fflush(stdout);
wolfCrypt_Init();
printf("Done.\r\n");
PKCS11_d.heap = NULL,
PKCS11_d.func = (CK_FUNCTION_LIST *)&wolfpkcs11nsFunctionList;
printf("Initializing EccKey token...");
fflush(stdout);
ret = wc_Pkcs11Token_Init(&token, &PKCS11_d, 1, "EccKey",
(const byte*)TokenPin, strlen(TokenPin));
if (ret == 0) {
printf("Done.\r\n");
printf("Retrieving crypto engine function list...");
fflush(stdout);
ret = wolfpkcs11nsFunctionList.C_OpenSession(1,
CKF_SERIAL_SESSION | CKF_RW_SESSION,
NULL, NULL, &session);
}
if (ret == 0) {
printf("Done.\r\n");
printf("Initializing token...");
fflush(stdout);
ret = wolfpkcs11nsFunctionList.C_InitToken(1,
(byte *)TokenPin, strlen(TokenPin), (byte *)SoPinName);
}
if (ret == 0) {
printf("Done.\r\n");
printf("Logging in as SO...");
ret = wolfpkcs11nsFunctionList.C_Login(session, CKU_SO,
(byte *)TokenPin,
strlen(TokenPin));
}
if (ret == 0) {
extra_led_on();
printf("Done.\r\n");
printf("Setting PIN...");
ret = wolfpkcs11nsFunctionList.C_InitPIN(session,
(byte *)TokenPin,
strlen(TokenPin));
}
if (ret == 0) {
printf("Done.\r\n");
printf("Logging out...");
ret = wolfpkcs11nsFunctionList.C_Logout(session);
}
if (ret == 0) {
printf("Done.\r\n");
printf("Registering crypto calls with wolfCrypt...");
ret = wc_CryptoDev_RegisterDevice(devId, wc_Pkcs11_CryptoDevCb,
&token);
}
if (ret == 0) {
printf("Done.\r\n");
#ifdef HAVE_ECC
printf("Testing ECC...");
ret = ecdsa_sign_verify(devId);
if (ret != 0) {
ret = -1;
printf("Failed.\r\n");
}
else {
usr_led_on();
printf("Done.\r\n");
}
#endif
}
if (ret == 0) {
printf("PKCS11 initialization completed successfully.\r\n");
pkcs11_initialized = 1;
}
#else
printf("Feature only supported with WOLFCRYPT_TZ=1\n");
#endif /* SECURE_PKCS11 */
return ret;
}
static int cmd_benchmark(const char *args)
{
#ifdef WOLFCRYPT_SECURE_MODE
benchmark_test(NULL);
#endif
return 0;
}
/* Test command */
static int cmd_test(const char *args)
{
#ifdef WOLFCRYPT_SECURE_MODE
wolfcrypt_test(NULL);
#endif
return 0;
}
static int parse_cmd(const char *cmd)
{
int retval = -2;
int i;
for (i = 0;; i++) {
if(COMMANDS[i].fn == NULL)
break;
if (strncmp(cmd, COMMANDS[i].name, strlen(COMMANDS[i].name)) == 0) {
retval = COMMANDS[i].fn(cmd);
break;
}
}
return retval;
}
/* Main loop reading commands from UART */
static void console_loop(void)
{
int ret;
int idx = 0;
char cmd[CMD_BUFFER_SIZE];
unsigned char c;
while (1) {
printf("\r\n");
printf("cmd> ");
fflush(stdout);
idx = 0;
do {
ret = uart_rx_isr((uint8_t *)&c, 1);
if (ret > 0) {
if ((c >= 32) && (c < 127)) {
printf("%c", c);
fflush(stdout);
cmd[idx++] = (char)c;
} else if (c == '\r') {
printf("\r\n");
fflush(stdout);
break; /* End of command. Parse it. */
} else if (c == 0x08) { /* Backspace */
if (idx > 0) {
printf("%c", 0x08);
printf(" ");
printf("%c", 0x08);
fflush(stdout);
idx--;
}
}
}
} while (idx < (CMD_BUFFER_SIZE - 1));
if (idx > 0) {
cmd[idx] = 0;
if (parse_cmd(cmd) == -2) {
printf("Unknown command: %s\r\n", cmd);
}
}
}
}
void isr_usart3(void)
{
volatile uint32_t reg;
usr_led_on();
reg = UART3_ISR;
if (reg & UART_ISR_RX_NOTEMPTY) {
if (uart_rx_bytes >= 1023)
reg = UART3_RDR;
else
uart_buf_rx[uart_rx_bytes++] = (unsigned char)(UART3_RDR & 0xFF);
}
}
static int uart_rx_isr(unsigned char *c, int len)
{
UART3_CR1 &= ~UART_ISR_RX_NOTEMPTY;
if (len > (uart_rx_bytes - uart_processed))
len = (uart_rx_bytes - uart_processed);
if (len > 0) {
memcpy(c, uart_buf_rx + uart_processed, len);
uart_processed += len;
if (uart_processed >= uart_rx_bytes) {
uart_processed = 0;
uart_rx_bytes = 0;
usr_led_off();
}
}
UART3_CR1 |= UART_ISR_RX_NOTEMPTY;
return len;
}
static int uart_poll(void)
{
return (uart_rx_bytes > uart_processed)?1:0;
}
void main(void)
{
int ret;
uint32_t app_version;
/* Turn on boot LED */
boot_led_on();
/* Enable SysTick */
systick_enable();
app_version = wolfBoot_current_firmware_version();
nvic_irq_setprio(NVIC_USART3_IRQN, 0);
nvic_irq_enable(NVIC_USART3_IRQN);
uart_init(115200, 8, 'N', 1);
UART3_CR1 |= UART_ISR_RX_NOTEMPTY;
UART3_CR3 |= UART_CR3_RXFTIE;
printf("========================\r\n");
printf("STM32H5 wolfBoot demo Application\r\n");
printf("Copyright 2024 wolfSSL Inc\r\n");
printf("GPL v3\r\n");
printf("Version : 0x%lx\r\n", app_version);
printf("========================\r\n");
console_loop();
while(1)
;
/* Never reached */
}
/* Syscall helpers + UART interface for printf */
int _getpid(void)
{
return 1;
}
int _kill(int pid, int sig)
{
(void)pid;
(void)sig;
return -1;
}
void _exit (int status)
{
_kill(status, -1);
while (1) {} /* Make sure we hang here */
}
__attribute__((weak)) int _read(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
int ret;
return -1;
}
int _write(int file, char *ptr, int len)
{
(void)file;
int DataIdx;
for (DataIdx = 0; DataIdx < len; DataIdx++)
{
uart_tx(*ptr++);
}
return len;
}
int _close(int file)
{
(void)file;
return -1;
}
int _isatty(int file)
{
(void)file;
return 1;
}
int _lseek(int file, int ptr, int dir)
{
(void)file;
(void)ptr;
(void)dir;
return 0;
}
int _fstat(int file, struct stat *st)
{
(void)file;
st->st_mode = S_IFCHR;
return 0;
}
#ifndef WOLFCRYPT_SECURE_MODE
/* Back-end for malloc, used for token handling */
extern unsigned int _start_heap; /* From linker script: heap memory */
extern unsigned int _heap_size; /* From linker script: heap limit */
void * _sbrk(unsigned int incr)
{
static unsigned char *heap = (unsigned char *)&_start_heap;
static uint32_t heapsize = (uint32_t)(&_heap_size);
void *old_heap = heap;
if (((incr >> 2) << 2) != incr)
incr = ((incr >> 2) + 1) << 2;
if (heap == NULL)
heap = (unsigned char *)&_start_heap;
else
heap += incr;
if (((uint32_t)heap - (uint32_t)(&_start_heap)) > heapsize) {
heap -= incr;
return NULL;
}
return old_heap;
}
#endif