wolfBoot/hal/zynq.c

1839 lines
54 KiB
C

/* zynq.c
*
* Copyright (C) 2024 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef TARGET_zynq
#include "hal/zynq.h"
#ifndef ARCH_AARCH64
# error "wolfBoot zynq HAL: wrong architecture selected. Please compile with ARCH=AARCH64."
#endif
#if defined(__QNXNTO__) && !defined(NO_QNX)
#define USE_QNX
#elif defined(USE_BUILTIN_STARTUP)
/* to use the Xilinx QSPI driver define USE_XQSPIPSU */
#endif
#include <target.h>
#include "image.h"
#include "printf.h"
#include <stdint.h>
#include <string.h>
#ifdef USE_XQSPIPSU
/* Xilinx BSP Driver */
#include "xqspipsu.h"
#ifndef QSPI_DEVICE_ID
#define QSPI_DEVICE_ID XPAR_XQSPIPSU_0_DEVICE_ID
#endif
#ifndef QSPI_CLK_PRESACALE
#define QSPI_CLK_PRESACALE XQSPIPSU_CLK_PRESCALE_8
#endif
#elif defined(USE_QNX)
/* QNX QSPI driver */
#include <sys/siginfo.h>
#include "xzynq_gqspi.h"
#else
/* QSPI bare-metal */
#endif
/* QSPI Slave Device Information */
typedef struct QspiDev {
uint32_t mode; /* GQSPI_GEN_FIFO_MODE_SPI, GQSPI_GEN_FIFO_MODE_DSPI or GQSPI_GEN_FIFO_MODE_QSPI */
uint32_t bus; /* GQSPI_GEN_FIFO_BUS_LOW, GQSPI_GEN_FIFO_BUS_UP or GQSPI_GEN_FIFO_BUS_BOTH */
uint32_t cs; /* GQSPI_GEN_FIFO_CS_LOWER, GQSPI_GEN_FIFO_CS_UPPER */
uint32_t stripe; /* OFF=0 or ON=GQSPI_GEN_FIFO_STRIPE */
#ifdef USE_XQSPIPSU
XQspiPsu qspiPsuInst;
#elif defined(USE_QNX)
xzynq_qspi_t* qnx;
#endif
} QspiDev_t;
static QspiDev_t mDev;
static uint32_t pmuVer;
#define PMUFW_MIN_VER 0x10001 /* v1.1*/
/* forward declarations */
static int qspi_wait_ready(QspiDev_t* dev);
static int qspi_status(QspiDev_t* dev, uint8_t* status);
static int qspi_wait_we(QspiDev_t* dev);
#ifdef TEST_EXT_FLASH
static int test_ext_flash(QspiDev_t* dev);
#endif
/* asm function */
extern void flush_dcache_range(unsigned long start, unsigned long stop);
extern unsigned int current_el(void);
void hal_delay_ms(uint64_t ms);
uint64_t hal_timer_ms(void);
#ifdef DEBUG_UART
void uart_init(void)
{
/* Disable Interrupts */
ZYNQMP_UART_IDR = ZYNQMP_UART_ISR_MASK;
/* Disable TX/RX */
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TX_DIS | ZYNQMP_UART_CR_RX_DIS);
/* Clear ISR */
ZYNQMP_UART_ISR = ZYNQMP_UART_ISR_MASK;
/* 8-bits, no parity */
ZYNQMP_UART_MR = ZYNQMP_UART_MR_PARITY_NONE;
/* FIFO Trigger Level */
ZYNQMP_UART_RXWM = 32; /* half of 64 byte FIFO */
ZYNQMP_UART_TXWM = 32; /* half of 64 byte FIFO */
/* RX Timeout - disable */
ZYNQMP_UART_RXTOUT = 0;
/* baud (115200) = master clk / (BR_GEN * (BR_DIV + 1)) */
ZYNQMP_UART_BR_GEN = UART_CLK_REF / (DEBUG_UART_BAUD * (DEBUG_UART_DIV+1));
ZYNQMP_UART_BR_DIV = DEBUG_UART_DIV;
/* Reset TX/RX */
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TXRST | ZYNQMP_UART_CR_RXRST);
/* Enable TX/RX */
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TX_EN | ZYNQMP_UART_CR_RX_EN);
}
void uart_write(const char* buf, uint32_t sz)
{
uint32_t pos = 0;
while (sz-- > 0) {
char c = buf[pos++];
if (c == '\n') { /* handle CRLF */
while (ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXFULL);
ZYNQMP_UART_FIFO = '\r';
}
while (ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXFULL);
ZYNQMP_UART_FIFO = c;
}
/* Wait till TX Fifo is empty */
while (!(ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXEMPTY));
}
#endif /* DEBUG_UART */
/* This struct defines the way the registers are stored on the stack during an
* exception. */
struct pt_regs {
uint64_t elr;
uint64_t regs[8];
};
/*
* void smc_call(arg0, arg1...arg7)
*
* issue the secure monitor call
*
* x0~x7: input arguments
* x0~x3: output arguments
*/
static void smc_call(struct pt_regs *args)
{
asm volatile(
"ldr x0, %0\n"
"ldr x1, %1\n"
"ldr x2, %2\n"
"ldr x3, %3\n"
"ldr x4, %4\n"
"ldr x5, %5\n"
"ldr x6, %6\n"
"smc #0\n"
"str x0, %0\n"
"str x1, %1\n"
"str x2, %2\n"
"str x3, %3\n"
: "+m" (args->regs[0]), "+m" (args->regs[1]),
"+m" (args->regs[2]), "+m" (args->regs[3])
: "m" (args->regs[4]), "m" (args->regs[5]),
"m" (args->regs[6])
: "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8",
"x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17");
}
#define PM_ARGS_CNT 8
#define PM_SIP_SVC 0xC2000000
#define PM_GET_API_VERSION 0x01
#define PM_SECURE_SHA 0x1A
#define PM_SECURE_RSA 0x1B
#define PM_MMIO_WRITE 0x13
#define PM_MMIO_READ 0x14
/* AES */
/* requires PMU built with -DENABLE_SECURE_VAL=1 */
#define PM_SECURE_AES 0x2F
typedef struct pmu_aes {
uint64_t src; /* source address */
uint64_t iv; /* initialization vector address */
uint64_t key; /* key address */
uint64_t dst; /* destination address */
uint64_t size; /* size */
uint64_t op; /* operation: 0=Decrypt, 1=Encrypt */
uint64_t keySrc; /* key source 0=KUP, 1=Device Key, 2=Use PUF (do regen) */
} pmu_aes;
/* EFUSE */
/* requires PMU built with -DENABLE_EFUSE_ACCESS=1 */
#define PM_EFUSE_ACCESS 0x35
typedef struct pmu_efuse {
uint64_t src; /* adress of data buffer */
uint32_t size; /* size in words */
uint32_t offset; /* offset */
uint32_t flag; /* 0: to read efuse, 1: to write efuse */
uint32_t pufUserFuse;/* 0: PUF HD, 1: eFuses for User Data */
} pmu_efuse;
/* Secure Monitor Call (SMC) to BL31 Silicon Provider (SIP) service,
* which is the PMU Firmware */
static int pmu_request(uint32_t api_id,
uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3,
uint32_t *ret_payload)
{
struct pt_regs regs;
regs.regs[0] = PM_SIP_SVC | api_id;
regs.regs[1] = ((uint64_t)arg1 << 32) | arg0;
regs.regs[2] = ((uint64_t)arg3 << 32) | arg2;
smc_call(&regs);
if (ret_payload != NULL) {
ret_payload[0] = (uint32_t)(regs.regs[0]);
ret_payload[1] = (uint32_t)(regs.regs[0] >> 32);
ret_payload[2] = (uint32_t)(regs.regs[1]);
ret_payload[3] = (uint32_t)(regs.regs[1] >> 32);
ret_payload[4] = (uint32_t)(regs.regs[2]);
ret_payload[5] = (uint32_t)(regs.regs[2] >> 32);
ret_payload[6] = (uint32_t)(regs.regs[3]);
ret_payload[7] = (uint32_t)(regs.regs[3] >> 32);
}
return (ret_payload != NULL) ? ret_payload[0] : 0;
}
uint32_t pmu_get_version(void)
{
uint32_t ret_payload[PM_ARGS_CNT];
memset(ret_payload, 0, sizeof(ret_payload));
pmu_request(PM_GET_API_VERSION, 0, 0, 0, 0, ret_payload);
return ret_payload[1];
}
/* Aligned data buffer for DMA */
#define EFUSE_MAX_BUFSZ (sizeof(pmu_efuse) + 48 /* SHA3-384 Digest */)
static uint8_t XALIGNED(32) efuseBuf[EFUSE_MAX_BUFSZ];
uint32_t pmu_efuse_read(uint32_t offset, uint32_t* data, uint32_t size)
{
pmu_efuse* efuseCmd = (pmu_efuse*)efuseBuf;
uint8_t* efuseData = (efuseBuf + sizeof(pmu_efuse));
uint64_t efuseCmdPtr = (uint64_t)efuseCmd;
uint32_t ret_payload[PM_ARGS_CNT];
memset(ret_payload, 0, sizeof(ret_payload));
memset(efuseBuf, 0, sizeof(efuseBuf));
efuseCmd->src = (uint64_t)efuseData;
efuseCmd->offset = (offset & 0xFF); /* offset is only the last 0xFF bits */
efuseCmd->size = (size/sizeof(uint32_t)); /* number of 32-bit words */
pmu_request(PM_EFUSE_ACCESS, (efuseCmdPtr >> 32), (efuseCmdPtr & 0xFFFFFFFF),
0, 0, ret_payload);
memcpy(data, efuseData, size);
return ret_payload[0]; /* 0=Success, 30=No Access */
}
uint32_t pmu_mmio_read(uint32_t addr)
{
uint32_t ret_payload[PM_ARGS_CNT];
memset(ret_payload, 0, sizeof(ret_payload));
pmu_request(PM_MMIO_READ, addr, 0, 0, 0, ret_payload);
return ret_payload[1];
}
uint32_t pmu_mmio_writemask(uint32_t addr, uint32_t mask, uint32_t val)
{
uint32_t ret_payload[PM_ARGS_CNT];
memset(ret_payload, 0, sizeof(ret_payload));
pmu_request(PM_MMIO_WRITE, addr, mask, val, 0, ret_payload);
return ret_payload[0]; /* 0=Success, 30=No Access */
}
uint32_t pmu_mmio_write(uint32_t addr, uint32_t val)
{
return pmu_mmio_writemask(addr, 0xFFFFFFFF, val);
}
int pmu_mmio_wait(uint32_t addr, uint32_t wait_mask, uint32_t wait_val,
uint32_t tries)
{
uint32_t regval, timeout = 0;
while ((((regval = pmu_mmio_read(addr)) & wait_mask) != wait_val)
&& ++timeout < tries);
return (timeout < tries) ? 0 : -1;
}
#ifdef WOLFBOOT_ZYNQMP_CSU
#ifdef WOLFBOOT_HASH_SHA3_384
#include <wolfssl/wolfcrypt/sha3.h>
#define XSECURE_SHA3_INIT 1U
#define XSECURE_SHA3_UPDATE 2U
#define XSECURE_SHA3_FINAL 4U
static uint32_t csu_sha3(uint64_t addr, uint32_t sz, uint32_t flags)
{
uint32_t ret_payload[PM_ARGS_CNT];
memset(ret_payload, 0, sizeof(ret_payload));
pmu_request(PM_SECURE_SHA, (addr >> 32), (addr & 0xFFFFFFFF), sz, flags,
ret_payload);
return ret_payload[0];
}
int wc_InitSha3_384(wc_Sha3* sha, void* heap, int devId)
{
(void)sha;
(void)heap;
(void)devId;
return csu_sha3(0, 0, XSECURE_SHA3_INIT);
}
int wc_Sha3_384_Update(wc_Sha3* sha, const byte* data, word32 len)
{
(void)sha;
flush_dcache_range(
(unsigned long)data,
(unsigned long)data + len);
return csu_sha3((uint64_t)data, len, XSECURE_SHA3_UPDATE);
}
int wc_Sha3_384_Final(wc_Sha3* sha, byte* out)
{
(void)sha;
flush_dcache_range(
(unsigned long)out,
(unsigned long)out + WC_SHA3_384_DIGEST_SIZE);
return csu_sha3((uint64_t)out, 0, XSECURE_SHA3_FINAL);
}
void wc_Sha3_384_Free(wc_Sha3* sha)
{
(void)sha;
}
#else
# error HW_SHA3=1 only supported with HASH=SHA3
#endif
/* CSU PUF */
#ifdef CSU_PUF_ROT
/* 1544 bytes is fixed size for boot header used by CSU ROM */
#define CSU_PUF_SYNDROME_WORDS 386
#ifndef CSU_PUF_REG_TRIES
#define CSU_PUF_REG_TRIES 500000
#endif
int csu_puf_register(uint32_t* syndrome, uint32_t* chash, uint32_t* aux)
{
int ret;
uint32_t reg32, puf_status = 0, idx = 0;
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
wolfBoot_printf("CSU Puf Register\n");
#endif
/* try a read from register to make sure PMU has permission */
reg32 = pmu_mmio_read(CSU_PUF_SHUTTER);
if (reg32 == 0) {
wolfBoot_printf("PMUFW PUF Register access not enabled in "
"pm_mmio_access pmAccessTable!\n");
return -1;
}
ret = pmu_mmio_write(CSU_PUF_CFG0, CSU_PUF_CFG0_INIT);
if (ret == 0)
ret = pmu_mmio_write(CSU_PUF_CFG1, CSU_PUF_CFG1_INIT);
if (ret == 0)
ret = pmu_mmio_write(CSU_PUF_SHUTTER, CSU_PUF_SHUTTER_INIT);
if (ret == 0)
ret = pmu_mmio_write(CSU_PUF_CMD, CSU_PUF_CMD_REGISTRATION);
while (ret == 0) {
/* wait for PUF word ready */
ret = pmu_mmio_wait(CSU_PUF_STATUS,
CSU_PUF_STATUS_SYN_WRD_RDY_MASK,
CSU_PUF_STATUS_SYN_WRD_RDY_MASK,
CSU_PUF_REG_TRIES);
if (ret != 0)
break;
if ((idx > CSU_PUF_SYNDROME_WORDS-2) /* room for chash and aux */) {
ret = -2; /* overrun */
break;
}
puf_status = pmu_mmio_read(CSU_PUF_STATUS);
/* Read in the syndrome */
syndrome[idx++] = pmu_mmio_read(CSU_PUF_WORD);
if (puf_status & CSU_PUF_STATUS_KEY_RDY_MASK) {
*chash = pmu_mmio_read(CSU_PUF_WORD);
syndrome[CSU_PUF_SYNDROME_WORDS-2] = *chash;
*aux = (puf_status & CSU_PUF_STATUS_AUX_MASK) >> 4;
syndrome[CSU_PUF_SYNDROME_WORDS-1] = *aux;
ret = 0;
break;
}
}
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
wolfBoot_printf("Ret %d, Syndrome %d, CHASH 0x%08x, AUX 0x%08x\n",
ret, (CSU_PUF_SYNDROME_WORDS*4), *chash, *aux);
for (idx=0; idx<CSU_PUF_SYNDROME_WORDS; idx++) {
wolfBoot_printf("%08x", syndrome[idx]);
}
wolfBoot_printf("\n");
#endif
return ret;
}
int csu_puf_regeneration(uint32_t* syndrome, uint32_t chash, uint32_t aux)
{
int ret;
uint32_t puf_status = 0;
(void)syndrome;
(void)chash;
(void)aux;
ret = pmu_mmio_write(CSU_PUF_CFG0, CSU_PUF_CFG0_INIT);
if (ret == 0)
ret = pmu_mmio_write(CSU_PUF_SHUTTER, CSU_PUF_SHUTTER_INIT);
if (ret == 0)
ret = pmu_mmio_write(CSU_PUF_CMD, CSU_PUF_CMD_REGENERATION);
/* wait 6ms */
hal_delay_ms(6);
/* read the puf_status */
puf_status = pmu_mmio_read(CSU_PUF_STATUS);
wolfBoot_printf("Regen: PUF Status 0x%08x\n", puf_status);
return ret;
}
#endif /* CSU_PUF_ROT */
#define CSU_AES_TIMEOUT 150000
#define CSU_DMA_TIMEOUT 300000000U
static int csu_dma_wait_done(int ch)
{
/* wait for DMA channel done */
int ret = pmu_mmio_wait(CSUDMA_ISTS(ch), CSUDMA_ISR_DONE, CSUDMA_ISR_DONE,
CSU_DMA_TIMEOUT);
/* clear status interrupt */
if (ret == 0)
ret = pmu_mmio_write(CSUDMA_ISTS(ch), pmu_mmio_read(CSUDMA_ISTS(ch)));
return ret;
}
static int csu_dma_transfer(int ch, uintptr_t addr, uint32_t sz, uint32_t flags)
{
int ret = pmu_mmio_write(CSUDMA_ADDR(ch), (addr & 0xFFFFFFFF));
if (ret == 0)
ret = pmu_mmio_write(CSUDMA_ADDR_MSB(ch), (addr >> 32));
if (ret == 0)
ret = pmu_mmio_write(CSUDMA_SIZE(ch), (sz | flags));
return ret;
}
static int csu_aes_reset(void)
{
/* Reset AES (set and clear) */
int ret = pmu_mmio_write(CSU_AES_RESET, 1);
if (ret == 0)
ret = pmu_mmio_write(CSU_AES_RESET, 0);
return ret;
}
static int csu_dma_config(int ch, int doSwap)
{
int ret = 0;
uint32_t regs, reg;
regs = reg = pmu_mmio_read(CSUDMA_CTRL(ch));
if (doSwap)
reg |= CSUDMA_CTRL_ENDIANNESS;
else
reg &= ~CSUDMA_CTRL_ENDIANNESS;
if (regs != reg)
ret = pmu_mmio_write(CSUDMA_CTRL(ch), reg);
return ret;
}
/* AES GCM Encrypt or Decrypt with Device Key setup by CSU ROM */
/* Output must also have room for updated IV at end */
#define AES_GCM_TAG_SZ 12
int csu_aes(int enc, const uint8_t* iv, const uint8_t* in, uint8_t* out, uint32_t sz)
{
int ret;
uint32_t reg;
/* Flush data cache for variables used */
flush_dcache_range((unsigned long)iv, (unsigned long)iv + AES_GCM_TAG_SZ);
flush_dcache_range((unsigned long)in, (unsigned long)in);
flush_dcache_range((unsigned long)out, (unsigned long)out + AES_GCM_TAG_SZ);
/* Configure SSS for DMA <-> AES */
ret = pmu_mmio_write(CSU_SSS_CFG,
(CSU_SSS_CFG_AES(CSU_SSS_CFG_SRC_DMA) |
CSU_SSS_CFG_DMA(CSU_SSS_CFG_SRC_AES)));
/* Reset AES (set and clear) */
if (ret == 0)
ret = csu_aes_reset();
/* Setup AES GCM Key (use device key) */
if (ret == 0)
ret = pmu_mmio_write(CSU_AES_KEY_SRC, CSU_AES_KEY_SRC_DEVICE_KEY);
/* Trigger key load */
if (ret == 0)
ret = pmu_mmio_write(CSU_AES_KEY_LOAD, 1);
/* Wait till key init done */
if (ret == 0)
ret = pmu_mmio_wait(CSU_AES_STATUS, CSU_AES_STATUS_KEY_INIT_DONE,
CSU_AES_STATUS_KEY_INIT_DONE, CSU_AES_TIMEOUT);
/* Enable DMA byte swapping */
if (ret == 0)
ret = csu_dma_config(CSUDMA_CH_SRC, 1);
if (ret == 0)
ret = csu_dma_config(CSUDMA_CH_DST, 1);
/* Set encrypt or decrypt */
if (ret == 0)
ret = pmu_mmio_write(CSU_AES_CFG, enc);
/* Issue start and wait for DMA IV and data */
if (ret == 0)
ret = pmu_mmio_write(CSU_AES_START_MSG, 1);
/* Send IV with byte swap (not last) */
if (ret == 0)
ret = csu_dma_transfer(CSUDMA_CH_SRC,
(uintptr_t)iv, AES_GCM_TAG_SZ, 0);
/* wait for IV to send and cear interrupt */
if (ret == 0)
ret = csu_dma_wait_done(CSUDMA_CH_SRC);
/* Setup data to recieve */
if (ret == 0)
ret = csu_dma_transfer(CSUDMA_CH_DST,
(uintptr_t)out, sz + AES_GCM_TAG_SZ, 0);
/* Send data */
if (ret == 0)
ret = csu_dma_transfer(CSUDMA_CH_SRC,
(uintptr_t)in, sz, CSUDMA_SIZE_LAST_WORD);
/* Wait for DMA to complete and clear */
if (ret == 0)
ret = csu_dma_wait_done(CSUDMA_CH_SRC);
if (ret == 0)
ret = csu_dma_wait_done(CSUDMA_CH_DST);
/* Disable DMA byte swapping */
if (ret == 0)
ret = csu_dma_config(CSUDMA_CH_SRC, 0);
if (ret == 0)
ret = csu_dma_config(CSUDMA_CH_DST, 0);
/* Wait for AES done */
if (ret == 0)
ret = pmu_mmio_wait(CSU_AES_STATUS, CSU_AES_STATUS_BUSY,
0, CSU_AES_TIMEOUT);
return ret;
}
/* zero the kup and expanded key */
int csu_aes_key_zero(void)
{
int ret;
uint32_t reg = pmu_mmio_read(CSU_AES_KEY_CLEAR);
ret = pmu_mmio_write(CSU_AES_KEY_CLEAR,
(reg | CSU_AES_KEY_CLEAR_KUP | CSU_AES_KEY_CLEAR_EXP));
if (ret == 0) {
ret = pmu_mmio_wait(CSU_AES_STATUS,
(CSU_AES_STATUS_AES_KEY_ZEROED | CSU_AES_STATUS_KUP_ZEROED),
(CSU_AES_STATUS_AES_KEY_ZEROED | CSU_AES_STATUS_KUP_ZEROED),
CSU_AES_TIMEOUT);
}
return ret;
}
int csu_init(void)
{
int ret = 0;
#ifdef CSU_PUF_ROT
#if 0
uint32_t syndrome[CSU_PUF_SYNDROME_WORDS];
uint32_t chash=0, aux=0;
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
uint32_t idx;
#endif
#endif
#endif
uint32_t reg1 = pmu_mmio_read(CSU_IDCODE);
uint32_t reg2 = pmu_mmio_read(CSU_VERSION);
uint64_t ms;
wolfBoot_printf("CSU ID 0x%08x, Ver 0x%08x\n",
reg1, reg2 & CSU_VERSION_MASK);
#ifdef DEBUG_CSU
/* Enable JTAG */
wolfBoot_printf("Enabling JTAG\n");
pmu_mmio_write(CSU_JTAG_SEC, 0x3F);
pmu_mmio_write(CSU_JTAG_DAP_CFG, 0xFF);
pmu_mmio_write(CSU_JTAG_CHAIN_CFG, 0x3);
pmu_mmio_write(CRL_APB_DBG_LPD_CTRL, 0x01002002);
pmu_mmio_write(CRL_APB_RST_LPD_DBG, 0x0);
pmu_mmio_write(CSU_PCAP_PROG, 0x1);
/* Wait until JTAG is attached */
while ((reg1 = pmu_mmio_read(CSU_JTAG_CHAIN_STATUS)) == 0);
wolfBoot_printf("JTAG Attached: status 0x%x\n", reg1);
hal_delay_ms(500); /* give time for debugger to break */
#endif
#ifdef CSU_PUF_ROT
reg1 = pmu_mmio_read(CSU_PUF_STATUS);
wolfBoot_printf("PUF Status 0x%08x\n", reg1);
/* Read eFuse SEC ctrl bits */
pmu_efuse_read(ZYNQMP_EFUSE_SEC_CTRL, &reg1, sizeof(reg1));
wolfBoot_printf("eFuse SEC_CTRL 0x%08x\n", reg1);
/* Read eFUSE helper data */
pmu_efuse_read(ZYNQMP_EFUSE_PUF_CHASH, &reg1, sizeof(reg1));
pmu_efuse_read(ZYNQMP_EFUSE_PUF_AUX, &reg2, sizeof(reg2));
wolfBoot_printf("eFuse PUF CHASH 0x%08x, AUX 0x%08x\n", reg1, reg2);
/* CSU PUF only supported with eFuses */
/* Keeping code for reference in future generations like Versal */
/* Red (sensitive key), Black (protected key), Grey (unknown) */
#if 0
memset(syndrome, 0, sizeof(syndrome));
ms = hal_timer_ms();
ret = csu_puf_register(syndrome, &chash, &aux);
wolfBoot_printf("CSU Register PUF %d: %dms\n", ret, hal_timer_ms() - ms);
if (ret == 0) {
ms = hal_timer_ms();
/* regenerate - load kek */
ret = csu_puf_regeneration(syndrome, chash, aux);
wolfBoot_printf("CSU Regen PUF %d: %dms\n", ret, hal_timer_ms() - ms);
}
if (ret == 0) {
/* Use CSU ROM device key and IV to encrypt the red key */
/* Possible PUF syndrome location 0xFFC30000 */
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
wolfBoot_printf("Red Key %d\n", sizeof(redKey));
for (idx=0; idx<sizeof(redKey); idx++) {
wolfBoot_printf("%02x", redKey[idx]);
}
wolfBoot_printf("\nBlack IV %d\n", sizeof(blackIv));
for (idx=0; idx<sizeof(blackIv); idx++) {
wolfBoot_printf("%02x", blackIv[idx]);
}
wolfBoot_printf("\n");
#endif
ret = csu_aes(CSU_AES_CFG_ENC, blackIv, redKey, blackKey, KEY_WRAP_SZ);
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
wolfBoot_printf("Black Key %d\n", KEY_WRAP_SZ);
for (idx=0; idx<KEY_WRAP_SZ; idx++) {
wolfBoot_printf("%02x", blackKey[idx]);
}
wolfBoot_printf("\nNew IV %d\n", AES_GCM_TAG_SZ);
for (idx=0; idx<AES_GCM_TAG_SZ; idx++) {
wolfBoot_printf("%02x", blackKey[KEY_WRAP_SZ+idx]);
}
wolfBoot_printf("\n");
#endif
#endif
}
#endif
return ret;
}
#endif /* WOLFBOOT_ZYNQMP_CSU */
#ifdef USE_XQSPIPSU
/* Xilinx BSP Driver */
/* Aligned page data buffer for DMA */
static uint8_t XALIGNED(32) pageData[FLASH_PAGE_SIZE];
static int qspi_transfer(QspiDev_t* pDev,
const uint8_t* cmdData, uint32_t cmdSz,
const uint8_t* txData, uint32_t txSz,
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
uint32_t mode)
{
int ret;
XQspiPsu_Msg msgs[4];
uint32_t msgCnt = 0, busWidth = XQSPIPSU_SELECT_MODE_SPI;
uint8_t* rxPtr = rxData;
/* Chip Select */
if (pDev->cs == GQSPI_GEN_FIFO_CS_BOTH) {
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
XQSPIPSU_SELECT_FLASH_CS_BOTH, XQSPIPSU_SELECT_FLASH_BUS_BOTH);
}
else if (pDev->cs == GQSPI_GEN_FIFO_CS_LOWER) {
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
XQSPIPSU_SELECT_FLASH_CS_LOWER, XQSPIPSU_SELECT_FLASH_BUS_LOWER);
}
else {
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
XQSPIPSU_SELECT_FLASH_CS_UPPER, XQSPIPSU_SELECT_FLASH_BUS_UPPER);
}
/* Transfer Bus Width - only applies to read/write command */
if (mode == GQSPI_GEN_FIFO_MODE_QSPI)
busWidth = XQSPIPSU_SELECT_MODE_QUADSPI;
else if (mode == GQSPI_GEN_FIFO_MODE_DSPI)
busWidth = XQSPIPSU_SELECT_MODE_DUALSPI;
/* Command */
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].TxBfrPtr = (uint8_t*)cmdData;
msgs[msgCnt].ByteCount = cmdSz;
msgs[msgCnt].BusWidth = XQSPIPSU_SELECT_MODE_SPI;
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_TX;
msgCnt++;
/* TX */
if (txData) {
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].TxBfrPtr = (uint8_t*)txData;
msgs[msgCnt].ByteCount = txSz;
msgs[msgCnt].BusWidth = busWidth;
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_TX;
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
msgs[msgCnt].Flags |= XQSPIPSU_MSG_FLAG_STRIPE;
msgCnt++;
}
/* Dummy */
if (dummySz > 0) {
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].ByteCount = dummySz; /* not used */
msgs[msgCnt].BusWidth = busWidth;
msgCnt++;
}
/* RX */
if (rxData) {
/* If RX pointer is not 32 byte aligned then use temp page data buffer */
if (((size_t)rxPtr % 32) != 0)
rxPtr = pageData;
if (rxSz > (uint32_t)sizeof(pageData))
rxSz = (uint32_t)sizeof(pageData);
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].RxBfrPtr = rxPtr;
msgs[msgCnt].ByteCount = rxSz;
msgs[msgCnt].BusWidth = busWidth;
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_RX;
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
msgs[msgCnt].Flags |= XQSPIPSU_MSG_FLAG_STRIPE;
msgCnt++;
}
ret = XQspiPsu_PolledTransfer(&pDev->qspiPsuInst, msgs, msgCnt);
if (ret < 0) {
wolfBoot_printf("QSPI Transfer failed! %d\n", ret);
return GQSPI_CODE_FAILED;
}
/* if unaligned read, return results */
if (rxData && rxPtr == pageData) {
memcpy(rxData, pageData, rxSz);
}
return GQSPI_CODE_SUCCESS;
}
#elif defined(USE_QNX)
/* QNX QSPI driver */
static int qspi_transfer(QspiDev_t* pDev,
const uint8_t* cmdData, uint32_t cmdSz,
const uint8_t* txData, uint32_t txSz,
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
uint32_t mode)
{
int ret;
qspi_buf cmd_buf;
qspi_buf tx_buf;
qspi_buf rx_buf;
uint32_t flags;
flags = TRANSFER_FLAG_DEBUG;
if (mode == GQSPI_GEN_FIFO_MODE_QSPI)
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_QSPI);
else if (mode == GQSPI_GEN_FIFO_MODE_DSPI)
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_DSPI);
else
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_SPI);
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
flags |= TRANSFER_FLAG_STRIPE;
if (pDev->cs & GQSPI_GEN_FIFO_CS_LOWER)
flags |= TRANSFER_FLAG_LOW_DB | TRANSFER_FLAG_CS(TRANSFER_FLAG_CS_LOW);
if (pDev->cs & GQSPI_GEN_FIFO_CS_UPPER)
flags |= TRANSFER_FLAG_UP_DB | TRANSFER_FLAG_CS(TRANSFER_FLAG_CS_UP);
memset(&cmd_buf, 0, sizeof(cmd_buf));
cmd_buf.offset = (uint8_t*)cmdData;
cmd_buf.len = cmdSz;
memset(&tx_buf, 0, sizeof(tx_buf));
tx_buf.offset = (uint8_t*)txData;
tx_buf.len = txSz;
memset(&rx_buf, 0, sizeof(rx_buf));
rx_buf.offset = rxData;
rx_buf.len = rxSz;
/* Send the TX buffer */
ret = xzynq_qspi_transfer(pDev->qnx,
txData ? &tx_buf : NULL,
rxData ? &rx_buf : NULL,
&cmd_buf, flags);
if (ret < 0) {
wolfBoot_printf("QSPI Transfer failed! %d\n", ret);
return GQSPI_CODE_FAILED;
}
return GQSPI_CODE_SUCCESS;
}
#else
/* QSPI bare-metal driver */
static inline int qspi_isr_wait(uint32_t wait_mask, uint32_t wait_val)
{
uint32_t timeout = 0;
while ((GQSPI_ISR & wait_mask) == wait_val &&
++timeout < GQSPI_TIMEOUT_TRIES);
if (timeout == GQSPI_TIMEOUT_TRIES) {
return -1;
}
return 0;
}
#ifndef GQSPI_MODE_IO
static inline int qspi_dmaisr_wait(uint32_t wait_mask, uint32_t wait_val)
{
uint32_t timeout = 0;
while ((GQSPIDMA_ISR & wait_mask) == wait_val &&
++timeout < GQSPIDMA_TIMEOUT_TRIES);
if (timeout == GQSPIDMA_TIMEOUT_TRIES) {
return -1;
}
return 0;
}
#endif
static int qspi_gen_fifo_write(uint32_t reg_genfifo)
{
/* wait until the gen FIFO is not full to write */
if (qspi_isr_wait(GQSPI_IXR_GEN_FIFO_NOT_FULL, 0)) {
return GQSPI_CODE_TIMEOUT;
}
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
wolfBoot_printf("FifoEntry=%08x\n", reg_genfifo);
#endif
GQSPI_GEN_FIFO = reg_genfifo;
return GQSPI_CODE_SUCCESS;
}
static int gspi_fifo_tx(const uint8_t* data, uint32_t sz)
{
uint32_t tmp32;
while (sz > 0) {
/* Wait for TX FIFO not full */
if (qspi_isr_wait(GQSPI_IXR_TX_FIFO_FULL, GQSPI_IXR_TX_FIFO_FULL)) {
return GQSPI_CODE_TIMEOUT;
}
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
uint32_t txSz = sz;
if (txSz > GQSPI_FIFO_WORD_SZ)
txSz = GQSPI_FIFO_WORD_SZ;
memcpy(&tmp32, data, txSz);
GQSPI_TXD = tmp32;
wolfBoot_printf("TXD=%08x\n", tmp32);
sz -= txSz;
data += txSz;
#else
/* Write data */
if (sz >= 4) {
GQSPI_TXD = *(uint32_t*)data;
data += 4;
sz -= 4;
}
else {
tmp32 = 0;
memcpy(&tmp32, data, sz);
GQSPI_TXD = tmp32;
sz = 0;
}
#endif
}
return GQSPI_CODE_SUCCESS;
}
#ifdef GQSPI_MODE_IO
static int gspi_fifo_rx(uint8_t* data, uint32_t sz)
{
uint32_t tmp32;
while (sz > 0) {
/* Wait for RX FIFO not empty */
if (qspi_isr_wait(GQSPI_IXR_RX_FIFO_NOT_EMPTY, 0)) {
return GQSPI_CODE_TIMEOUT;
}
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
uint32_t rxSz = sz;
if (rxSz > GQSPI_FIFO_WORD_SZ)
rxSz = GQSPI_FIFO_WORD_SZ;
tmp32 = GQSPI_RXD;
memcpy(data, &tmp32, rxSz);
wolfBoot_printf("RXD=%08x\n", tmp32);
sz -= rxSz;
data += rxSz;
#else
if (sz >= 4) {
*(uint32_t*)data = GQSPI_RXD;
data += 4;
sz -= 4;
}
else {
tmp32 = GQSPI_RXD;
memcpy(data, &tmp32, sz);
sz = 0;
}
#endif
}
return GQSPI_CODE_SUCCESS;
}
#endif
static int qspi_cs(QspiDev_t* pDev, int csAssert)
{
uint32_t reg_genfifo;
/* Select slave bus, bank, mode and cs clocks */
reg_genfifo = (pDev->bus & GQSPI_GEN_FIFO_BUS_MASK);
reg_genfifo |= GQSPI_GEN_FIFO_MODE_SPI;
if (csAssert) {
reg_genfifo |= (pDev->cs & GQSPI_GEN_FIFO_CS_MASK);
reg_genfifo |= GQSPI_GEN_FIFO_IMM(GQSPI_CS_ASSERT_CLOCKS);
}
else {
reg_genfifo |= GQSPI_GEN_FIFO_IMM(GQSPI_CS_DEASSERT_CLOCKS);
}
return qspi_gen_fifo_write(reg_genfifo);
}
static uint32_t qspi_calc_exp(uint32_t xferSz, uint32_t* reg_genfifo)
{
uint32_t expval;
*reg_genfifo &= ~(GQSPI_GEN_FIFO_IMM_MASK | GQSPI_GEN_FIFO_EXP_MASK);
if (xferSz > GQSPI_GEN_FIFO_IMM_MASK) {
/* Use exponent mode (DMA max is 2^28) */
for (expval=28; expval>=8; expval--) {
/* find highest value */
if (xferSz >= (1UL << expval)) {
*reg_genfifo |= GQSPI_GEN_FIFO_EXP_MASK;
*reg_genfifo |= GQSPI_GEN_FIFO_IMM(expval); /* IMM=exponent */
xferSz = (1UL << expval);
break;
}
}
}
else {
/* Use length mode */
*reg_genfifo |= GQSPI_GEN_FIFO_IMM(xferSz); /* IMM=actual length */
}
return xferSz;
}
#ifndef GQSPI_MODE_IO
static uint8_t XALIGNED(QQSPI_DMA_ALIGN) dmatmp[GQSPI_DMA_TMPSZ];
#endif
static int qspi_transfer(QspiDev_t* pDev,
const uint8_t* cmdData, uint32_t cmdSz,
const uint8_t* txData, uint32_t txSz,
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
uint32_t mode)
{
int ret = GQSPI_CODE_SUCCESS;
uint32_t reg_genfifo, xferSz;
#ifndef GQSPI_MODE_IO
uint8_t* dmarxptr = NULL;
#endif
GQSPI_EN = 1; /* Enable device */
qspi_cs(pDev, 1); /* Select slave */
/* Setup bus slave selection */
reg_genfifo = ((pDev->bus & GQSPI_GEN_FIFO_BUS_MASK) |
(pDev->cs & GQSPI_GEN_FIFO_CS_MASK) |
GQSPI_GEN_FIFO_MODE_SPI);
/* Cmd Data */
xferSz = cmdSz;
while (ret == GQSPI_CODE_SUCCESS && cmdData && xferSz > 0) {
/* Enable TX and send command inline */
reg_genfifo &= ~(GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_IMM_MASK);
reg_genfifo |= GQSPI_GEN_FIFO_TX;
reg_genfifo |= GQSPI_GEN_FIFO_IMM(*cmdData); /* IMM is data */
/* Submit general FIFO operation */
ret = qspi_gen_fifo_write(reg_genfifo);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
break;
}
/* offset size and buffer */
xferSz--;
cmdData++;
}
/* Set desired data mode */
reg_genfifo |= (mode & GQSPI_GEN_FIFO_MODE_MASK);
/* TX Data */
while (ret == GQSPI_CODE_SUCCESS && txData && txSz > 0) {
/* Enable TX */
reg_genfifo &= ~(GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_IMM_MASK |
GQSPI_GEN_FIFO_EXP_MASK);
reg_genfifo |= (GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_DATA_XFER);
reg_genfifo |= (pDev->stripe & GQSPI_GEN_FIFO_STRIPE);
xferSz = qspi_calc_exp(txSz, &reg_genfifo);
/* Submit general FIFO operation */
ret = qspi_gen_fifo_write(reg_genfifo);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
}
/* Fill FIFO */
ret = gspi_fifo_tx(txData, xferSz);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
break;
}
/* offset size and buffer */
txSz -= xferSz;
txData += xferSz;
}
/* Dummy operations */
if (ret == GQSPI_CODE_SUCCESS && dummySz) {
/* Send dummy clocks (Disable TX & RX), do not set stripe */
reg_genfifo &= ~(GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_RX |
GQSPI_GEN_FIFO_IMM_MASK | GQSPI_GEN_FIFO_EXP_MASK |
GQSPI_GEN_FIFO_STRIPE);
reg_genfifo |= GQSPI_GEN_FIFO_DATA_XFER;
/* IMM is number of dummy clock cycles */
reg_genfifo |= GQSPI_GEN_FIFO_IMM(dummySz);
ret = qspi_gen_fifo_write(reg_genfifo); /* Submit FIFO Dummy Op */
}
/* RX Data */
while (ret == GQSPI_CODE_SUCCESS && rxData && rxSz > 0) {
/* Enable RX */
reg_genfifo &= ~(GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_IMM_MASK |
GQSPI_GEN_FIFO_EXP_MASK);
reg_genfifo |= (GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_DATA_XFER);
reg_genfifo |= (pDev->stripe & GQSPI_GEN_FIFO_STRIPE);
xferSz = qspi_calc_exp(rxSz, &reg_genfifo);
#ifndef GQSPI_MODE_IO
/* check if pointer is aligned or odd remainder */
dmarxptr = rxData;
if (((size_t)rxData & (QQSPI_DMA_ALIGN-1)) || (xferSz & 3)) {
dmarxptr = (uint8_t*)dmatmp;
xferSz = ((xferSz + (QQSPI_DMA_ALIGN-1)) & ~(QQSPI_DMA_ALIGN-1));
if (xferSz > (uint32_t)sizeof(dmatmp)) {
xferSz = (uint32_t)sizeof(dmatmp);
}
/* re-adjust transfer */
xferSz = qspi_calc_exp(xferSz, &reg_genfifo);
}
GQSPIDMA_DST = ((uintptr_t)dmarxptr & 0xFFFFFFFF);
GQSPIDMA_DST_MSB = ((uintptr_t)dmarxptr >> 32);
GQSPIDMA_SIZE = xferSz;
GQSPIDMA_IER = GQSPIDMA_ISR_DONE; /* enable DMA done interrupt */
flush_dcache_range((unsigned long)dmarxptr,
(unsigned long)dmarxptr + xferSz);
#endif
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
#ifndef GQSPI_MODE_IO
wolfBoot_printf("DMA: ptr %p, xferSz %d\n", dmarxptr, xferSz);
#else
wolfBoot_printf("IO: ptr %p, xferSz %d\n", rxData, xferSz);
#endif
#endif
/* Submit general FIFO operation */
ret = qspi_gen_fifo_write(reg_genfifo);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
break;
}
#ifdef GQSPI_MODE_IO
/* Read FIFO */
ret = gspi_fifo_rx(rxData, xferSz);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
}
#else
/* Wait for DMA done */
if (qspi_dmaisr_wait(GQSPIDMA_ISR_DONE, 0)) {
return GQSPI_CODE_TIMEOUT;
}
GQSPIDMA_ISR = GQSPIDMA_ISR_DONE; /* clear DMA interrupt */
/* adjust xfer sz */
if (xferSz > rxSz)
xferSz = rxSz;
/* copy result if not aligned */
if (dmarxptr != rxData) {
memcpy(rxData, dmarxptr, xferSz);
}
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
if (xferSz <= 1024) {
for (uint32_t i=0; i<xferSz; i+=4) {
wolfBoot_printf("RXD=%08x\n", *((uint32_t*)&rxData[i]));
}
}
#endif
#endif
/* offset size and buffer */
rxSz -= xferSz;
rxData += xferSz;
}
qspi_cs(pDev, 0); /* Deselect Slave */
GQSPI_EN = 0; /* Disable Device */
return ret;
}
#endif /* QSPI Implementation */
static int qspi_flash_read_id(QspiDev_t* dev, uint8_t* id, uint32_t idSz)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
uint8_t status = 0;
memset(cmd, 0, sizeof(cmd));
cmd[0] = READ_ID_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, cmd, sizeof(cmd), 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Read FlashID %s: Ret %d, %02x %02x %02x\n",
(dev->cs & GQSPI_GEN_FIFO_CS_LOWER) ? "Lower" : "Upper",
ret, cmd[0], cmd[1], cmd[2]);
if (ret == GQSPI_CODE_SUCCESS && id) {
if (idSz > sizeof(cmd))
idSz = sizeof(cmd);
memcpy(id, cmd, idSz);
}
qspi_status(dev, &status);
if (status & WRITE_EN_MASK) {
wolfBoot_printf("Write disabled: status %02x\n", status);
ret = -1;
}
return ret;
}
static int qspi_write_enable(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
uint8_t status = 0;
memset(cmd, 0, sizeof(cmd));
cmd[0] = WRITE_ENABLE_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Write Enable: Ret %d\n", ret);
#endif
ret = qspi_wait_ready(dev);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Wait ready: Ret %d\n", ret);
#endif
ret = qspi_wait_we(dev);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Wait we: Ret %d\n", ret);
#endif
qspi_status(dev, &status);
if ((status & WRITE_EN_MASK) == 0) {
wolfBoot_printf("Write enable failed: status %02x\n", status);
ret = -1;
}
return ret;
}
static int qspi_write_disable(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = WRITE_DISABLE_CMD;
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Write Disable: Ret %d\n", ret);
#endif
return ret;
}
static int qspi_flash_status(QspiDev_t* dev, uint8_t* status)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = READ_FSR_CMD;
ret = qspi_transfer(dev, cmd, 1, NULL, 0, cmd, 2, 0,
GQSPI_GEN_FIFO_MODE_SPI);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Flash Status: Ret %d Cmd %02x %02x\n", ret, cmd[0], cmd[1]);
#endif
if (ret == GQSPI_CODE_SUCCESS && status) {
if (dev->stripe) {
cmd[0] &= cmd[1];
}
*status = cmd[0];
}
return ret;
}
static int qspi_status(QspiDev_t* dev, uint8_t* status)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = READ_SR_CMD;
ret = qspi_transfer(dev, cmd, 1, NULL, 0, cmd, 2, 0,
GQSPI_GEN_FIFO_MODE_SPI);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Status: Ret %d Cmd %02x %02x\n", ret, cmd[0], cmd[1]);
#endif
if (ret == GQSPI_CODE_SUCCESS && status) {
if (dev->stripe) {
cmd[0] &= cmd[1];
}
*status = cmd[0];
}
return ret;
}
static int qspi_wait_ready(QspiDev_t* dev)
{
int ret;
uint32_t timeout;
uint8_t status = 0;
timeout = 0;
while (++timeout < QSPI_FLASH_READY_TRIES) {
ret = qspi_flash_status(dev, &status);
if (ret == GQSPI_CODE_SUCCESS && (status & FLASH_READY_MASK)) {
return ret;
}
}
wolfBoot_printf("Flash Ready Timeout!\n");
return GQSPI_CODE_TIMEOUT;
}
static int qspi_wait_we(QspiDev_t* dev)
{
int ret;
uint32_t timeout;
uint8_t status = 0;
timeout = 0;
while (++timeout < QSPI_FLASH_READY_TRIES) {
ret = qspi_status(dev, &status);
if (ret == GQSPI_CODE_SUCCESS &&
(status & WRITE_EN_MASK)
) {
return ret;
}
}
wolfBoot_printf("Flash WE Timeout!\n");
return GQSPI_CODE_TIMEOUT;
}
#if GQPI_USE_4BYTE_ADDR == 1
static int qspi_enter_4byte_addr(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = ENTER_4B_ADDR_MODE_CMD;
(void)qspi_wait_ready(&mDev); /* Wait for not busy */
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Enter 4-byte address mode: Ret %d\n", ret);
#endif
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
}
qspi_write_disable(&mDev);
}
return ret;
}
static int qspi_exit_4byte_addr(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = EXIT_4B_ADDR_MODE_CMD;
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Exit 4-byte address mode: Ret %d\n", ret);
#endif
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
}
qspi_write_disable(&mDev);
}
return ret;
}
#endif
/* QSPI functions */
void qspi_init(void)
{
int ret;
uint32_t reg_cfg, reg_isr;
uint8_t id_low[4];
#if GQPI_USE_DUAL_PARALLEL == 1
uint8_t id_hi[4];
#endif
uint32_t timeout;
#ifdef USE_XQSPIPSU
XQspiPsu_Config *QspiConfig;
#endif
memset(&mDev, 0, sizeof(mDev));
#ifdef USE_XQSPIPSU
/* Xilinx BSP Driver */
QspiConfig = XQspiPsu_LookupConfig(QSPI_DEVICE_ID);
if (QspiConfig == NULL) {
wolfBoot_printf("QSPI config lookup failed\n");
return;
}
ret = XQspiPsu_CfgInitialize(&mDev.qspiPsuInst, QspiConfig, QspiConfig->BaseAddress);
if (ret != 0) {
wolfBoot_printf("QSPI config init failed\n");
return;
}
XQspiPsu_SetOptions(&mDev.qspiPsuInst, XQSPIPSU_MANUAL_START_OPTION);
XQspiPsu_SetClkPrescaler(&mDev.qspiPsuInst, QSPI_CLK_PRESACALE);
#elif defined(USE_QNX)
/* QNX QSPI driver */
mDev.qnx = xzynq_qspi_open();
if (mDev.qnx == NULL) {
wolfBoot_printf("QSPI failed to open\n");
return;
}
#else
/* QSPI bare-metal driver */
wolfBoot_printf("QSPI Init: Ref=%dMHz, Div=%d, Bus=%d, IO=%s\n",
GQSPI_CLK_REF/1000000,
(2 << GQSPI_CLK_DIV),
(GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)),
#ifdef GQSPI_MODE_IO
"Poll"
#else
"DMA"
#endif
);
/* Disable Linear Mode in case FSBL enabled it */
LQSPI_EN = 0;
/* Select Generic Quad-SPI */
GQSPI_SEL = 1;
/* Clear and disable all interrupts */
reg_isr = GQSPI_ISR;
GQSPI_ISR = (reg_isr | GQSPI_ISR_WR_TO_CLR_MASK); /* Clear poll timeout counter interrupt */
reg_cfg = GQSPIDMA_ISR;
GQSPIDMA_ISR = reg_cfg; /* clear all active interrupts */
GQSPI_IER = GQSPI_IXR_GEN_FIFO_EMPTY;
GQSPI_IDR = GQSPI_IXR_ALL_MASK; /* disable interrupts */
GQSPIDMA_IDR = GQSPIDMA_ISR_ALL_MASK;
GQSPI_EN = 0; /* Disable device */
/* Initialize clock divisor, write protect hold and start mode */
#ifdef GQSPI_MODE_IO
reg_cfg = GQSPI_CFG_MODE_EN_IO; /* Use I/O Transfer Mode */
reg_cfg |= GQSPI_CFG_START_GEN_FIFO; /* Trigger GFIFO commands to start */
#else
reg_cfg = GQSPI_CFG_MODE_EN_DMA; /* Use DMA Transfer Mode */
#endif
reg_cfg |= GQSPI_CFG_BAUD_RATE_DIV(GQSPI_CLK_DIV); /* Clock Divider */
reg_cfg |= GQSPI_CFG_WP_HOLD; /* Use WP Hold */
reg_cfg &= ~(GQSPI_CFG_CLK_POL | GQSPI_CFG_CLK_PH); /* Use POL=0,PH=0 */
GQSPI_CFG = reg_cfg;
#if (GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)) <= 40000000 /* 40MHz */
/* At <40 MHz, the Quad-SPI controller should be in non-loopback mode with
* the clock and data tap delays bypassed. */
IOU_TAPDLY_BYPASS |= IOU_TAPDLY_BYPASS_LQSPI_RX;
GQSPI_LPBK_DLY_ADJ = 0;
GQSPI_DATA_DLY_ADJ = 0;
#elif (GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)) <= 100000000 /* 100MHz */
/* At <100 MHz, the Quad-SPI controller should be in clock loopback mode
* with the clock tap delay bypassed, but the data tap delay enabled. */
IOU_TAPDLY_BYPASS |= IOU_TAPDLY_BYPASS_LQSPI_RX;
GQSPI_LPBK_DLY_ADJ = GQSPI_LPBK_DLY_ADJ_USE_LPBK;
GQSPI_DATA_DLY_ADJ = (GQSPI_DATA_DLY_ADJ_USE_DATA_DLY |
GQSPI_DATA_DLY_ADJ_DATA_DLY_ADJ(2));
#elif (GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)) <= 150000000 /* 150MHz */
/* At <150 MHz, only the generic controller can be used.
* The generic controller should be in clock loopback mode and the clock
* tap delay enabled, but the data tap delay disabled. */
/* For EL2 or lower must use IOCTL_SET_TAPDELAY_BYPASS ARG1=2, ARG2=0 */
if (current_el() <= 2) {
reg_cfg = 0;
pmu_request(PM_MMIO_WRITE, IOU_TAPDLY_BYPASS_ADDR, 0x7, reg_cfg, 0, NULL);
}
else {
IOU_TAPDLY_BYPASS = 0;
}
GQSPI_LPBK_DLY_ADJ = GQSPI_LPBK_DLY_ADJ_USE_LPBK;
GQSPI_DATA_DLY_ADJ = 0;
#endif
/* Initialize hardware parameters for Threshold and Interrupts */
GQSPI_TX_THRESH = 1;
GQSPI_RX_THRESH = 1;
GQSPI_GF_THRESH = 31;
/* Reset DMA */
GQSPIDMA_CTRL = GQSPIDMA_CTRL_DEF;
GQSPIDMA_CTRL2 = GQSPIDMA_CTRL2_DEF;
GQSPIDMA_IER = GQSPIDMA_ISR_ALL_MASK;
GQSPI_EN = 1; /* Enable Device */
#endif /* USE_QNX */
(void)reg_cfg;
(void)reg_isr;
/* ------ Flash Read ID (retry) ------ */
timeout = 0;
while (++timeout < QSPI_FLASH_READY_TRIES) {
/* Slave Select - lower chip */
mDev.mode = GQSPI_GEN_FIFO_MODE_SPI;
mDev.bus = GQSPI_GEN_FIFO_BUS_LOW;
mDev.cs = GQSPI_GEN_FIFO_CS_LOWER;
ret = qspi_flash_read_id(&mDev, id_low, sizeof(id_low));
if (ret != GQSPI_CODE_SUCCESS) {
continue;
}
#if GQPI_USE_DUAL_PARALLEL == 1
/* Slave Select - upper chip */
mDev.mode = GQSPI_GEN_FIFO_MODE_SPI;
mDev.bus = GQSPI_GEN_FIFO_BUS_UP;
mDev.cs = GQSPI_GEN_FIFO_CS_UPPER;
ret = qspi_flash_read_id(&mDev, id_hi, sizeof(id_hi));
if (ret != GQSPI_CODE_SUCCESS) {
continue;
}
/* ID's for upper and lower must match */
if ((id_hi[0] == 0 || id_hi[0] == 0xFF) ||
(id_hi[0] != id_low[0] &&
id_hi[1] != id_low[1] &&
id_hi[2] != id_low[2]))
{
wolfBoot_printf("Flash ID error!\n");
continue;
}
#endif
break; /* success */
}
/* Slave Select */
mDev.mode = GQSPI_QSPI_MODE;
#if GQPI_USE_DUAL_PARALLEL == 1
mDev.bus = GQSPI_GEN_FIFO_BUS_BOTH; /* GQSPI_GEN_FIFO_BUS_LOW or GQSPI_GEN_FIFO_BUS_UP */
mDev.cs = GQSPI_GEN_FIFO_CS_BOTH; /* GQSPI_GEN_FIFO_CS_LOWER or GQSPI_GEN_FIFO_CS_UPPER */
mDev.stripe = GQSPI_GEN_FIFO_STRIPE;
#endif
#if GQPI_USE_4BYTE_ADDR == 1
/* Enter 4-byte address mode */
ret = qspi_enter_4byte_addr(&mDev);
if (ret != GQSPI_CODE_SUCCESS)
return;
#endif
#ifdef TEST_EXT_FLASH
test_ext_flash(&mDev);
#endif
}
void hal_delay_ms(uint64_t ms)
{
uint64_t start = hal_timer_ms();
uint64_t end = start + ms;
while (1) {
uint64_t cur = hal_timer_ms();
/* check for timer rollover or expiration */
if (cur < start || cur >= end) {
break;
}
}
}
uint64_t hal_timer_ms(void)
{
uint64_t val;
unsigned long cntfrq;
unsigned long cntpct;
asm volatile("mrs %0, cntfrq_el0" : "=r" (cntfrq));
asm volatile("mrs %0, cntpct_el0" : "=r" (cntpct));
val = cntpct * 1000;
val /= cntfrq;
return val;
}
/* public HAL functions */
void hal_init(void)
{
uint32_t reg;
const char* bootMsg = "\nwolfBoot Secure Boot\n";
#ifdef DEBUG_UART
uart_init();
#endif
wolfBoot_printf(bootMsg);
wolfBoot_printf("Current EL: %d\n", current_el());
qspi_init();
pmuVer = pmu_get_version();
wolfBoot_printf("PMUFW Ver: %d.%d\n",
(int)(pmuVer >> 16), (int)(pmuVer & 0xFFFF));
#ifdef WOLFBOOT_ZYNQMP_CSU
if (pmuVer >= PMUFW_MIN_VER) {
csu_init();
}
else {
wolfBoot_printf("Skipping CSU Init (PMUFW not found)\n");
}
#endif
}
void hal_prepare_boot(void)
{
#if GQPI_USE_4BYTE_ADDR == 1
/* Exit 4-byte address mode */
int ret = qspi_exit_4byte_addr(&mDev);
if (ret != GQSPI_CODE_SUCCESS)
return;
#endif
#ifdef USE_QNX
if (mDev.qnx) {
xzynq_qspi_close(mDev.qnx);
mDev.qnx = NULL;
}
#endif
}
/* Flash functions must be relocated to RAM for execution */
int RAMFUNCTION hal_flash_write(uintptr_t address, const uint8_t *data, int len)
{
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
}
void RAMFUNCTION hal_flash_lock(void)
{
}
int RAMFUNCTION hal_flash_erase(uintptr_t address, int len)
{
return 0;
}
/* Xilinx Write uses SPI mode and Page Program 0x02 */
/* Issues using write with QSPI mode */
int RAMFUNCTION ext_flash_write(uintptr_t address, const uint8_t *data, int len)
{
int ret = 0;
uint8_t cmd[8]; /* size multiple of uint32_t */
uint32_t xferSz, page, pages, idx;
uintptr_t addr;
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Flash Write: Addr 0x%x, Ptr %p, Len %d\n",
address, data, len);
#endif
/* write by page */
pages = ((len + (FLASH_PAGE_SIZE-1)) / FLASH_PAGE_SIZE);
for (page = 0; page < pages; page++) {
ret = qspi_write_enable(&mDev);
if (ret != GQSPI_CODE_SUCCESS) {
break;
}
xferSz = len;
if (xferSz > FLASH_PAGE_SIZE)
xferSz = FLASH_PAGE_SIZE;
addr = address + (page * FLASH_PAGE_SIZE);
if (mDev.stripe) {
/* For dual parallel the address divide by 2 */
addr /= 2;
}
/* ------ Write Flash (page at a time) ------ */
memset(cmd, 0, sizeof(cmd));
idx = 0;
cmd[idx++] = PAGE_PROG_CMD;
#if GQPI_USE_4BYTE_ADDR == 1
cmd[idx++] = ((addr >> 24) & 0xFF);
#endif
cmd[idx++] = ((addr >> 16) & 0xFF);
cmd[idx++] = ((addr >> 8) & 0xFF);
cmd[idx++] = ((addr >> 0) & 0xFF);
ret = qspi_transfer(&mDev, cmd, idx,
(const uint8_t*)(data + (page * FLASH_PAGE_SIZE)),
xferSz, NULL, 0, 0, GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Flash Page %d Write: Ret %d\n", page, ret);
if (ret != GQSPI_CODE_SUCCESS)
break;
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
if (ret != GQSPI_CODE_SUCCESS) {
break;
}
qspi_write_disable(&mDev);
len -= xferSz;
}
return ret;
}
#if GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_QSPI && GQPI_USE_4BYTE_ADDR == 1
#define FLASH_READ_CMD QUAD_READ_4B_CMD
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_DSPI && GQPI_USE_4BYTE_ADDR == 1
#define FLASH_READ_CMD DUAL_READ_4B_CMD
#elif GQPI_USE_4BYTE_ADDR == 1
#define FLASH_READ_CMD FAST_READ_4B_CMD
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_QSPI
#define FLASH_READ_CMD QUAD_READ_CMD
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_DSPI
#define FLASH_READ_CMD DUAL_READ_CMD
#else
#define FLASH_READ_CMD FAST_READ_CMD
#endif
int RAMFUNCTION ext_flash_read(uintptr_t address, uint8_t *data, int len)
{
int ret;
uint8_t cmd[8]; /* size multiple of uint32_t */
uint32_t idx = 0;
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Flash Read: Addr 0x%x, Ptr %p, Len %d\n",
address, data, len);
#endif
if (mDev.stripe) {
/* For dual parallel the address divide by 2 */
address /= 2;
}
/* ------ Read Flash ------ */
memset(cmd, 0, sizeof(cmd));
cmd[idx++] = FLASH_READ_CMD;
#if GQPI_USE_4BYTE_ADDR == 1
cmd[idx++] = ((address >> 24) & 0xFF);
#endif
cmd[idx++] = ((address >> 16) & 0xFF);
cmd[idx++] = ((address >> 8) & 0xFF);
cmd[idx++] = ((address >> 0) & 0xFF);
ret = qspi_transfer(&mDev, cmd, idx, NULL, 0, data, len, GQSPI_DUMMY_READ,
mDev.mode);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Flash Read: Ret %d\r\n", ret);
#endif
return (ret == 0) ? len : ret;
}
/* Issues a sector erase based on flash address */
int RAMFUNCTION ext_flash_erase(uintptr_t address, int len)
{
int ret = 0;
uint8_t cmd[8]; /* size multiple of uint32_t */
uint32_t idx = 0;
uintptr_t qspiaddr;
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Flash Erase: Addr 0x%x, Len %d\n", address, len);
#endif
while (len > 0) {
/* For dual parallel the address divide by 2 */
qspiaddr = (mDev.stripe) ? address / 2 : address;
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
/* ------ Erase Flash ------ */
memset(cmd, 0, sizeof(cmd));
cmd[idx++] = SEC_ERASE_CMD;
#if GQPI_USE_4BYTE_ADDR == 1
cmd[idx++] = ((qspiaddr >> 24) & 0xFF);
#endif
cmd[idx++] = ((qspiaddr >> 16) & 0xFF);
cmd[idx++] = ((qspiaddr >> 8) & 0xFF);
cmd[idx++] = ((qspiaddr >> 0) & 0xFF);
ret = qspi_transfer(&mDev, cmd, idx, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Flash Erase: Ret %d\n", ret);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
}
qspi_write_disable(&mDev);
}
address += WOLFBOOT_SECTOR_SIZE;
len -= WOLFBOOT_SECTOR_SIZE;
}
return ret;
}
void RAMFUNCTION ext_flash_lock(void)
{
}
void RAMFUNCTION ext_flash_unlock(void)
{
}
#ifdef MMU
void* hal_get_dts_address(void)
{
return (void*)WOLFBOOT_DTS_BOOT_ADDRESS;
}
int hal_dts_fixup(void* dts_addr)
{
/* place FDT fixup specific to ZynqMP here */
//fdt_set_boot_cpuid_phys(buf, fdt_boot_cpuid_phys(fdt));
return 0;
}
#endif
#ifdef TEST_EXT_FLASH
#ifndef TEST_EXT_ADDRESS
#define TEST_EXT_ADDRESS 0x2800000 /* 40MB */
#endif
static int test_ext_flash(QspiDev_t* dev)
{
int ret;
uint32_t i;
uint8_t pageData[FLASH_PAGE_SIZE*4];
#ifndef TEST_FLASH_READONLY
/* Erase sector */
ret = ext_flash_erase(TEST_EXT_ADDRESS, WOLFBOOT_SECTOR_SIZE);
wolfBoot_printf("Erase Sector: Ret %d\n", ret);
/* Write Pages */
for (i=0; i<sizeof(pageData); i++) {
pageData[i] = (i & 0xff);
}
ret = ext_flash_write(TEST_EXT_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Write Page: Ret %d\n", ret);
#endif /* !TEST_FLASH_READONLY */
/* Read page */
memset(pageData, 0, sizeof(pageData));
ret = ext_flash_read(TEST_EXT_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Read Page: Ret %d\n", ret);
wolfBoot_printf("Checking...\n");
/* Check data */
for (i=0; i<sizeof(pageData); i++) {
wolfBoot_printf("check[%3d] %02x\n", i, pageData[i]);
if (pageData[i] != (i & 0xff)) {
wolfBoot_printf("Check Data @ %d failed\n", i);
return GQSPI_CODE_FAILED;
}
}
wolfBoot_printf("Flash Test Passed\n");
return ret;
}
#endif /* TEST_EXT_FLASH */
#endif /* TARGET_zynq */