mirror of https://github.com/wolfSSL/wolfBoot.git
1839 lines
54 KiB
C
1839 lines
54 KiB
C
/* zynq.c
|
|
*
|
|
* Copyright (C) 2024 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfBoot.
|
|
*
|
|
* wolfBoot is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfBoot is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
#ifdef TARGET_zynq
|
|
|
|
#include "hal/zynq.h"
|
|
|
|
#ifndef ARCH_AARCH64
|
|
# error "wolfBoot zynq HAL: wrong architecture selected. Please compile with ARCH=AARCH64."
|
|
#endif
|
|
|
|
#if defined(__QNXNTO__) && !defined(NO_QNX)
|
|
#define USE_QNX
|
|
#elif defined(USE_BUILTIN_STARTUP)
|
|
/* to use the Xilinx QSPI driver define USE_XQSPIPSU */
|
|
#endif
|
|
|
|
#include <target.h>
|
|
#include "image.h"
|
|
#include "printf.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#ifdef USE_XQSPIPSU
|
|
/* Xilinx BSP Driver */
|
|
#include "xqspipsu.h"
|
|
#ifndef QSPI_DEVICE_ID
|
|
#define QSPI_DEVICE_ID XPAR_XQSPIPSU_0_DEVICE_ID
|
|
#endif
|
|
#ifndef QSPI_CLK_PRESACALE
|
|
#define QSPI_CLK_PRESACALE XQSPIPSU_CLK_PRESCALE_8
|
|
#endif
|
|
#elif defined(USE_QNX)
|
|
/* QNX QSPI driver */
|
|
#include <sys/siginfo.h>
|
|
#include "xzynq_gqspi.h"
|
|
#else
|
|
/* QSPI bare-metal */
|
|
#endif
|
|
|
|
/* QSPI Slave Device Information */
|
|
typedef struct QspiDev {
|
|
uint32_t mode; /* GQSPI_GEN_FIFO_MODE_SPI, GQSPI_GEN_FIFO_MODE_DSPI or GQSPI_GEN_FIFO_MODE_QSPI */
|
|
uint32_t bus; /* GQSPI_GEN_FIFO_BUS_LOW, GQSPI_GEN_FIFO_BUS_UP or GQSPI_GEN_FIFO_BUS_BOTH */
|
|
uint32_t cs; /* GQSPI_GEN_FIFO_CS_LOWER, GQSPI_GEN_FIFO_CS_UPPER */
|
|
uint32_t stripe; /* OFF=0 or ON=GQSPI_GEN_FIFO_STRIPE */
|
|
#ifdef USE_XQSPIPSU
|
|
XQspiPsu qspiPsuInst;
|
|
#elif defined(USE_QNX)
|
|
xzynq_qspi_t* qnx;
|
|
#endif
|
|
} QspiDev_t;
|
|
|
|
static QspiDev_t mDev;
|
|
static uint32_t pmuVer;
|
|
#define PMUFW_MIN_VER 0x10001 /* v1.1*/
|
|
|
|
/* forward declarations */
|
|
static int qspi_wait_ready(QspiDev_t* dev);
|
|
static int qspi_status(QspiDev_t* dev, uint8_t* status);
|
|
static int qspi_wait_we(QspiDev_t* dev);
|
|
#ifdef TEST_EXT_FLASH
|
|
static int test_ext_flash(QspiDev_t* dev);
|
|
#endif
|
|
|
|
/* asm function */
|
|
extern void flush_dcache_range(unsigned long start, unsigned long stop);
|
|
extern unsigned int current_el(void);
|
|
|
|
void hal_delay_ms(uint64_t ms);
|
|
uint64_t hal_timer_ms(void);
|
|
|
|
#ifdef DEBUG_UART
|
|
void uart_init(void)
|
|
{
|
|
/* Disable Interrupts */
|
|
ZYNQMP_UART_IDR = ZYNQMP_UART_ISR_MASK;
|
|
/* Disable TX/RX */
|
|
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TX_DIS | ZYNQMP_UART_CR_RX_DIS);
|
|
/* Clear ISR */
|
|
ZYNQMP_UART_ISR = ZYNQMP_UART_ISR_MASK;
|
|
|
|
/* 8-bits, no parity */
|
|
ZYNQMP_UART_MR = ZYNQMP_UART_MR_PARITY_NONE;
|
|
|
|
/* FIFO Trigger Level */
|
|
ZYNQMP_UART_RXWM = 32; /* half of 64 byte FIFO */
|
|
ZYNQMP_UART_TXWM = 32; /* half of 64 byte FIFO */
|
|
|
|
/* RX Timeout - disable */
|
|
ZYNQMP_UART_RXTOUT = 0;
|
|
|
|
/* baud (115200) = master clk / (BR_GEN * (BR_DIV + 1)) */
|
|
ZYNQMP_UART_BR_GEN = UART_CLK_REF / (DEBUG_UART_BAUD * (DEBUG_UART_DIV+1));
|
|
ZYNQMP_UART_BR_DIV = DEBUG_UART_DIV;
|
|
|
|
/* Reset TX/RX */
|
|
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TXRST | ZYNQMP_UART_CR_RXRST);
|
|
|
|
/* Enable TX/RX */
|
|
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TX_EN | ZYNQMP_UART_CR_RX_EN);
|
|
}
|
|
|
|
void uart_write(const char* buf, uint32_t sz)
|
|
{
|
|
uint32_t pos = 0;
|
|
while (sz-- > 0) {
|
|
char c = buf[pos++];
|
|
if (c == '\n') { /* handle CRLF */
|
|
while (ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXFULL);
|
|
ZYNQMP_UART_FIFO = '\r';
|
|
}
|
|
while (ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXFULL);
|
|
ZYNQMP_UART_FIFO = c;
|
|
}
|
|
/* Wait till TX Fifo is empty */
|
|
while (!(ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXEMPTY));
|
|
}
|
|
#endif /* DEBUG_UART */
|
|
|
|
/* This struct defines the way the registers are stored on the stack during an
|
|
* exception. */
|
|
struct pt_regs {
|
|
uint64_t elr;
|
|
uint64_t regs[8];
|
|
};
|
|
|
|
/*
|
|
* void smc_call(arg0, arg1...arg7)
|
|
*
|
|
* issue the secure monitor call
|
|
*
|
|
* x0~x7: input arguments
|
|
* x0~x3: output arguments
|
|
*/
|
|
static void smc_call(struct pt_regs *args)
|
|
{
|
|
asm volatile(
|
|
"ldr x0, %0\n"
|
|
"ldr x1, %1\n"
|
|
"ldr x2, %2\n"
|
|
"ldr x3, %3\n"
|
|
"ldr x4, %4\n"
|
|
"ldr x5, %5\n"
|
|
"ldr x6, %6\n"
|
|
"smc #0\n"
|
|
"str x0, %0\n"
|
|
"str x1, %1\n"
|
|
"str x2, %2\n"
|
|
"str x3, %3\n"
|
|
: "+m" (args->regs[0]), "+m" (args->regs[1]),
|
|
"+m" (args->regs[2]), "+m" (args->regs[3])
|
|
: "m" (args->regs[4]), "m" (args->regs[5]),
|
|
"m" (args->regs[6])
|
|
: "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8",
|
|
"x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17");
|
|
}
|
|
|
|
#define PM_ARGS_CNT 8
|
|
#define PM_SIP_SVC 0xC2000000
|
|
#define PM_GET_API_VERSION 0x01
|
|
#define PM_SECURE_SHA 0x1A
|
|
#define PM_SECURE_RSA 0x1B
|
|
#define PM_MMIO_WRITE 0x13
|
|
#define PM_MMIO_READ 0x14
|
|
|
|
/* AES */
|
|
/* requires PMU built with -DENABLE_SECURE_VAL=1 */
|
|
#define PM_SECURE_AES 0x2F
|
|
typedef struct pmu_aes {
|
|
uint64_t src; /* source address */
|
|
uint64_t iv; /* initialization vector address */
|
|
uint64_t key; /* key address */
|
|
uint64_t dst; /* destination address */
|
|
uint64_t size; /* size */
|
|
uint64_t op; /* operation: 0=Decrypt, 1=Encrypt */
|
|
uint64_t keySrc; /* key source 0=KUP, 1=Device Key, 2=Use PUF (do regen) */
|
|
} pmu_aes;
|
|
|
|
/* EFUSE */
|
|
/* requires PMU built with -DENABLE_EFUSE_ACCESS=1 */
|
|
#define PM_EFUSE_ACCESS 0x35
|
|
typedef struct pmu_efuse {
|
|
uint64_t src; /* adress of data buffer */
|
|
uint32_t size; /* size in words */
|
|
uint32_t offset; /* offset */
|
|
uint32_t flag; /* 0: to read efuse, 1: to write efuse */
|
|
uint32_t pufUserFuse;/* 0: PUF HD, 1: eFuses for User Data */
|
|
} pmu_efuse;
|
|
|
|
/* Secure Monitor Call (SMC) to BL31 Silicon Provider (SIP) service,
|
|
* which is the PMU Firmware */
|
|
static int pmu_request(uint32_t api_id,
|
|
uint32_t arg0, uint32_t arg1, uint32_t arg2, uint32_t arg3,
|
|
uint32_t *ret_payload)
|
|
{
|
|
struct pt_regs regs;
|
|
|
|
regs.regs[0] = PM_SIP_SVC | api_id;
|
|
regs.regs[1] = ((uint64_t)arg1 << 32) | arg0;
|
|
regs.regs[2] = ((uint64_t)arg3 << 32) | arg2;
|
|
|
|
smc_call(®s);
|
|
|
|
if (ret_payload != NULL) {
|
|
ret_payload[0] = (uint32_t)(regs.regs[0]);
|
|
ret_payload[1] = (uint32_t)(regs.regs[0] >> 32);
|
|
ret_payload[2] = (uint32_t)(regs.regs[1]);
|
|
ret_payload[3] = (uint32_t)(regs.regs[1] >> 32);
|
|
ret_payload[4] = (uint32_t)(regs.regs[2]);
|
|
ret_payload[5] = (uint32_t)(regs.regs[2] >> 32);
|
|
ret_payload[6] = (uint32_t)(regs.regs[3]);
|
|
ret_payload[7] = (uint32_t)(regs.regs[3] >> 32);
|
|
}
|
|
return (ret_payload != NULL) ? ret_payload[0] : 0;
|
|
}
|
|
|
|
|
|
uint32_t pmu_get_version(void)
|
|
{
|
|
uint32_t ret_payload[PM_ARGS_CNT];
|
|
memset(ret_payload, 0, sizeof(ret_payload));
|
|
pmu_request(PM_GET_API_VERSION, 0, 0, 0, 0, ret_payload);
|
|
return ret_payload[1];
|
|
}
|
|
|
|
/* Aligned data buffer for DMA */
|
|
#define EFUSE_MAX_BUFSZ (sizeof(pmu_efuse) + 48 /* SHA3-384 Digest */)
|
|
static uint8_t XALIGNED(32) efuseBuf[EFUSE_MAX_BUFSZ];
|
|
|
|
uint32_t pmu_efuse_read(uint32_t offset, uint32_t* data, uint32_t size)
|
|
{
|
|
pmu_efuse* efuseCmd = (pmu_efuse*)efuseBuf;
|
|
uint8_t* efuseData = (efuseBuf + sizeof(pmu_efuse));
|
|
uint64_t efuseCmdPtr = (uint64_t)efuseCmd;
|
|
uint32_t ret_payload[PM_ARGS_CNT];
|
|
memset(ret_payload, 0, sizeof(ret_payload));
|
|
memset(efuseBuf, 0, sizeof(efuseBuf));
|
|
efuseCmd->src = (uint64_t)efuseData;
|
|
efuseCmd->offset = (offset & 0xFF); /* offset is only the last 0xFF bits */
|
|
efuseCmd->size = (size/sizeof(uint32_t)); /* number of 32-bit words */
|
|
pmu_request(PM_EFUSE_ACCESS, (efuseCmdPtr >> 32), (efuseCmdPtr & 0xFFFFFFFF),
|
|
0, 0, ret_payload);
|
|
memcpy(data, efuseData, size);
|
|
return ret_payload[0]; /* 0=Success, 30=No Access */
|
|
}
|
|
|
|
uint32_t pmu_mmio_read(uint32_t addr)
|
|
{
|
|
uint32_t ret_payload[PM_ARGS_CNT];
|
|
memset(ret_payload, 0, sizeof(ret_payload));
|
|
pmu_request(PM_MMIO_READ, addr, 0, 0, 0, ret_payload);
|
|
return ret_payload[1];
|
|
}
|
|
|
|
uint32_t pmu_mmio_writemask(uint32_t addr, uint32_t mask, uint32_t val)
|
|
{
|
|
uint32_t ret_payload[PM_ARGS_CNT];
|
|
memset(ret_payload, 0, sizeof(ret_payload));
|
|
pmu_request(PM_MMIO_WRITE, addr, mask, val, 0, ret_payload);
|
|
return ret_payload[0]; /* 0=Success, 30=No Access */
|
|
}
|
|
|
|
uint32_t pmu_mmio_write(uint32_t addr, uint32_t val)
|
|
{
|
|
return pmu_mmio_writemask(addr, 0xFFFFFFFF, val);
|
|
}
|
|
|
|
int pmu_mmio_wait(uint32_t addr, uint32_t wait_mask, uint32_t wait_val,
|
|
uint32_t tries)
|
|
{
|
|
uint32_t regval, timeout = 0;
|
|
while ((((regval = pmu_mmio_read(addr)) & wait_mask) != wait_val)
|
|
&& ++timeout < tries);
|
|
return (timeout < tries) ? 0 : -1;
|
|
}
|
|
|
|
#ifdef WOLFBOOT_ZYNQMP_CSU
|
|
|
|
#ifdef WOLFBOOT_HASH_SHA3_384
|
|
#include <wolfssl/wolfcrypt/sha3.h>
|
|
#define XSECURE_SHA3_INIT 1U
|
|
#define XSECURE_SHA3_UPDATE 2U
|
|
#define XSECURE_SHA3_FINAL 4U
|
|
static uint32_t csu_sha3(uint64_t addr, uint32_t sz, uint32_t flags)
|
|
{
|
|
uint32_t ret_payload[PM_ARGS_CNT];
|
|
memset(ret_payload, 0, sizeof(ret_payload));
|
|
pmu_request(PM_SECURE_SHA, (addr >> 32), (addr & 0xFFFFFFFF), sz, flags,
|
|
ret_payload);
|
|
return ret_payload[0];
|
|
}
|
|
|
|
int wc_InitSha3_384(wc_Sha3* sha, void* heap, int devId)
|
|
{
|
|
(void)sha;
|
|
(void)heap;
|
|
(void)devId;
|
|
return csu_sha3(0, 0, XSECURE_SHA3_INIT);
|
|
}
|
|
int wc_Sha3_384_Update(wc_Sha3* sha, const byte* data, word32 len)
|
|
{
|
|
(void)sha;
|
|
flush_dcache_range(
|
|
(unsigned long)data,
|
|
(unsigned long)data + len);
|
|
return csu_sha3((uint64_t)data, len, XSECURE_SHA3_UPDATE);
|
|
}
|
|
int wc_Sha3_384_Final(wc_Sha3* sha, byte* out)
|
|
{
|
|
(void)sha;
|
|
flush_dcache_range(
|
|
(unsigned long)out,
|
|
(unsigned long)out + WC_SHA3_384_DIGEST_SIZE);
|
|
return csu_sha3((uint64_t)out, 0, XSECURE_SHA3_FINAL);
|
|
}
|
|
void wc_Sha3_384_Free(wc_Sha3* sha)
|
|
{
|
|
(void)sha;
|
|
}
|
|
#else
|
|
# error HW_SHA3=1 only supported with HASH=SHA3
|
|
#endif
|
|
|
|
/* CSU PUF */
|
|
#ifdef CSU_PUF_ROT
|
|
/* 1544 bytes is fixed size for boot header used by CSU ROM */
|
|
#define CSU_PUF_SYNDROME_WORDS 386
|
|
#ifndef CSU_PUF_REG_TRIES
|
|
#define CSU_PUF_REG_TRIES 500000
|
|
#endif
|
|
|
|
int csu_puf_register(uint32_t* syndrome, uint32_t* chash, uint32_t* aux)
|
|
{
|
|
int ret;
|
|
uint32_t reg32, puf_status = 0, idx = 0;
|
|
|
|
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
|
|
wolfBoot_printf("CSU Puf Register\n");
|
|
#endif
|
|
|
|
/* try a read from register to make sure PMU has permission */
|
|
reg32 = pmu_mmio_read(CSU_PUF_SHUTTER);
|
|
if (reg32 == 0) {
|
|
wolfBoot_printf("PMUFW PUF Register access not enabled in "
|
|
"pm_mmio_access pmAccessTable!\n");
|
|
return -1;
|
|
}
|
|
|
|
ret = pmu_mmio_write(CSU_PUF_CFG0, CSU_PUF_CFG0_INIT);
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_PUF_CFG1, CSU_PUF_CFG1_INIT);
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_PUF_SHUTTER, CSU_PUF_SHUTTER_INIT);
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_PUF_CMD, CSU_PUF_CMD_REGISTRATION);
|
|
while (ret == 0) {
|
|
/* wait for PUF word ready */
|
|
ret = pmu_mmio_wait(CSU_PUF_STATUS,
|
|
CSU_PUF_STATUS_SYN_WRD_RDY_MASK,
|
|
CSU_PUF_STATUS_SYN_WRD_RDY_MASK,
|
|
CSU_PUF_REG_TRIES);
|
|
if (ret != 0)
|
|
break;
|
|
|
|
if ((idx > CSU_PUF_SYNDROME_WORDS-2) /* room for chash and aux */) {
|
|
ret = -2; /* overrun */
|
|
break;
|
|
}
|
|
|
|
puf_status = pmu_mmio_read(CSU_PUF_STATUS);
|
|
/* Read in the syndrome */
|
|
syndrome[idx++] = pmu_mmio_read(CSU_PUF_WORD);
|
|
if (puf_status & CSU_PUF_STATUS_KEY_RDY_MASK) {
|
|
*chash = pmu_mmio_read(CSU_PUF_WORD);
|
|
syndrome[CSU_PUF_SYNDROME_WORDS-2] = *chash;
|
|
*aux = (puf_status & CSU_PUF_STATUS_AUX_MASK) >> 4;
|
|
syndrome[CSU_PUF_SYNDROME_WORDS-1] = *aux;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
|
|
wolfBoot_printf("Ret %d, Syndrome %d, CHASH 0x%08x, AUX 0x%08x\n",
|
|
ret, (CSU_PUF_SYNDROME_WORDS*4), *chash, *aux);
|
|
for (idx=0; idx<CSU_PUF_SYNDROME_WORDS; idx++) {
|
|
wolfBoot_printf("%08x", syndrome[idx]);
|
|
}
|
|
wolfBoot_printf("\n");
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
int csu_puf_regeneration(uint32_t* syndrome, uint32_t chash, uint32_t aux)
|
|
{
|
|
int ret;
|
|
uint32_t puf_status = 0;
|
|
|
|
(void)syndrome;
|
|
(void)chash;
|
|
(void)aux;
|
|
|
|
ret = pmu_mmio_write(CSU_PUF_CFG0, CSU_PUF_CFG0_INIT);
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_PUF_SHUTTER, CSU_PUF_SHUTTER_INIT);
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_PUF_CMD, CSU_PUF_CMD_REGENERATION);
|
|
|
|
/* wait 6ms */
|
|
hal_delay_ms(6);
|
|
|
|
/* read the puf_status */
|
|
puf_status = pmu_mmio_read(CSU_PUF_STATUS);
|
|
wolfBoot_printf("Regen: PUF Status 0x%08x\n", puf_status);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CSU_PUF_ROT */
|
|
|
|
#define CSU_AES_TIMEOUT 150000
|
|
#define CSU_DMA_TIMEOUT 300000000U
|
|
|
|
static int csu_dma_wait_done(int ch)
|
|
{
|
|
/* wait for DMA channel done */
|
|
int ret = pmu_mmio_wait(CSUDMA_ISTS(ch), CSUDMA_ISR_DONE, CSUDMA_ISR_DONE,
|
|
CSU_DMA_TIMEOUT);
|
|
/* clear status interrupt */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSUDMA_ISTS(ch), pmu_mmio_read(CSUDMA_ISTS(ch)));
|
|
return ret;
|
|
}
|
|
static int csu_dma_transfer(int ch, uintptr_t addr, uint32_t sz, uint32_t flags)
|
|
{
|
|
int ret = pmu_mmio_write(CSUDMA_ADDR(ch), (addr & 0xFFFFFFFF));
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSUDMA_ADDR_MSB(ch), (addr >> 32));
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSUDMA_SIZE(ch), (sz | flags));
|
|
return ret;
|
|
}
|
|
|
|
static int csu_aes_reset(void)
|
|
{
|
|
/* Reset AES (set and clear) */
|
|
int ret = pmu_mmio_write(CSU_AES_RESET, 1);
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_AES_RESET, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int csu_dma_config(int ch, int doSwap)
|
|
{
|
|
int ret = 0;
|
|
uint32_t regs, reg;
|
|
regs = reg = pmu_mmio_read(CSUDMA_CTRL(ch));
|
|
if (doSwap)
|
|
reg |= CSUDMA_CTRL_ENDIANNESS;
|
|
else
|
|
reg &= ~CSUDMA_CTRL_ENDIANNESS;
|
|
if (regs != reg)
|
|
ret = pmu_mmio_write(CSUDMA_CTRL(ch), reg);
|
|
return ret;
|
|
}
|
|
|
|
/* AES GCM Encrypt or Decrypt with Device Key setup by CSU ROM */
|
|
/* Output must also have room for updated IV at end */
|
|
#define AES_GCM_TAG_SZ 12
|
|
int csu_aes(int enc, const uint8_t* iv, const uint8_t* in, uint8_t* out, uint32_t sz)
|
|
{
|
|
int ret;
|
|
uint32_t reg;
|
|
|
|
/* Flush data cache for variables used */
|
|
flush_dcache_range((unsigned long)iv, (unsigned long)iv + AES_GCM_TAG_SZ);
|
|
flush_dcache_range((unsigned long)in, (unsigned long)in);
|
|
flush_dcache_range((unsigned long)out, (unsigned long)out + AES_GCM_TAG_SZ);
|
|
|
|
/* Configure SSS for DMA <-> AES */
|
|
ret = pmu_mmio_write(CSU_SSS_CFG,
|
|
(CSU_SSS_CFG_AES(CSU_SSS_CFG_SRC_DMA) |
|
|
CSU_SSS_CFG_DMA(CSU_SSS_CFG_SRC_AES)));
|
|
/* Reset AES (set and clear) */
|
|
if (ret == 0)
|
|
ret = csu_aes_reset();
|
|
/* Setup AES GCM Key (use device key) */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_AES_KEY_SRC, CSU_AES_KEY_SRC_DEVICE_KEY);
|
|
/* Trigger key load */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_AES_KEY_LOAD, 1);
|
|
/* Wait till key init done */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_wait(CSU_AES_STATUS, CSU_AES_STATUS_KEY_INIT_DONE,
|
|
CSU_AES_STATUS_KEY_INIT_DONE, CSU_AES_TIMEOUT);
|
|
/* Enable DMA byte swapping */
|
|
if (ret == 0)
|
|
ret = csu_dma_config(CSUDMA_CH_SRC, 1);
|
|
if (ret == 0)
|
|
ret = csu_dma_config(CSUDMA_CH_DST, 1);
|
|
/* Set encrypt or decrypt */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_AES_CFG, enc);
|
|
/* Issue start and wait for DMA IV and data */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_write(CSU_AES_START_MSG, 1);
|
|
/* Send IV with byte swap (not last) */
|
|
if (ret == 0)
|
|
ret = csu_dma_transfer(CSUDMA_CH_SRC,
|
|
(uintptr_t)iv, AES_GCM_TAG_SZ, 0);
|
|
/* wait for IV to send and cear interrupt */
|
|
if (ret == 0)
|
|
ret = csu_dma_wait_done(CSUDMA_CH_SRC);
|
|
/* Setup data to recieve */
|
|
if (ret == 0)
|
|
ret = csu_dma_transfer(CSUDMA_CH_DST,
|
|
(uintptr_t)out, sz + AES_GCM_TAG_SZ, 0);
|
|
/* Send data */
|
|
if (ret == 0)
|
|
ret = csu_dma_transfer(CSUDMA_CH_SRC,
|
|
(uintptr_t)in, sz, CSUDMA_SIZE_LAST_WORD);
|
|
/* Wait for DMA to complete and clear */
|
|
if (ret == 0)
|
|
ret = csu_dma_wait_done(CSUDMA_CH_SRC);
|
|
if (ret == 0)
|
|
ret = csu_dma_wait_done(CSUDMA_CH_DST);
|
|
/* Disable DMA byte swapping */
|
|
if (ret == 0)
|
|
ret = csu_dma_config(CSUDMA_CH_SRC, 0);
|
|
if (ret == 0)
|
|
ret = csu_dma_config(CSUDMA_CH_DST, 0);
|
|
/* Wait for AES done */
|
|
if (ret == 0)
|
|
ret = pmu_mmio_wait(CSU_AES_STATUS, CSU_AES_STATUS_BUSY,
|
|
0, CSU_AES_TIMEOUT);
|
|
return ret;
|
|
}
|
|
|
|
/* zero the kup and expanded key */
|
|
int csu_aes_key_zero(void)
|
|
{
|
|
int ret;
|
|
uint32_t reg = pmu_mmio_read(CSU_AES_KEY_CLEAR);
|
|
ret = pmu_mmio_write(CSU_AES_KEY_CLEAR,
|
|
(reg | CSU_AES_KEY_CLEAR_KUP | CSU_AES_KEY_CLEAR_EXP));
|
|
if (ret == 0) {
|
|
ret = pmu_mmio_wait(CSU_AES_STATUS,
|
|
(CSU_AES_STATUS_AES_KEY_ZEROED | CSU_AES_STATUS_KUP_ZEROED),
|
|
(CSU_AES_STATUS_AES_KEY_ZEROED | CSU_AES_STATUS_KUP_ZEROED),
|
|
CSU_AES_TIMEOUT);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int csu_init(void)
|
|
{
|
|
int ret = 0;
|
|
#ifdef CSU_PUF_ROT
|
|
#if 0
|
|
uint32_t syndrome[CSU_PUF_SYNDROME_WORDS];
|
|
uint32_t chash=0, aux=0;
|
|
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
|
|
uint32_t idx;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
uint32_t reg1 = pmu_mmio_read(CSU_IDCODE);
|
|
uint32_t reg2 = pmu_mmio_read(CSU_VERSION);
|
|
uint64_t ms;
|
|
|
|
wolfBoot_printf("CSU ID 0x%08x, Ver 0x%08x\n",
|
|
reg1, reg2 & CSU_VERSION_MASK);
|
|
|
|
#ifdef DEBUG_CSU
|
|
/* Enable JTAG */
|
|
wolfBoot_printf("Enabling JTAG\n");
|
|
pmu_mmio_write(CSU_JTAG_SEC, 0x3F);
|
|
pmu_mmio_write(CSU_JTAG_DAP_CFG, 0xFF);
|
|
pmu_mmio_write(CSU_JTAG_CHAIN_CFG, 0x3);
|
|
pmu_mmio_write(CRL_APB_DBG_LPD_CTRL, 0x01002002);
|
|
pmu_mmio_write(CRL_APB_RST_LPD_DBG, 0x0);
|
|
pmu_mmio_write(CSU_PCAP_PROG, 0x1);
|
|
|
|
/* Wait until JTAG is attached */
|
|
while ((reg1 = pmu_mmio_read(CSU_JTAG_CHAIN_STATUS)) == 0);
|
|
wolfBoot_printf("JTAG Attached: status 0x%x\n", reg1);
|
|
hal_delay_ms(500); /* give time for debugger to break */
|
|
#endif
|
|
|
|
#ifdef CSU_PUF_ROT
|
|
reg1 = pmu_mmio_read(CSU_PUF_STATUS);
|
|
wolfBoot_printf("PUF Status 0x%08x\n", reg1);
|
|
|
|
/* Read eFuse SEC ctrl bits */
|
|
pmu_efuse_read(ZYNQMP_EFUSE_SEC_CTRL, ®1, sizeof(reg1));
|
|
wolfBoot_printf("eFuse SEC_CTRL 0x%08x\n", reg1);
|
|
|
|
/* Read eFUSE helper data */
|
|
pmu_efuse_read(ZYNQMP_EFUSE_PUF_CHASH, ®1, sizeof(reg1));
|
|
pmu_efuse_read(ZYNQMP_EFUSE_PUF_AUX, ®2, sizeof(reg2));
|
|
wolfBoot_printf("eFuse PUF CHASH 0x%08x, AUX 0x%08x\n", reg1, reg2);
|
|
|
|
/* CSU PUF only supported with eFuses */
|
|
/* Keeping code for reference in future generations like Versal */
|
|
/* Red (sensitive key), Black (protected key), Grey (unknown) */
|
|
#if 0
|
|
memset(syndrome, 0, sizeof(syndrome));
|
|
ms = hal_timer_ms();
|
|
ret = csu_puf_register(syndrome, &chash, &aux);
|
|
wolfBoot_printf("CSU Register PUF %d: %dms\n", ret, hal_timer_ms() - ms);
|
|
|
|
if (ret == 0) {
|
|
ms = hal_timer_ms();
|
|
/* regenerate - load kek */
|
|
ret = csu_puf_regeneration(syndrome, chash, aux);
|
|
wolfBoot_printf("CSU Regen PUF %d: %dms\n", ret, hal_timer_ms() - ms);
|
|
}
|
|
if (ret == 0) {
|
|
/* Use CSU ROM device key and IV to encrypt the red key */
|
|
/* Possible PUF syndrome location 0xFFC30000 */
|
|
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
|
|
wolfBoot_printf("Red Key %d\n", sizeof(redKey));
|
|
for (idx=0; idx<sizeof(redKey); idx++) {
|
|
wolfBoot_printf("%02x", redKey[idx]);
|
|
}
|
|
wolfBoot_printf("\nBlack IV %d\n", sizeof(blackIv));
|
|
for (idx=0; idx<sizeof(blackIv); idx++) {
|
|
wolfBoot_printf("%02x", blackIv[idx]);
|
|
}
|
|
wolfBoot_printf("\n");
|
|
#endif
|
|
|
|
ret = csu_aes(CSU_AES_CFG_ENC, blackIv, redKey, blackKey, KEY_WRAP_SZ);
|
|
|
|
#if defined(DEBUG_CSU) && DEBUG_CSU >= 1
|
|
wolfBoot_printf("Black Key %d\n", KEY_WRAP_SZ);
|
|
for (idx=0; idx<KEY_WRAP_SZ; idx++) {
|
|
wolfBoot_printf("%02x", blackKey[idx]);
|
|
}
|
|
wolfBoot_printf("\nNew IV %d\n", AES_GCM_TAG_SZ);
|
|
for (idx=0; idx<AES_GCM_TAG_SZ; idx++) {
|
|
wolfBoot_printf("%02x", blackKey[KEY_WRAP_SZ+idx]);
|
|
}
|
|
wolfBoot_printf("\n");
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
#endif /* WOLFBOOT_ZYNQMP_CSU */
|
|
|
|
|
|
#ifdef USE_XQSPIPSU
|
|
/* Xilinx BSP Driver */
|
|
|
|
/* Aligned page data buffer for DMA */
|
|
static uint8_t XALIGNED(32) pageData[FLASH_PAGE_SIZE];
|
|
static int qspi_transfer(QspiDev_t* pDev,
|
|
const uint8_t* cmdData, uint32_t cmdSz,
|
|
const uint8_t* txData, uint32_t txSz,
|
|
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
|
|
uint32_t mode)
|
|
{
|
|
int ret;
|
|
XQspiPsu_Msg msgs[4];
|
|
uint32_t msgCnt = 0, busWidth = XQSPIPSU_SELECT_MODE_SPI;
|
|
uint8_t* rxPtr = rxData;
|
|
|
|
/* Chip Select */
|
|
if (pDev->cs == GQSPI_GEN_FIFO_CS_BOTH) {
|
|
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
|
|
XQSPIPSU_SELECT_FLASH_CS_BOTH, XQSPIPSU_SELECT_FLASH_BUS_BOTH);
|
|
}
|
|
else if (pDev->cs == GQSPI_GEN_FIFO_CS_LOWER) {
|
|
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
|
|
XQSPIPSU_SELECT_FLASH_CS_LOWER, XQSPIPSU_SELECT_FLASH_BUS_LOWER);
|
|
}
|
|
else {
|
|
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
|
|
XQSPIPSU_SELECT_FLASH_CS_UPPER, XQSPIPSU_SELECT_FLASH_BUS_UPPER);
|
|
}
|
|
|
|
/* Transfer Bus Width - only applies to read/write command */
|
|
if (mode == GQSPI_GEN_FIFO_MODE_QSPI)
|
|
busWidth = XQSPIPSU_SELECT_MODE_QUADSPI;
|
|
else if (mode == GQSPI_GEN_FIFO_MODE_DSPI)
|
|
busWidth = XQSPIPSU_SELECT_MODE_DUALSPI;
|
|
|
|
/* Command */
|
|
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
|
|
msgs[msgCnt].TxBfrPtr = (uint8_t*)cmdData;
|
|
msgs[msgCnt].ByteCount = cmdSz;
|
|
msgs[msgCnt].BusWidth = XQSPIPSU_SELECT_MODE_SPI;
|
|
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_TX;
|
|
msgCnt++;
|
|
|
|
/* TX */
|
|
if (txData) {
|
|
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
|
|
msgs[msgCnt].TxBfrPtr = (uint8_t*)txData;
|
|
msgs[msgCnt].ByteCount = txSz;
|
|
msgs[msgCnt].BusWidth = busWidth;
|
|
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_TX;
|
|
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
|
|
msgs[msgCnt].Flags |= XQSPIPSU_MSG_FLAG_STRIPE;
|
|
msgCnt++;
|
|
}
|
|
|
|
/* Dummy */
|
|
if (dummySz > 0) {
|
|
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
|
|
msgs[msgCnt].ByteCount = dummySz; /* not used */
|
|
msgs[msgCnt].BusWidth = busWidth;
|
|
msgCnt++;
|
|
}
|
|
|
|
/* RX */
|
|
if (rxData) {
|
|
/* If RX pointer is not 32 byte aligned then use temp page data buffer */
|
|
if (((size_t)rxPtr % 32) != 0)
|
|
rxPtr = pageData;
|
|
if (rxSz > (uint32_t)sizeof(pageData))
|
|
rxSz = (uint32_t)sizeof(pageData);
|
|
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
|
|
msgs[msgCnt].RxBfrPtr = rxPtr;
|
|
msgs[msgCnt].ByteCount = rxSz;
|
|
msgs[msgCnt].BusWidth = busWidth;
|
|
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_RX;
|
|
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
|
|
msgs[msgCnt].Flags |= XQSPIPSU_MSG_FLAG_STRIPE;
|
|
msgCnt++;
|
|
}
|
|
|
|
ret = XQspiPsu_PolledTransfer(&pDev->qspiPsuInst, msgs, msgCnt);
|
|
if (ret < 0) {
|
|
wolfBoot_printf("QSPI Transfer failed! %d\n", ret);
|
|
return GQSPI_CODE_FAILED;
|
|
}
|
|
|
|
/* if unaligned read, return results */
|
|
if (rxData && rxPtr == pageData) {
|
|
memcpy(rxData, pageData, rxSz);
|
|
}
|
|
|
|
return GQSPI_CODE_SUCCESS;
|
|
}
|
|
|
|
#elif defined(USE_QNX)
|
|
/* QNX QSPI driver */
|
|
static int qspi_transfer(QspiDev_t* pDev,
|
|
const uint8_t* cmdData, uint32_t cmdSz,
|
|
const uint8_t* txData, uint32_t txSz,
|
|
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
|
|
uint32_t mode)
|
|
{
|
|
int ret;
|
|
qspi_buf cmd_buf;
|
|
qspi_buf tx_buf;
|
|
qspi_buf rx_buf;
|
|
uint32_t flags;
|
|
|
|
flags = TRANSFER_FLAG_DEBUG;
|
|
if (mode == GQSPI_GEN_FIFO_MODE_QSPI)
|
|
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_QSPI);
|
|
else if (mode == GQSPI_GEN_FIFO_MODE_DSPI)
|
|
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_DSPI);
|
|
else
|
|
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_SPI);
|
|
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
|
|
flags |= TRANSFER_FLAG_STRIPE;
|
|
if (pDev->cs & GQSPI_GEN_FIFO_CS_LOWER)
|
|
flags |= TRANSFER_FLAG_LOW_DB | TRANSFER_FLAG_CS(TRANSFER_FLAG_CS_LOW);
|
|
if (pDev->cs & GQSPI_GEN_FIFO_CS_UPPER)
|
|
flags |= TRANSFER_FLAG_UP_DB | TRANSFER_FLAG_CS(TRANSFER_FLAG_CS_UP);
|
|
|
|
memset(&cmd_buf, 0, sizeof(cmd_buf));
|
|
cmd_buf.offset = (uint8_t*)cmdData;
|
|
cmd_buf.len = cmdSz;
|
|
|
|
memset(&tx_buf, 0, sizeof(tx_buf));
|
|
tx_buf.offset = (uint8_t*)txData;
|
|
tx_buf.len = txSz;
|
|
|
|
memset(&rx_buf, 0, sizeof(rx_buf));
|
|
rx_buf.offset = rxData;
|
|
rx_buf.len = rxSz;
|
|
|
|
/* Send the TX buffer */
|
|
ret = xzynq_qspi_transfer(pDev->qnx,
|
|
txData ? &tx_buf : NULL,
|
|
rxData ? &rx_buf : NULL,
|
|
&cmd_buf, flags);
|
|
if (ret < 0) {
|
|
wolfBoot_printf("QSPI Transfer failed! %d\n", ret);
|
|
return GQSPI_CODE_FAILED;
|
|
}
|
|
return GQSPI_CODE_SUCCESS;
|
|
}
|
|
#else
|
|
/* QSPI bare-metal driver */
|
|
static inline int qspi_isr_wait(uint32_t wait_mask, uint32_t wait_val)
|
|
{
|
|
uint32_t timeout = 0;
|
|
while ((GQSPI_ISR & wait_mask) == wait_val &&
|
|
++timeout < GQSPI_TIMEOUT_TRIES);
|
|
if (timeout == GQSPI_TIMEOUT_TRIES) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#ifndef GQSPI_MODE_IO
|
|
static inline int qspi_dmaisr_wait(uint32_t wait_mask, uint32_t wait_val)
|
|
{
|
|
uint32_t timeout = 0;
|
|
while ((GQSPIDMA_ISR & wait_mask) == wait_val &&
|
|
++timeout < GQSPIDMA_TIMEOUT_TRIES);
|
|
if (timeout == GQSPIDMA_TIMEOUT_TRIES) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int qspi_gen_fifo_write(uint32_t reg_genfifo)
|
|
{
|
|
/* wait until the gen FIFO is not full to write */
|
|
if (qspi_isr_wait(GQSPI_IXR_GEN_FIFO_NOT_FULL, 0)) {
|
|
return GQSPI_CODE_TIMEOUT;
|
|
}
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
|
|
wolfBoot_printf("FifoEntry=%08x\n", reg_genfifo);
|
|
#endif
|
|
GQSPI_GEN_FIFO = reg_genfifo;
|
|
return GQSPI_CODE_SUCCESS;
|
|
}
|
|
|
|
static int gspi_fifo_tx(const uint8_t* data, uint32_t sz)
|
|
{
|
|
uint32_t tmp32;
|
|
while (sz > 0) {
|
|
/* Wait for TX FIFO not full */
|
|
if (qspi_isr_wait(GQSPI_IXR_TX_FIFO_FULL, GQSPI_IXR_TX_FIFO_FULL)) {
|
|
return GQSPI_CODE_TIMEOUT;
|
|
}
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
|
|
uint32_t txSz = sz;
|
|
if (txSz > GQSPI_FIFO_WORD_SZ)
|
|
txSz = GQSPI_FIFO_WORD_SZ;
|
|
memcpy(&tmp32, data, txSz);
|
|
GQSPI_TXD = tmp32;
|
|
wolfBoot_printf("TXD=%08x\n", tmp32);
|
|
|
|
sz -= txSz;
|
|
data += txSz;
|
|
#else
|
|
/* Write data */
|
|
if (sz >= 4) {
|
|
GQSPI_TXD = *(uint32_t*)data;
|
|
data += 4;
|
|
sz -= 4;
|
|
}
|
|
else {
|
|
tmp32 = 0;
|
|
memcpy(&tmp32, data, sz);
|
|
GQSPI_TXD = tmp32;
|
|
sz = 0;
|
|
}
|
|
#endif
|
|
}
|
|
return GQSPI_CODE_SUCCESS;
|
|
}
|
|
|
|
#ifdef GQSPI_MODE_IO
|
|
static int gspi_fifo_rx(uint8_t* data, uint32_t sz)
|
|
{
|
|
uint32_t tmp32;
|
|
|
|
while (sz > 0) {
|
|
/* Wait for RX FIFO not empty */
|
|
if (qspi_isr_wait(GQSPI_IXR_RX_FIFO_NOT_EMPTY, 0)) {
|
|
return GQSPI_CODE_TIMEOUT;
|
|
}
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
|
|
uint32_t rxSz = sz;
|
|
if (rxSz > GQSPI_FIFO_WORD_SZ)
|
|
rxSz = GQSPI_FIFO_WORD_SZ;
|
|
tmp32 = GQSPI_RXD;
|
|
memcpy(data, &tmp32, rxSz);
|
|
wolfBoot_printf("RXD=%08x\n", tmp32);
|
|
sz -= rxSz;
|
|
data += rxSz;
|
|
#else
|
|
if (sz >= 4) {
|
|
*(uint32_t*)data = GQSPI_RXD;
|
|
data += 4;
|
|
sz -= 4;
|
|
}
|
|
else {
|
|
tmp32 = GQSPI_RXD;
|
|
memcpy(data, &tmp32, sz);
|
|
sz = 0;
|
|
}
|
|
#endif
|
|
}
|
|
return GQSPI_CODE_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
static int qspi_cs(QspiDev_t* pDev, int csAssert)
|
|
{
|
|
uint32_t reg_genfifo;
|
|
|
|
/* Select slave bus, bank, mode and cs clocks */
|
|
reg_genfifo = (pDev->bus & GQSPI_GEN_FIFO_BUS_MASK);
|
|
reg_genfifo |= GQSPI_GEN_FIFO_MODE_SPI;
|
|
if (csAssert) {
|
|
reg_genfifo |= (pDev->cs & GQSPI_GEN_FIFO_CS_MASK);
|
|
reg_genfifo |= GQSPI_GEN_FIFO_IMM(GQSPI_CS_ASSERT_CLOCKS);
|
|
}
|
|
else {
|
|
reg_genfifo |= GQSPI_GEN_FIFO_IMM(GQSPI_CS_DEASSERT_CLOCKS);
|
|
}
|
|
return qspi_gen_fifo_write(reg_genfifo);
|
|
}
|
|
|
|
static uint32_t qspi_calc_exp(uint32_t xferSz, uint32_t* reg_genfifo)
|
|
{
|
|
uint32_t expval;
|
|
*reg_genfifo &= ~(GQSPI_GEN_FIFO_IMM_MASK | GQSPI_GEN_FIFO_EXP_MASK);
|
|
if (xferSz > GQSPI_GEN_FIFO_IMM_MASK) {
|
|
/* Use exponent mode (DMA max is 2^28) */
|
|
for (expval=28; expval>=8; expval--) {
|
|
/* find highest value */
|
|
if (xferSz >= (1UL << expval)) {
|
|
*reg_genfifo |= GQSPI_GEN_FIFO_EXP_MASK;
|
|
*reg_genfifo |= GQSPI_GEN_FIFO_IMM(expval); /* IMM=exponent */
|
|
xferSz = (1UL << expval);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Use length mode */
|
|
*reg_genfifo |= GQSPI_GEN_FIFO_IMM(xferSz); /* IMM=actual length */
|
|
}
|
|
return xferSz;
|
|
}
|
|
|
|
#ifndef GQSPI_MODE_IO
|
|
static uint8_t XALIGNED(QQSPI_DMA_ALIGN) dmatmp[GQSPI_DMA_TMPSZ];
|
|
#endif
|
|
|
|
static int qspi_transfer(QspiDev_t* pDev,
|
|
const uint8_t* cmdData, uint32_t cmdSz,
|
|
const uint8_t* txData, uint32_t txSz,
|
|
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
|
|
uint32_t mode)
|
|
{
|
|
int ret = GQSPI_CODE_SUCCESS;
|
|
uint32_t reg_genfifo, xferSz;
|
|
#ifndef GQSPI_MODE_IO
|
|
uint8_t* dmarxptr = NULL;
|
|
#endif
|
|
GQSPI_EN = 1; /* Enable device */
|
|
qspi_cs(pDev, 1); /* Select slave */
|
|
|
|
/* Setup bus slave selection */
|
|
reg_genfifo = ((pDev->bus & GQSPI_GEN_FIFO_BUS_MASK) |
|
|
(pDev->cs & GQSPI_GEN_FIFO_CS_MASK) |
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
|
|
/* Cmd Data */
|
|
xferSz = cmdSz;
|
|
while (ret == GQSPI_CODE_SUCCESS && cmdData && xferSz > 0) {
|
|
/* Enable TX and send command inline */
|
|
reg_genfifo &= ~(GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_IMM_MASK);
|
|
reg_genfifo |= GQSPI_GEN_FIFO_TX;
|
|
reg_genfifo |= GQSPI_GEN_FIFO_IMM(*cmdData); /* IMM is data */
|
|
|
|
/* Submit general FIFO operation */
|
|
ret = qspi_gen_fifo_write(reg_genfifo);
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
|
|
break;
|
|
}
|
|
|
|
/* offset size and buffer */
|
|
xferSz--;
|
|
cmdData++;
|
|
}
|
|
|
|
/* Set desired data mode */
|
|
reg_genfifo |= (mode & GQSPI_GEN_FIFO_MODE_MASK);
|
|
|
|
/* TX Data */
|
|
while (ret == GQSPI_CODE_SUCCESS && txData && txSz > 0) {
|
|
/* Enable TX */
|
|
reg_genfifo &= ~(GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_IMM_MASK |
|
|
GQSPI_GEN_FIFO_EXP_MASK);
|
|
reg_genfifo |= (GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_DATA_XFER);
|
|
reg_genfifo |= (pDev->stripe & GQSPI_GEN_FIFO_STRIPE);
|
|
xferSz = qspi_calc_exp(txSz, ®_genfifo);
|
|
|
|
/* Submit general FIFO operation */
|
|
ret = qspi_gen_fifo_write(reg_genfifo);
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
|
|
}
|
|
|
|
/* Fill FIFO */
|
|
ret = gspi_fifo_tx(txData, xferSz);
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
|
|
break;
|
|
}
|
|
|
|
/* offset size and buffer */
|
|
txSz -= xferSz;
|
|
txData += xferSz;
|
|
}
|
|
|
|
/* Dummy operations */
|
|
if (ret == GQSPI_CODE_SUCCESS && dummySz) {
|
|
/* Send dummy clocks (Disable TX & RX), do not set stripe */
|
|
reg_genfifo &= ~(GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_RX |
|
|
GQSPI_GEN_FIFO_IMM_MASK | GQSPI_GEN_FIFO_EXP_MASK |
|
|
GQSPI_GEN_FIFO_STRIPE);
|
|
reg_genfifo |= GQSPI_GEN_FIFO_DATA_XFER;
|
|
/* IMM is number of dummy clock cycles */
|
|
reg_genfifo |= GQSPI_GEN_FIFO_IMM(dummySz);
|
|
ret = qspi_gen_fifo_write(reg_genfifo); /* Submit FIFO Dummy Op */
|
|
}
|
|
|
|
/* RX Data */
|
|
while (ret == GQSPI_CODE_SUCCESS && rxData && rxSz > 0) {
|
|
/* Enable RX */
|
|
reg_genfifo &= ~(GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_IMM_MASK |
|
|
GQSPI_GEN_FIFO_EXP_MASK);
|
|
reg_genfifo |= (GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_DATA_XFER);
|
|
reg_genfifo |= (pDev->stripe & GQSPI_GEN_FIFO_STRIPE);
|
|
|
|
xferSz = qspi_calc_exp(rxSz, ®_genfifo);
|
|
#ifndef GQSPI_MODE_IO
|
|
/* check if pointer is aligned or odd remainder */
|
|
dmarxptr = rxData;
|
|
if (((size_t)rxData & (QQSPI_DMA_ALIGN-1)) || (xferSz & 3)) {
|
|
dmarxptr = (uint8_t*)dmatmp;
|
|
xferSz = ((xferSz + (QQSPI_DMA_ALIGN-1)) & ~(QQSPI_DMA_ALIGN-1));
|
|
if (xferSz > (uint32_t)sizeof(dmatmp)) {
|
|
xferSz = (uint32_t)sizeof(dmatmp);
|
|
}
|
|
/* re-adjust transfer */
|
|
xferSz = qspi_calc_exp(xferSz, ®_genfifo);
|
|
}
|
|
|
|
GQSPIDMA_DST = ((uintptr_t)dmarxptr & 0xFFFFFFFF);
|
|
GQSPIDMA_DST_MSB = ((uintptr_t)dmarxptr >> 32);
|
|
GQSPIDMA_SIZE = xferSz;
|
|
GQSPIDMA_IER = GQSPIDMA_ISR_DONE; /* enable DMA done interrupt */
|
|
flush_dcache_range((unsigned long)dmarxptr,
|
|
(unsigned long)dmarxptr + xferSz);
|
|
#endif
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
#ifndef GQSPI_MODE_IO
|
|
wolfBoot_printf("DMA: ptr %p, xferSz %d\n", dmarxptr, xferSz);
|
|
#else
|
|
wolfBoot_printf("IO: ptr %p, xferSz %d\n", rxData, xferSz);
|
|
#endif
|
|
#endif
|
|
|
|
/* Submit general FIFO operation */
|
|
ret = qspi_gen_fifo_write(reg_genfifo);
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
|
|
break;
|
|
}
|
|
|
|
#ifdef GQSPI_MODE_IO
|
|
/* Read FIFO */
|
|
ret = gspi_fifo_rx(rxData, xferSz);
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
wolfBoot_printf("zynq.c:%d (error %d)\n", __LINE__, ret);
|
|
}
|
|
#else
|
|
/* Wait for DMA done */
|
|
if (qspi_dmaisr_wait(GQSPIDMA_ISR_DONE, 0)) {
|
|
return GQSPI_CODE_TIMEOUT;
|
|
}
|
|
GQSPIDMA_ISR = GQSPIDMA_ISR_DONE; /* clear DMA interrupt */
|
|
/* adjust xfer sz */
|
|
if (xferSz > rxSz)
|
|
xferSz = rxSz;
|
|
/* copy result if not aligned */
|
|
if (dmarxptr != rxData) {
|
|
memcpy(rxData, dmarxptr, xferSz);
|
|
}
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
|
|
if (xferSz <= 1024) {
|
|
for (uint32_t i=0; i<xferSz; i+=4) {
|
|
wolfBoot_printf("RXD=%08x\n", *((uint32_t*)&rxData[i]));
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* offset size and buffer */
|
|
rxSz -= xferSz;
|
|
rxData += xferSz;
|
|
}
|
|
|
|
qspi_cs(pDev, 0); /* Deselect Slave */
|
|
GQSPI_EN = 0; /* Disable Device */
|
|
|
|
return ret;
|
|
}
|
|
#endif /* QSPI Implementation */
|
|
|
|
static int qspi_flash_read_id(QspiDev_t* dev, uint8_t* id, uint32_t idSz)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
uint8_t status = 0;
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = READ_ID_CMD;
|
|
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, cmd, sizeof(cmd), 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
|
|
wolfBoot_printf("Read FlashID %s: Ret %d, %02x %02x %02x\n",
|
|
(dev->cs & GQSPI_GEN_FIFO_CS_LOWER) ? "Lower" : "Upper",
|
|
ret, cmd[0], cmd[1], cmd[2]);
|
|
|
|
if (ret == GQSPI_CODE_SUCCESS && id) {
|
|
if (idSz > sizeof(cmd))
|
|
idSz = sizeof(cmd);
|
|
memcpy(id, cmd, idSz);
|
|
}
|
|
|
|
qspi_status(dev, &status);
|
|
if (status & WRITE_EN_MASK) {
|
|
wolfBoot_printf("Write disabled: status %02x\n", status);
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int qspi_write_enable(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
uint8_t status = 0;
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = WRITE_ENABLE_CMD;
|
|
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, NULL, 0, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Write Enable: Ret %d\n", ret);
|
|
#endif
|
|
ret = qspi_wait_ready(dev);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Wait ready: Ret %d\n", ret);
|
|
#endif
|
|
|
|
ret = qspi_wait_we(dev);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Wait we: Ret %d\n", ret);
|
|
#endif
|
|
|
|
qspi_status(dev, &status);
|
|
if ((status & WRITE_EN_MASK) == 0) {
|
|
wolfBoot_printf("Write enable failed: status %02x\n", status);
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
static int qspi_write_disable(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = WRITE_DISABLE_CMD;
|
|
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Write Disable: Ret %d\n", ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static int qspi_flash_status(QspiDev_t* dev, uint8_t* status)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = READ_FSR_CMD;
|
|
ret = qspi_transfer(dev, cmd, 1, NULL, 0, cmd, 2, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Flash Status: Ret %d Cmd %02x %02x\n", ret, cmd[0], cmd[1]);
|
|
#endif
|
|
if (ret == GQSPI_CODE_SUCCESS && status) {
|
|
if (dev->stripe) {
|
|
cmd[0] &= cmd[1];
|
|
}
|
|
*status = cmd[0];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int qspi_status(QspiDev_t* dev, uint8_t* status)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = READ_SR_CMD;
|
|
ret = qspi_transfer(dev, cmd, 1, NULL, 0, cmd, 2, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Status: Ret %d Cmd %02x %02x\n", ret, cmd[0], cmd[1]);
|
|
#endif
|
|
if (ret == GQSPI_CODE_SUCCESS && status) {
|
|
if (dev->stripe) {
|
|
cmd[0] &= cmd[1];
|
|
}
|
|
*status = cmd[0];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int qspi_wait_ready(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint32_t timeout;
|
|
uint8_t status = 0;
|
|
|
|
timeout = 0;
|
|
while (++timeout < QSPI_FLASH_READY_TRIES) {
|
|
ret = qspi_flash_status(dev, &status);
|
|
if (ret == GQSPI_CODE_SUCCESS && (status & FLASH_READY_MASK)) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
wolfBoot_printf("Flash Ready Timeout!\n");
|
|
|
|
return GQSPI_CODE_TIMEOUT;
|
|
}
|
|
|
|
static int qspi_wait_we(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint32_t timeout;
|
|
uint8_t status = 0;
|
|
|
|
timeout = 0;
|
|
while (++timeout < QSPI_FLASH_READY_TRIES) {
|
|
ret = qspi_status(dev, &status);
|
|
if (ret == GQSPI_CODE_SUCCESS &&
|
|
(status & WRITE_EN_MASK)
|
|
) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
wolfBoot_printf("Flash WE Timeout!\n");
|
|
|
|
return GQSPI_CODE_TIMEOUT;
|
|
}
|
|
|
|
|
|
#if GQPI_USE_4BYTE_ADDR == 1
|
|
static int qspi_enter_4byte_addr(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = ENTER_4B_ADDR_MODE_CMD;
|
|
(void)qspi_wait_ready(&mDev); /* Wait for not busy */
|
|
ret = qspi_write_enable(&mDev);
|
|
if (ret == GQSPI_CODE_SUCCESS) {
|
|
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Enter 4-byte address mode: Ret %d\n", ret);
|
|
#endif
|
|
if (ret == GQSPI_CODE_SUCCESS) {
|
|
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
|
|
}
|
|
qspi_write_disable(&mDev);
|
|
}
|
|
return ret;
|
|
}
|
|
static int qspi_exit_4byte_addr(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[4]; /* size multiple of uint32_t */
|
|
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[0] = EXIT_4B_ADDR_MODE_CMD;
|
|
ret = qspi_write_enable(&mDev);
|
|
if (ret == GQSPI_CODE_SUCCESS) {
|
|
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Exit 4-byte address mode: Ret %d\n", ret);
|
|
#endif
|
|
if (ret == GQSPI_CODE_SUCCESS) {
|
|
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
|
|
}
|
|
qspi_write_disable(&mDev);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* QSPI functions */
|
|
void qspi_init(void)
|
|
{
|
|
int ret;
|
|
uint32_t reg_cfg, reg_isr;
|
|
uint8_t id_low[4];
|
|
#if GQPI_USE_DUAL_PARALLEL == 1
|
|
uint8_t id_hi[4];
|
|
#endif
|
|
uint32_t timeout;
|
|
#ifdef USE_XQSPIPSU
|
|
XQspiPsu_Config *QspiConfig;
|
|
#endif
|
|
|
|
memset(&mDev, 0, sizeof(mDev));
|
|
|
|
#ifdef USE_XQSPIPSU
|
|
/* Xilinx BSP Driver */
|
|
QspiConfig = XQspiPsu_LookupConfig(QSPI_DEVICE_ID);
|
|
if (QspiConfig == NULL) {
|
|
wolfBoot_printf("QSPI config lookup failed\n");
|
|
return;
|
|
}
|
|
ret = XQspiPsu_CfgInitialize(&mDev.qspiPsuInst, QspiConfig, QspiConfig->BaseAddress);
|
|
if (ret != 0) {
|
|
wolfBoot_printf("QSPI config init failed\n");
|
|
return;
|
|
}
|
|
XQspiPsu_SetOptions(&mDev.qspiPsuInst, XQSPIPSU_MANUAL_START_OPTION);
|
|
XQspiPsu_SetClkPrescaler(&mDev.qspiPsuInst, QSPI_CLK_PRESACALE);
|
|
|
|
#elif defined(USE_QNX)
|
|
/* QNX QSPI driver */
|
|
mDev.qnx = xzynq_qspi_open();
|
|
if (mDev.qnx == NULL) {
|
|
wolfBoot_printf("QSPI failed to open\n");
|
|
return;
|
|
}
|
|
#else
|
|
/* QSPI bare-metal driver */
|
|
wolfBoot_printf("QSPI Init: Ref=%dMHz, Div=%d, Bus=%d, IO=%s\n",
|
|
GQSPI_CLK_REF/1000000,
|
|
(2 << GQSPI_CLK_DIV),
|
|
(GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)),
|
|
#ifdef GQSPI_MODE_IO
|
|
"Poll"
|
|
#else
|
|
"DMA"
|
|
#endif
|
|
);
|
|
|
|
/* Disable Linear Mode in case FSBL enabled it */
|
|
LQSPI_EN = 0;
|
|
|
|
/* Select Generic Quad-SPI */
|
|
GQSPI_SEL = 1;
|
|
|
|
/* Clear and disable all interrupts */
|
|
reg_isr = GQSPI_ISR;
|
|
GQSPI_ISR = (reg_isr | GQSPI_ISR_WR_TO_CLR_MASK); /* Clear poll timeout counter interrupt */
|
|
reg_cfg = GQSPIDMA_ISR;
|
|
GQSPIDMA_ISR = reg_cfg; /* clear all active interrupts */
|
|
GQSPI_IER = GQSPI_IXR_GEN_FIFO_EMPTY;
|
|
GQSPI_IDR = GQSPI_IXR_ALL_MASK; /* disable interrupts */
|
|
GQSPIDMA_IDR = GQSPIDMA_ISR_ALL_MASK;
|
|
|
|
GQSPI_EN = 0; /* Disable device */
|
|
|
|
/* Initialize clock divisor, write protect hold and start mode */
|
|
#ifdef GQSPI_MODE_IO
|
|
reg_cfg = GQSPI_CFG_MODE_EN_IO; /* Use I/O Transfer Mode */
|
|
reg_cfg |= GQSPI_CFG_START_GEN_FIFO; /* Trigger GFIFO commands to start */
|
|
#else
|
|
reg_cfg = GQSPI_CFG_MODE_EN_DMA; /* Use DMA Transfer Mode */
|
|
#endif
|
|
reg_cfg |= GQSPI_CFG_BAUD_RATE_DIV(GQSPI_CLK_DIV); /* Clock Divider */
|
|
reg_cfg |= GQSPI_CFG_WP_HOLD; /* Use WP Hold */
|
|
reg_cfg &= ~(GQSPI_CFG_CLK_POL | GQSPI_CFG_CLK_PH); /* Use POL=0,PH=0 */
|
|
GQSPI_CFG = reg_cfg;
|
|
|
|
#if (GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)) <= 40000000 /* 40MHz */
|
|
/* At <40 MHz, the Quad-SPI controller should be in non-loopback mode with
|
|
* the clock and data tap delays bypassed. */
|
|
IOU_TAPDLY_BYPASS |= IOU_TAPDLY_BYPASS_LQSPI_RX;
|
|
GQSPI_LPBK_DLY_ADJ = 0;
|
|
GQSPI_DATA_DLY_ADJ = 0;
|
|
#elif (GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)) <= 100000000 /* 100MHz */
|
|
/* At <100 MHz, the Quad-SPI controller should be in clock loopback mode
|
|
* with the clock tap delay bypassed, but the data tap delay enabled. */
|
|
IOU_TAPDLY_BYPASS |= IOU_TAPDLY_BYPASS_LQSPI_RX;
|
|
GQSPI_LPBK_DLY_ADJ = GQSPI_LPBK_DLY_ADJ_USE_LPBK;
|
|
GQSPI_DATA_DLY_ADJ = (GQSPI_DATA_DLY_ADJ_USE_DATA_DLY |
|
|
GQSPI_DATA_DLY_ADJ_DATA_DLY_ADJ(2));
|
|
#elif (GQSPI_CLK_REF / (2 << GQSPI_CLK_DIV)) <= 150000000 /* 150MHz */
|
|
/* At <150 MHz, only the generic controller can be used.
|
|
* The generic controller should be in clock loopback mode and the clock
|
|
* tap delay enabled, but the data tap delay disabled. */
|
|
/* For EL2 or lower must use IOCTL_SET_TAPDELAY_BYPASS ARG1=2, ARG2=0 */
|
|
if (current_el() <= 2) {
|
|
reg_cfg = 0;
|
|
pmu_request(PM_MMIO_WRITE, IOU_TAPDLY_BYPASS_ADDR, 0x7, reg_cfg, 0, NULL);
|
|
}
|
|
else {
|
|
IOU_TAPDLY_BYPASS = 0;
|
|
}
|
|
GQSPI_LPBK_DLY_ADJ = GQSPI_LPBK_DLY_ADJ_USE_LPBK;
|
|
GQSPI_DATA_DLY_ADJ = 0;
|
|
#endif
|
|
|
|
/* Initialize hardware parameters for Threshold and Interrupts */
|
|
GQSPI_TX_THRESH = 1;
|
|
GQSPI_RX_THRESH = 1;
|
|
GQSPI_GF_THRESH = 31;
|
|
|
|
/* Reset DMA */
|
|
GQSPIDMA_CTRL = GQSPIDMA_CTRL_DEF;
|
|
GQSPIDMA_CTRL2 = GQSPIDMA_CTRL2_DEF;
|
|
GQSPIDMA_IER = GQSPIDMA_ISR_ALL_MASK;
|
|
|
|
GQSPI_EN = 1; /* Enable Device */
|
|
#endif /* USE_QNX */
|
|
(void)reg_cfg;
|
|
(void)reg_isr;
|
|
|
|
/* ------ Flash Read ID (retry) ------ */
|
|
timeout = 0;
|
|
while (++timeout < QSPI_FLASH_READY_TRIES) {
|
|
/* Slave Select - lower chip */
|
|
mDev.mode = GQSPI_GEN_FIFO_MODE_SPI;
|
|
mDev.bus = GQSPI_GEN_FIFO_BUS_LOW;
|
|
mDev.cs = GQSPI_GEN_FIFO_CS_LOWER;
|
|
ret = qspi_flash_read_id(&mDev, id_low, sizeof(id_low));
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
continue;
|
|
}
|
|
|
|
#if GQPI_USE_DUAL_PARALLEL == 1
|
|
/* Slave Select - upper chip */
|
|
mDev.mode = GQSPI_GEN_FIFO_MODE_SPI;
|
|
mDev.bus = GQSPI_GEN_FIFO_BUS_UP;
|
|
mDev.cs = GQSPI_GEN_FIFO_CS_UPPER;
|
|
ret = qspi_flash_read_id(&mDev, id_hi, sizeof(id_hi));
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
continue;
|
|
}
|
|
|
|
/* ID's for upper and lower must match */
|
|
if ((id_hi[0] == 0 || id_hi[0] == 0xFF) ||
|
|
(id_hi[0] != id_low[0] &&
|
|
id_hi[1] != id_low[1] &&
|
|
id_hi[2] != id_low[2]))
|
|
{
|
|
wolfBoot_printf("Flash ID error!\n");
|
|
continue;
|
|
}
|
|
#endif
|
|
break; /* success */
|
|
}
|
|
|
|
/* Slave Select */
|
|
mDev.mode = GQSPI_QSPI_MODE;
|
|
#if GQPI_USE_DUAL_PARALLEL == 1
|
|
mDev.bus = GQSPI_GEN_FIFO_BUS_BOTH; /* GQSPI_GEN_FIFO_BUS_LOW or GQSPI_GEN_FIFO_BUS_UP */
|
|
mDev.cs = GQSPI_GEN_FIFO_CS_BOTH; /* GQSPI_GEN_FIFO_CS_LOWER or GQSPI_GEN_FIFO_CS_UPPER */
|
|
mDev.stripe = GQSPI_GEN_FIFO_STRIPE;
|
|
#endif
|
|
|
|
#if GQPI_USE_4BYTE_ADDR == 1
|
|
/* Enter 4-byte address mode */
|
|
ret = qspi_enter_4byte_addr(&mDev);
|
|
if (ret != GQSPI_CODE_SUCCESS)
|
|
return;
|
|
#endif
|
|
|
|
#ifdef TEST_EXT_FLASH
|
|
test_ext_flash(&mDev);
|
|
#endif
|
|
}
|
|
|
|
void hal_delay_ms(uint64_t ms)
|
|
{
|
|
uint64_t start = hal_timer_ms();
|
|
uint64_t end = start + ms;
|
|
|
|
while (1) {
|
|
uint64_t cur = hal_timer_ms();
|
|
/* check for timer rollover or expiration */
|
|
if (cur < start || cur >= end) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t hal_timer_ms(void)
|
|
{
|
|
uint64_t val;
|
|
unsigned long cntfrq;
|
|
unsigned long cntpct;
|
|
asm volatile("mrs %0, cntfrq_el0" : "=r" (cntfrq));
|
|
asm volatile("mrs %0, cntpct_el0" : "=r" (cntpct));
|
|
val = cntpct * 1000;
|
|
val /= cntfrq;
|
|
return val;
|
|
}
|
|
|
|
/* public HAL functions */
|
|
void hal_init(void)
|
|
{
|
|
uint32_t reg;
|
|
const char* bootMsg = "\nwolfBoot Secure Boot\n";
|
|
|
|
#ifdef DEBUG_UART
|
|
uart_init();
|
|
#endif
|
|
wolfBoot_printf(bootMsg);
|
|
wolfBoot_printf("Current EL: %d\n", current_el());
|
|
|
|
qspi_init();
|
|
|
|
pmuVer = pmu_get_version();
|
|
wolfBoot_printf("PMUFW Ver: %d.%d\n",
|
|
(int)(pmuVer >> 16), (int)(pmuVer & 0xFFFF));
|
|
|
|
#ifdef WOLFBOOT_ZYNQMP_CSU
|
|
if (pmuVer >= PMUFW_MIN_VER) {
|
|
csu_init();
|
|
}
|
|
else {
|
|
wolfBoot_printf("Skipping CSU Init (PMUFW not found)\n");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void hal_prepare_boot(void)
|
|
{
|
|
#if GQPI_USE_4BYTE_ADDR == 1
|
|
/* Exit 4-byte address mode */
|
|
int ret = qspi_exit_4byte_addr(&mDev);
|
|
if (ret != GQSPI_CODE_SUCCESS)
|
|
return;
|
|
#endif
|
|
|
|
#ifdef USE_QNX
|
|
if (mDev.qnx) {
|
|
xzynq_qspi_close(mDev.qnx);
|
|
mDev.qnx = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Flash functions must be relocated to RAM for execution */
|
|
int RAMFUNCTION hal_flash_write(uintptr_t address, const uint8_t *data, int len)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void RAMFUNCTION hal_flash_unlock(void)
|
|
{
|
|
}
|
|
|
|
void RAMFUNCTION hal_flash_lock(void)
|
|
{
|
|
}
|
|
|
|
|
|
int RAMFUNCTION hal_flash_erase(uintptr_t address, int len)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Xilinx Write uses SPI mode and Page Program 0x02 */
|
|
/* Issues using write with QSPI mode */
|
|
int RAMFUNCTION ext_flash_write(uintptr_t address, const uint8_t *data, int len)
|
|
{
|
|
int ret = 0;
|
|
uint8_t cmd[8]; /* size multiple of uint32_t */
|
|
uint32_t xferSz, page, pages, idx;
|
|
uintptr_t addr;
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Flash Write: Addr 0x%x, Ptr %p, Len %d\n",
|
|
address, data, len);
|
|
#endif
|
|
|
|
/* write by page */
|
|
pages = ((len + (FLASH_PAGE_SIZE-1)) / FLASH_PAGE_SIZE);
|
|
for (page = 0; page < pages; page++) {
|
|
ret = qspi_write_enable(&mDev);
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
break;
|
|
}
|
|
xferSz = len;
|
|
if (xferSz > FLASH_PAGE_SIZE)
|
|
xferSz = FLASH_PAGE_SIZE;
|
|
|
|
addr = address + (page * FLASH_PAGE_SIZE);
|
|
if (mDev.stripe) {
|
|
/* For dual parallel the address divide by 2 */
|
|
addr /= 2;
|
|
}
|
|
|
|
/* ------ Write Flash (page at a time) ------ */
|
|
memset(cmd, 0, sizeof(cmd));
|
|
idx = 0;
|
|
cmd[idx++] = PAGE_PROG_CMD;
|
|
#if GQPI_USE_4BYTE_ADDR == 1
|
|
cmd[idx++] = ((addr >> 24) & 0xFF);
|
|
#endif
|
|
cmd[idx++] = ((addr >> 16) & 0xFF);
|
|
cmd[idx++] = ((addr >> 8) & 0xFF);
|
|
cmd[idx++] = ((addr >> 0) & 0xFF);
|
|
ret = qspi_transfer(&mDev, cmd, idx,
|
|
(const uint8_t*)(data + (page * FLASH_PAGE_SIZE)),
|
|
xferSz, NULL, 0, 0, GQSPI_GEN_FIFO_MODE_SPI);
|
|
wolfBoot_printf("Flash Page %d Write: Ret %d\n", page, ret);
|
|
if (ret != GQSPI_CODE_SUCCESS)
|
|
break;
|
|
|
|
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
|
|
if (ret != GQSPI_CODE_SUCCESS) {
|
|
break;
|
|
}
|
|
qspi_write_disable(&mDev);
|
|
len -= xferSz;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_QSPI && GQPI_USE_4BYTE_ADDR == 1
|
|
#define FLASH_READ_CMD QUAD_READ_4B_CMD
|
|
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_DSPI && GQPI_USE_4BYTE_ADDR == 1
|
|
#define FLASH_READ_CMD DUAL_READ_4B_CMD
|
|
#elif GQPI_USE_4BYTE_ADDR == 1
|
|
#define FLASH_READ_CMD FAST_READ_4B_CMD
|
|
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_QSPI
|
|
#define FLASH_READ_CMD QUAD_READ_CMD
|
|
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_DSPI
|
|
#define FLASH_READ_CMD DUAL_READ_CMD
|
|
#else
|
|
#define FLASH_READ_CMD FAST_READ_CMD
|
|
#endif
|
|
|
|
int RAMFUNCTION ext_flash_read(uintptr_t address, uint8_t *data, int len)
|
|
{
|
|
int ret;
|
|
uint8_t cmd[8]; /* size multiple of uint32_t */
|
|
uint32_t idx = 0;
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Flash Read: Addr 0x%x, Ptr %p, Len %d\n",
|
|
address, data, len);
|
|
#endif
|
|
|
|
if (mDev.stripe) {
|
|
/* For dual parallel the address divide by 2 */
|
|
address /= 2;
|
|
}
|
|
|
|
/* ------ Read Flash ------ */
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[idx++] = FLASH_READ_CMD;
|
|
#if GQPI_USE_4BYTE_ADDR == 1
|
|
cmd[idx++] = ((address >> 24) & 0xFF);
|
|
#endif
|
|
cmd[idx++] = ((address >> 16) & 0xFF);
|
|
cmd[idx++] = ((address >> 8) & 0xFF);
|
|
cmd[idx++] = ((address >> 0) & 0xFF);
|
|
ret = qspi_transfer(&mDev, cmd, idx, NULL, 0, data, len, GQSPI_DUMMY_READ,
|
|
mDev.mode);
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Flash Read: Ret %d\r\n", ret);
|
|
#endif
|
|
|
|
return (ret == 0) ? len : ret;
|
|
}
|
|
|
|
/* Issues a sector erase based on flash address */
|
|
int RAMFUNCTION ext_flash_erase(uintptr_t address, int len)
|
|
{
|
|
int ret = 0;
|
|
uint8_t cmd[8]; /* size multiple of uint32_t */
|
|
uint32_t idx = 0;
|
|
uintptr_t qspiaddr;
|
|
|
|
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
|
|
wolfBoot_printf("Flash Erase: Addr 0x%x, Len %d\n", address, len);
|
|
#endif
|
|
|
|
while (len > 0) {
|
|
/* For dual parallel the address divide by 2 */
|
|
qspiaddr = (mDev.stripe) ? address / 2 : address;
|
|
|
|
ret = qspi_write_enable(&mDev);
|
|
if (ret == GQSPI_CODE_SUCCESS) {
|
|
/* ------ Erase Flash ------ */
|
|
memset(cmd, 0, sizeof(cmd));
|
|
cmd[idx++] = SEC_ERASE_CMD;
|
|
#if GQPI_USE_4BYTE_ADDR == 1
|
|
cmd[idx++] = ((qspiaddr >> 24) & 0xFF);
|
|
#endif
|
|
cmd[idx++] = ((qspiaddr >> 16) & 0xFF);
|
|
cmd[idx++] = ((qspiaddr >> 8) & 0xFF);
|
|
cmd[idx++] = ((qspiaddr >> 0) & 0xFF);
|
|
ret = qspi_transfer(&mDev, cmd, idx, NULL, 0, NULL, 0, 0,
|
|
GQSPI_GEN_FIFO_MODE_SPI);
|
|
wolfBoot_printf("Flash Erase: Ret %d\n", ret);
|
|
if (ret == GQSPI_CODE_SUCCESS) {
|
|
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
|
|
}
|
|
qspi_write_disable(&mDev);
|
|
}
|
|
|
|
address += WOLFBOOT_SECTOR_SIZE;
|
|
len -= WOLFBOOT_SECTOR_SIZE;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void RAMFUNCTION ext_flash_lock(void)
|
|
{
|
|
|
|
}
|
|
|
|
void RAMFUNCTION ext_flash_unlock(void)
|
|
{
|
|
|
|
}
|
|
|
|
#ifdef MMU
|
|
void* hal_get_dts_address(void)
|
|
{
|
|
return (void*)WOLFBOOT_DTS_BOOT_ADDRESS;
|
|
}
|
|
|
|
int hal_dts_fixup(void* dts_addr)
|
|
{
|
|
/* place FDT fixup specific to ZynqMP here */
|
|
//fdt_set_boot_cpuid_phys(buf, fdt_boot_cpuid_phys(fdt));
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef TEST_EXT_FLASH
|
|
#ifndef TEST_EXT_ADDRESS
|
|
#define TEST_EXT_ADDRESS 0x2800000 /* 40MB */
|
|
#endif
|
|
static int test_ext_flash(QspiDev_t* dev)
|
|
{
|
|
int ret;
|
|
uint32_t i;
|
|
uint8_t pageData[FLASH_PAGE_SIZE*4];
|
|
|
|
#ifndef TEST_FLASH_READONLY
|
|
/* Erase sector */
|
|
ret = ext_flash_erase(TEST_EXT_ADDRESS, WOLFBOOT_SECTOR_SIZE);
|
|
wolfBoot_printf("Erase Sector: Ret %d\n", ret);
|
|
|
|
/* Write Pages */
|
|
for (i=0; i<sizeof(pageData); i++) {
|
|
pageData[i] = (i & 0xff);
|
|
}
|
|
ret = ext_flash_write(TEST_EXT_ADDRESS, pageData, sizeof(pageData));
|
|
wolfBoot_printf("Write Page: Ret %d\n", ret);
|
|
#endif /* !TEST_FLASH_READONLY */
|
|
|
|
/* Read page */
|
|
memset(pageData, 0, sizeof(pageData));
|
|
ret = ext_flash_read(TEST_EXT_ADDRESS, pageData, sizeof(pageData));
|
|
wolfBoot_printf("Read Page: Ret %d\n", ret);
|
|
|
|
wolfBoot_printf("Checking...\n");
|
|
/* Check data */
|
|
for (i=0; i<sizeof(pageData); i++) {
|
|
wolfBoot_printf("check[%3d] %02x\n", i, pageData[i]);
|
|
if (pageData[i] != (i & 0xff)) {
|
|
wolfBoot_printf("Check Data @ %d failed\n", i);
|
|
return GQSPI_CODE_FAILED;
|
|
}
|
|
}
|
|
|
|
wolfBoot_printf("Flash Test Passed\n");
|
|
return ret;
|
|
}
|
|
#endif /* TEST_EXT_FLASH */
|
|
|
|
#endif /* TARGET_zynq */
|