mirror of https://github.com/wolfSSL/wolfBoot.git
621 lines
18 KiB
C
621 lines
18 KiB
C
/* stm32h7.c
|
|
*
|
|
* Copyright (C) 2021 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfBoot.
|
|
*
|
|
* wolfBoot is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfBoot is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
#include "hal/stm32h7.h"
|
|
|
|
static uint32_t stm32h7_cache[STM32H7_WORD_SIZE / sizeof(uint32_t)];
|
|
|
|
static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates)
|
|
{
|
|
uint32_t reg = FLASH_ACR;
|
|
if ((reg & FLASH_ACR_LATENCY_MASK) != waitstates)
|
|
FLASH_ACR = (reg & ~FLASH_ACR_LATENCY_MASK) | waitstates;
|
|
}
|
|
|
|
static RAMFUNCTION void flash_wait_last(void)
|
|
{
|
|
while ((FLASH_OPTSR_CUR & FLASH_OPTSR_CUR_BSY))
|
|
;
|
|
}
|
|
|
|
static RAMFUNCTION void flash_wait_complete(uint8_t bank)
|
|
{
|
|
if (bank == 0) {
|
|
while ((FLASH_SR1 & FLASH_SR_QW) == FLASH_SR_QW);
|
|
}
|
|
else {
|
|
while ((FLASH_SR2 & FLASH_SR_QW) == FLASH_SR_QW);
|
|
}
|
|
}
|
|
|
|
static void RAMFUNCTION flash_clear_errors(uint8_t bank)
|
|
{
|
|
if (bank == 0) {
|
|
FLASH_SR1 |= (FLASH_SR_WRPERR | FLASH_SR_PGSERR | FLASH_SR_STRBERR |
|
|
FLASH_SR_INCERR | FLASH_SR_OPERR | FLASH_SR_RDPERR |
|
|
FLASH_SR_RDSERR | FLASH_SR_SNECCERR | FLASH_SR_DBECCERR);
|
|
}
|
|
else {
|
|
FLASH_SR2 |= (FLASH_SR_WRPERR | FLASH_SR_PGSERR | FLASH_SR_STRBERR |
|
|
FLASH_SR_INCERR | FLASH_SR_OPERR | FLASH_SR_RDPERR |
|
|
FLASH_SR_RDSERR | FLASH_SR_SNECCERR | FLASH_SR_DBECCERR);
|
|
}
|
|
}
|
|
|
|
static void RAMFUNCTION flash_program_on(uint8_t bank)
|
|
{
|
|
if (bank == 0) {
|
|
FLASH_CR1 |= FLASH_CR_PG;
|
|
while ((FLASH_CR1 & FLASH_CR_PG) == 0)
|
|
;
|
|
}
|
|
else {
|
|
FLASH_CR2 |= FLASH_CR_PG;
|
|
while ((FLASH_CR2 & FLASH_CR_PG) == 0)
|
|
;
|
|
}
|
|
}
|
|
|
|
static void RAMFUNCTION flash_program_off(uint8_t bank)
|
|
{
|
|
if (bank == 0) {
|
|
FLASH_CR1 &= ~FLASH_CR_PG;
|
|
}
|
|
else {
|
|
FLASH_CR2 &= ~FLASH_CR_PG;
|
|
}
|
|
}
|
|
|
|
int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len)
|
|
{
|
|
int i = 0, ii =0;
|
|
uint32_t *src, *dst;
|
|
uint8_t bank=0;
|
|
uint8_t *vbytes = (uint8_t *)(stm32h7_cache);
|
|
int off = (address + i) - (((address + i) >> 5) << 5);
|
|
uint32_t base_addr = (address + i) & (~0x1F); /* aligned to 256 bit */
|
|
|
|
if ((address & FLASH_BANK2_BASE_REL) != 0) {
|
|
bank = 1;
|
|
}
|
|
|
|
while (i < len) {
|
|
if ((len - i > 32) && ((((address + i) & 0x1F) == 0) &&
|
|
((((uint32_t)data) + i) & 0x1F) == 0))
|
|
{
|
|
flash_wait_last();
|
|
flash_clear_errors(0);
|
|
flash_clear_errors(1);
|
|
flash_program_on(bank);
|
|
flash_wait_complete(bank);
|
|
src = (uint32_t *)(data + i);
|
|
dst = (uint32_t *)(address + i);
|
|
for (ii = 0; ii < 8; ii++) {
|
|
dst[ii] = src[ii];
|
|
}
|
|
i+=32;
|
|
}
|
|
else {
|
|
int off = (address + i) - (((address + i) >> 5) << 5);
|
|
uint32_t base_addr = (address + i) & (~0x1F); /* aligned to 256 bit */
|
|
dst = (uint32_t *)(base_addr);
|
|
for (ii = 0; ii < 8; ii++) {
|
|
stm32h7_cache[ii] = dst[ii];
|
|
}
|
|
/* Check if flags page */
|
|
if (STM32H7_BOOT_FLAGS_PAGE(address)) {
|
|
if (base_addr != STM32H7_PART_BOOT_END - STM32H7_WORD_SIZE)
|
|
return -1;
|
|
hal_flash_erase(STM32H7_PART_BOOT_FLAGS_PAGE_ADDRESS,
|
|
STM32H7_SECTOR_SIZE);
|
|
}
|
|
else if (STM32H7_UPDATE_FLAGS_PAGE(address)) {
|
|
if (base_addr != STM32H7_PART_UPDATE_END - STM32H7_WORD_SIZE)
|
|
return -1;
|
|
hal_flash_erase(STM32H7_PART_UPDATE_FLAGS_PAGE_ADDRESS,
|
|
STM32H7_SECTOR_SIZE);
|
|
}
|
|
/* Replace bytes in cache */
|
|
while ((off < STM32H7_WORD_SIZE) && (i < len)) {
|
|
vbytes[off++] = data[i++];
|
|
}
|
|
|
|
/* Actual write from cache to FLASH */
|
|
flash_wait_last();
|
|
flash_clear_errors(0);
|
|
flash_clear_errors(1);
|
|
flash_program_on(bank);
|
|
flash_wait_complete(bank);
|
|
ISB();
|
|
DSB();
|
|
for (ii = 0; ii < 8; ii++) {
|
|
dst[ii] = stm32h7_cache[ii];
|
|
}
|
|
ISB();
|
|
DSB();
|
|
}
|
|
flash_wait_complete(bank);
|
|
flash_program_off(bank);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void RAMFUNCTION hal_flash_unlock(void)
|
|
{
|
|
flash_wait_complete(1);
|
|
if ((FLASH_CR1 & FLASH_CR_LOCK) != 0) {
|
|
FLASH_KEYR1 = FLASH_KEY1;
|
|
DMB();
|
|
FLASH_KEYR1 = FLASH_KEY2;
|
|
DMB();
|
|
while ((FLASH_CR1 & FLASH_CR_LOCK) != 0)
|
|
;
|
|
}
|
|
|
|
flash_wait_complete(2);
|
|
if ((FLASH_CR2 & FLASH_CR_LOCK) != 0) {
|
|
FLASH_KEYR2 = FLASH_KEY1;
|
|
DMB();
|
|
FLASH_KEYR2 = FLASH_KEY2;
|
|
DMB();
|
|
while ((FLASH_CR2 & FLASH_CR_LOCK) != 0)
|
|
;
|
|
}
|
|
}
|
|
|
|
void RAMFUNCTION hal_flash_lock(void)
|
|
{
|
|
flash_wait_complete(1);
|
|
if ((FLASH_CR1 & FLASH_CR_LOCK) == 0)
|
|
FLASH_CR1 |= FLASH_CR_LOCK;
|
|
|
|
flash_wait_complete(2);
|
|
if ((FLASH_CR2 & FLASH_CR_LOCK) == 0)
|
|
FLASH_CR2 |= FLASH_CR_LOCK;
|
|
}
|
|
|
|
int RAMFUNCTION hal_flash_erase(uint32_t address, int len)
|
|
{
|
|
uint32_t end_address;
|
|
uint32_t p;
|
|
|
|
if (len == 0)
|
|
return -1;
|
|
end_address = (address - FLASHMEM_ADDRESS_SPACE) + len - 1;
|
|
for (p = (address - FLASHMEM_ADDRESS_SPACE);
|
|
p < end_address;
|
|
p += FLASH_PAGE_SIZE)
|
|
{
|
|
if (p < FLASH_BANK2_BASE_REL) {
|
|
uint32_t reg = FLASH_CR1 &
|
|
(~((FLASH_CR_SNB_MASK << FLASH_CR_SNB_SHIFT) | FLASH_CR_PSIZE));
|
|
FLASH_CR1 = reg |
|
|
(((p >> 17) << FLASH_CR_SNB_SHIFT) | FLASH_CR_SER | 0x00);
|
|
DMB();
|
|
FLASH_CR1 |= FLASH_CR_STRT;
|
|
flash_wait_complete(1);
|
|
}
|
|
if ((p>= FLASH_BANK2_BASE_REL) &&
|
|
(p <= (FLASH_TOP - FLASHMEM_ADDRESS_SPACE))) {
|
|
uint32_t reg = FLASH_CR2 &
|
|
(~((FLASH_CR_SNB_MASK << FLASH_CR_SNB_SHIFT) | FLASH_CR_PSIZE));
|
|
p-= (FLASH_BANK2_BASE);
|
|
FLASH_CR2 = reg |
|
|
(((p >> 17) << FLASH_CR_SNB_SHIFT) | FLASH_CR_SER | 0x00);
|
|
DMB();
|
|
FLASH_CR2 |= FLASH_CR_STRT;
|
|
flash_wait_complete(2);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DEBUG_UART
|
|
static int uart_init(void)
|
|
{
|
|
uint32_t reg;
|
|
|
|
/* Set general UART clock source (all uarts but nr 1 and 6) */
|
|
/* USART234578SEL bits 2:0 */
|
|
RCC_D2CCIP2R &= ~(0x7 << 0);
|
|
RCC_D2CCIP2R |= (0x3 << 0); /* 000 = pclk1 (120MHz), 011 = hsi (64MHz) */
|
|
|
|
#if UART_PORT == 3
|
|
/* Enable clock for USART_3 and reset */
|
|
APB1_CLOCK_LER |= RCC_APB1_USART3_EN;
|
|
|
|
APB1_CLOCK_LRST |= RCC_APB1_USART3_EN;
|
|
APB1_CLOCK_LRST &= ~RCC_APB1_USART3_EN;
|
|
#elif UART_PORT == 5
|
|
/* Enable clock for USART_5 and reset */
|
|
APB1_CLOCK_LER |= RCC_APB1_UART5_EN;
|
|
|
|
APB1_CLOCK_LRST |= RCC_APB1_UART5_EN;
|
|
APB1_CLOCK_LRST &= ~RCC_APB1_UART5_EN;
|
|
#else
|
|
/* Enable clock for USART_2 and reset */
|
|
APB1_CLOCK_LER |= RCC_APB1_USART2_EN;
|
|
|
|
APB1_CLOCK_LRST |= RCC_APB1_USART2_EN;
|
|
APB1_CLOCK_LRST &= ~RCC_APB1_USART2_EN;
|
|
#endif
|
|
|
|
/* Enable UART pins */
|
|
#if UART_PORT == 5
|
|
AHB4_CLOCK_ENR |= RCC_AHB4_GPIOB_EN;
|
|
#else
|
|
AHB4_CLOCK_ENR |= RCC_AHB4_GPIOD_EN;
|
|
#endif
|
|
|
|
/* Set mode = AF. The PORT D I/O pin is first reset and then set to AF
|
|
* (bit config 10:Alternate function mode) */
|
|
reg = GPIO_MODE(UART_GPIO_BASE) & ~(0x03 << (UART_TX_PIN * 2));
|
|
GPIO_MODE(UART_GPIO_BASE) = reg | (2 << (UART_TX_PIN * 2));
|
|
reg = GPIO_MODE(UART_GPIO_BASE) & ~(0x03 << (UART_RX_PIN * 2));
|
|
GPIO_MODE(UART_GPIO_BASE) = reg | (2 << (UART_RX_PIN * 2));
|
|
|
|
/* Alternate function. Use AFLR for pins 0-7 and AFHR for pins 8-15 */
|
|
#if UART_TX_PIN < 8
|
|
reg = GPIO_AFRL(UART_GPIO_BASE) & ~(0xf << ((UART_TX_PIN) * 4));
|
|
GPIO_AFRL(UART_GPIO_BASE) = reg | (UART_PIN_AF << ((UART_TX_PIN) * 4));
|
|
#else
|
|
reg = GPIO_AFRH(UART_GPIO_BASE) & ~(0xf << ((UART_TX_PIN - 8) * 4));
|
|
GPIO_AFRH(UART_GPIO_BASE) = reg | (UART_PIN_AF << ((UART_TX_PIN - 8) * 4));
|
|
#endif
|
|
#if UART_RX_PIN < 8
|
|
reg = GPIO_AFRL(UART_GPIO_BASE) & ~(0xf << ((UART_RX_PIN)*4));
|
|
GPIO_AFRL(UART_GPIO_BASE) = reg | (UART_PIN_AF << ((UART_RX_PIN)*4));
|
|
#else
|
|
reg = GPIO_AFRH(UART_GPIO_BASE) & ~(0xf << ((UART_RX_PIN - 8) * 4));
|
|
GPIO_AFRH(UART_GPIO_BASE) = reg | (UART_PIN_AF << ((UART_RX_PIN - 8) * 4));
|
|
#endif
|
|
|
|
/* Disable UART to enable settings to be written into the registers. */
|
|
if (UART_CR1(UART_BASE) & UART_CR1_UART_ENABLE) {
|
|
UART_CR1(UART_BASE) &= ~UART_CR1_UART_ENABLE;
|
|
}
|
|
|
|
/* Clock Prescaler */
|
|
UART_PRESC(UART_BASE) = 0; /* no div (div=1) */
|
|
|
|
/* Configure clock (speed/bitrate). Requires UE = 0. */
|
|
UART_BRR(UART_BASE) = (uint16_t)(CLOCK_SPEED / BAUD_RATE);
|
|
|
|
/* Enable FIFO mode */
|
|
UART_CR1(UART_BASE) |= UART_CR1_FIFOEN;
|
|
|
|
/* Enable 16-bit oversampling */
|
|
UART_CR1(UART_BASE) &= ~UART_CR1_OVER8;
|
|
|
|
/* Configure the M bits (word length) */
|
|
/* Word length is 8 bits by default (0=1 start, 8 data, 0 stop) */
|
|
UART_CR1(UART_BASE) &= ~(UART_CR1_M0 | UART_CR1_M1);
|
|
|
|
/* Configure stop bits (00: 1 stop bit / 10: 2 stop bits.) */
|
|
UART_CR2(UART_BASE) &= ~UART_CR2_STOP_MASK;
|
|
UART_CR2(UART_BASE) |= UART_CR2_STOP(0);
|
|
|
|
/* Configure parity bits, disabled */
|
|
UART_CR1(UART_BASE) &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD);
|
|
|
|
/* In asynchronous mode, the following bits must be kept cleared:
|
|
* - LINEN and CLKEN bits in the UART_CR2 register,
|
|
* - SCEN, HDSEL and IREN bits in the UART_CR3 register.*/
|
|
UART_CR2(UART_BASE) &= ~(UART_CR2_LINEN | UART_CR2_CLKEN);
|
|
UART_CR3(UART_BASE) &= ~(UART_CR3_SCEN | UART_CR3_HDSEL | UART_CR3_IREN);
|
|
|
|
/* Turn on UART */
|
|
UART_CR1(UART_BASE) |= (UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE |
|
|
UART_CR1_UART_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void uart_write(const char* buf, unsigned int sz)
|
|
{
|
|
uint32_t pos = 0;
|
|
while (sz-- > 0) {
|
|
while ((UART_ISR(UART_BASE) & UART_ISR_TX_FIFO_NOT_FULL) == 0);
|
|
|
|
UART_TDR(UART_BASE) = buf[pos++];
|
|
}
|
|
}
|
|
#endif /* DEBUG_UART */
|
|
|
|
static void clock_pll_off(void)
|
|
{
|
|
uint32_t reg32;
|
|
|
|
/* Select HSI as SYSCLK source. */
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~((1 << 2) |(1 << 1) | (1 << 0));
|
|
RCC_CFGR = (reg32 | RCC_CFGR_SW_HSISYS);
|
|
DMB();
|
|
/* Turn off PLL */
|
|
RCC_CR &= ~RCC_CR_PLL1ON;
|
|
DMB();
|
|
}
|
|
|
|
/* This implementation will setup HSI RC 16 MHz as PLL Source Mux, PLLCLK
|
|
* as System Clock Source */
|
|
static void clock_pll_on(int powersave)
|
|
{
|
|
uint32_t reg32;
|
|
uint32_t cpu_freq, plln, pllm, pllq, pllp, pllr, hpre, d1cpre, d1ppre;
|
|
uint32_t d2ppre1, d2ppre2, d3ppre, flash_waitstates;
|
|
|
|
PWR_CR3 |= PWR_CR3_LDOEN;
|
|
while ((PWR_CSR1 & PWR_CSR1_ACTVOSRDY) == 0) {};
|
|
|
|
PWR_D3CR |= (PWR_D3CR_VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
|
|
/* Delay after setting the voltage scaling */
|
|
reg32 = PWR_D3CR;
|
|
SYSCFG_PWRCR |= SYSCFG_PWRCR_ODEN;
|
|
/* Delay after setting the voltage scaling */
|
|
reg32 = PWR_D3CR;
|
|
while ((PWR_D3CR & PWR_D3CR_VOSRDY) == 0) {};
|
|
|
|
/* Select clock parameters (CPU Speed = 480MHz) */
|
|
pllm = 1;
|
|
plln = 120;
|
|
pllp = 2;
|
|
pllq = 20;
|
|
pllr = 2;
|
|
d1cpre = RCC_PRESCALER_DIV_NONE;
|
|
hpre = RCC_PRESCALER_DIV_2;
|
|
d1ppre = (RCC_PRESCALER_DIV_2 >> 1);
|
|
d2ppre1 = (RCC_PRESCALER_DIV_2 >> 1);
|
|
d2ppre2 = (RCC_PRESCALER_DIV_2 >> 1);
|
|
d3ppre = (RCC_PRESCALER_DIV_2 >> 1);
|
|
flash_waitstates = 4;
|
|
|
|
flash_set_waitstates(flash_waitstates);
|
|
|
|
/* Enable internal high-speed oscillator. */
|
|
RCC_CR |= RCC_CR_HSION;
|
|
DMB();
|
|
while ((RCC_CR & RCC_CR_HSIRDY) == 0) {};
|
|
|
|
/* Select HSI as SYSCLK source. */
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~((1 << 2) |(1 << 1) | (1 << 0));
|
|
RCC_CFGR = (reg32 | RCC_CFGR_SW_HSISYS);
|
|
DMB();
|
|
|
|
/* Enable external high-speed oscillator. */
|
|
reg32 = RCC_CR;
|
|
reg32 |= RCC_CR_HSEBYP;
|
|
RCC_CR = (reg32 | RCC_CR_HSEON);
|
|
DMB();
|
|
while ((RCC_CR & RCC_CR_HSERDY) == 0) {};
|
|
|
|
/*
|
|
* Set prescalers for D1: D1CPRE, D1PPRE, HPRE
|
|
*/
|
|
RCC_D1CFGR |= (hpre << 0); /* RM0433 - 7.7.8- RCC_CFGR */
|
|
DMB();
|
|
|
|
reg32 = RCC_D1CFGR;
|
|
reg32 &= ~(0xF0); /* don't change bits [0-3] that were previously set */
|
|
RCC_D1CFGR = (reg32 | (d1ppre << 4)); /* RM0433 - 7.7.8- RCC_CFGR */
|
|
DMB();
|
|
|
|
reg32 = RCC_D1CFGR;
|
|
reg32 &= ~(0x100); /* don't change bits [0-7] */
|
|
RCC_D1CFGR = (reg32 | (d1cpre << 8)); /* RM0433 - 7.7.8- RCC_CFGR */
|
|
DMB();
|
|
|
|
/*
|
|
* Set prescalers for D2: D2PPRE1, D2PPRE2
|
|
*/
|
|
reg32 = RCC_D2CFGR;
|
|
reg32 &= ~(0xF0); /* don't change bits [0-3] */
|
|
RCC_D2CFGR = (reg32 | (d2ppre1 << 4)); /* RM0433 - 7.7.8- RCC_CFGR */
|
|
DMB();
|
|
|
|
reg32 = RCC_D2CFGR;
|
|
reg32 &= ~(0x100); /* don't change bits [0-7] */
|
|
RCC_D2CFGR = (reg32 | (d2ppre2 << 8)); /* RM0433 - 7.7.8- RCC_CFGR */
|
|
DMB();
|
|
|
|
/*
|
|
* Set prescalers for D3: D3PPRE
|
|
*/
|
|
reg32 = RCC_D3CFGR;
|
|
RCC_D3CFGR = (reg32 | (d3ppre << 4)); /* RM0433 - 7.7.8- RCC_CFGR */
|
|
DMB();
|
|
|
|
|
|
/*
|
|
* Set PLL config
|
|
*/
|
|
|
|
/* PLL Clock source selection + DIVM1 */
|
|
reg32 = RCC_PLLCKSELR;
|
|
reg32 |= RCC_PLLCKSELR_PLLSRC_HSE;
|
|
reg32 |= ((pllm) << 4);
|
|
RCC_PLLCKSELR = reg32;
|
|
DMB();
|
|
|
|
reg32 = RCC_PLL1DIVR;
|
|
reg32 |= (plln -1);
|
|
reg32 |= ((pllp - 1) << 9);
|
|
reg32 |= ((pllq - 1) << 16);
|
|
reg32 |= ((pllr - 1) << 24);
|
|
RCC_PLL1DIVR = reg32;
|
|
DMB();
|
|
|
|
RCC_PLLCFGR |= (RCC_PLLCFGR_PLL1RGE_2_4 << RCC_PLLCFGR_PLL1RGE_SHIFT);
|
|
RCC_PLLCFGR |= RCC_PLLCFGR_DIVP1EN;
|
|
RCC_PLLCFGR |= RCC_PLLCFGR_DIVQ1EN;
|
|
RCC_PLLCFGR |= RCC_PLLCFGR_DIVR1EN;
|
|
|
|
RCC_CR |= RCC_CR_PLL1ON;
|
|
DMB();
|
|
while ((RCC_CR & RCC_CR_PLL1RDY) == 0) {};
|
|
|
|
/* Select PLL as SYSCLK source. */
|
|
reg32 = RCC_CFGR;
|
|
reg32 &= ~((1 << 2) |(1 << 1) | (1 << 0));
|
|
RCC_CFGR = (reg32 | RCC_CFGR_SW_PLL);
|
|
DMB();
|
|
|
|
/* Wait for PLL clock to be selected. */
|
|
while ((RCC_CFGR & ((1 << 2) | (1 << 1) | (1 << 0))) != RCC_CFGR_SW_PLL) {};
|
|
}
|
|
|
|
void RAMFUNCTION hal_flash_dualbank_swap(void)
|
|
{
|
|
hal_flash_unlock();
|
|
DMB();
|
|
ISB();
|
|
if (SYSCFG_UR0 & SYSCFG_UR0_BKS)
|
|
SYSCFG_UR0 &= ~SYSCFG_UR0_BKS;
|
|
else
|
|
SYSCFG_UR0 |= SYSCFG_UR0_BKS;
|
|
DMB();
|
|
hal_flash_lock();
|
|
}
|
|
|
|
void hal_init(void)
|
|
{
|
|
clock_pll_on(0);
|
|
|
|
#ifdef DEBUG_UART
|
|
uart_init();
|
|
uart_write("wolfBoot Init\n", 14);
|
|
#endif
|
|
}
|
|
|
|
void hal_prepare_boot(void)
|
|
{
|
|
#ifdef SPI_FLASH
|
|
spi_flash_release();
|
|
#endif
|
|
clock_pll_off();
|
|
}
|
|
|
|
#ifdef FLASH_OTP_KEYSTORE
|
|
static void flash_otp_wait(void)
|
|
{
|
|
/* Wait for the FLASH operation to complete by polling on QW flag to be reset. */
|
|
while ( (FLASH_SR1 & FLASH_SR_QW) == FLASH_SR_QW ) {
|
|
/* TODO: check timeout */
|
|
}
|
|
|
|
/* Check FLASH End of Operation flag */
|
|
if ( (FLASH_SR1 & FLASH_SR_EOP) == FLASH_SR_EOP ) {
|
|
FLASH_SR1 &= FLASH_SR_EOP; /* Clear FLASH End of Operation pending bit */
|
|
}
|
|
}
|
|
|
|
static void hal_flash_otp_unlock(void)
|
|
{
|
|
if ((FLASH_OPTCR & FLASH_OPTCR_OPTLOCK) != 0U) {
|
|
FLASH_OPTKEYR = FLASH_OPT_KEY1;
|
|
FLASH_OPTKEYR = FLASH_OPT_KEY2;
|
|
}
|
|
}
|
|
|
|
static void hal_flash_otp_lock(void)
|
|
{
|
|
/* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */
|
|
FLASH_OPTCR |= FLASH_OPTCR_OPTLOCK;
|
|
}
|
|
|
|
/* Public API */
|
|
|
|
int hal_flash_otp_set_readonly(uint32_t flashAddress, uint16_t length)
|
|
{
|
|
/* TODO: set WP on OTP if needed */
|
|
return 0;
|
|
}
|
|
|
|
int hal_flash_otp_write(uint32_t flashAddress, const void* data, uint16_t length)
|
|
{
|
|
volatile uint16_t tmp;
|
|
uint16_t idx = 0;
|
|
const uint16_t *pdata = (const uint16_t *)data;
|
|
if (!(flashAddress >= FLASH_OTP_BASE && flashAddress <= FLASH_OTP_END)) {
|
|
return -1;
|
|
}
|
|
|
|
hal_flash_unlock();
|
|
hal_flash_otp_unlock();
|
|
|
|
while (idx < length && flashAddress <= FLASH_OTP_END-1) {
|
|
/* Clear errors */
|
|
flash_clear_errors(0); /* bank 1 */
|
|
/* Wait for last operation to be completed */
|
|
flash_otp_wait();
|
|
|
|
FLASH_OPTCR &= ~(FLASH_OPTCR_OPTLOCK); /* unlock FLASH_OPTCR register */
|
|
|
|
/* Set OTP_PG bit */
|
|
FLASH_OPTCR |= FLASH_OPTCR_PG_OTP;
|
|
|
|
ISB();
|
|
DSB();
|
|
|
|
/* Program an OTP word (16 bits) */
|
|
*(volatile uint16_t*)flashAddress = *pdata;
|
|
|
|
/* Read it back */
|
|
tmp = *(volatile uint16_t*)flashAddress;
|
|
(void)tmp; /* avoid unused warnings */
|
|
|
|
/* Wait for last operation to be completed */
|
|
flash_otp_wait();
|
|
|
|
/* clear OTP_PG bit */
|
|
FLASH_OPTCR &= ~FLASH_OPTCR_PG_OTP;
|
|
|
|
flashAddress += sizeof(uint16_t);
|
|
pdata++;
|
|
idx += sizeof(uint16_t);
|
|
}
|
|
|
|
hal_flash_otp_lock();
|
|
hal_flash_lock();
|
|
return 0;
|
|
}
|
|
|
|
int hal_flash_otp_read(uint32_t flashAddress, void* data, uint32_t length)
|
|
{
|
|
uint32_t i;
|
|
uint16_t *pdata = (uint16_t *)data;
|
|
if (!(flashAddress >= FLASH_OTP_BASE && flashAddress <= FLASH_OTP_END)) {
|
|
return -1;
|
|
}
|
|
for (i = 0;
|
|
(i < length) && (flashAddress <= (FLASH_OTP_END-1));
|
|
i += sizeof(uint16_t))
|
|
{
|
|
*pdata = *(volatile uint16_t*)flashAddress;
|
|
flashAddress += sizeof(uint16_t);
|
|
pdata++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif /* FLASH_OTP_KEYSTORE */
|
|
|