wolfBoot/hal/uart/uart_drv_stm32h5.c

262 lines
7.2 KiB
C

/* uart_drv_stm32l5.c
*
* Driver for the back-end of the UART_FLASH module.
*
* Example implementation for stm32L5 Nucleo
* using LPUART1 (VCS port through USB).
*
*
* Copyright (C) 2023 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include "hal/stm32h5.h"
/* USE_UART1
* Set to 0 for VCP over USB
* Set to 1 for Arduino D0, D1 pins on nucleo
* */
#define USE_UART1 0
#define RCC_AHB2ENR1_CLOCK_ER (*(volatile uint32_t *)(RCC_BASE + 0x8C ))
#define GPIOB_AHB2ENR1_CLOCK_ER (1 << 1)
#define GPIOD_AHB2ENR1_CLOCK_ER (1 << 3)
#define GPIOB_MODE (*(volatile uint32_t *)(GPIOB_BASE + 0x00))
#define GPIOB_OTYPE (*(volatile uint32_t *)(GPIOB_BASE + 0x04))
#define GPIOB_OSPD (*(volatile uint32_t *)(GPIOB_BASE + 0x08))
#define GPIOB_PUPD (*(volatile uint32_t *)(GPIOB_BASE + 0x0c))
#define GPIOB_ODR (*(volatile uint32_t *)(GPIOB_BASE + 0x14))
#define GPIOB_BSRR (*(volatile uint32_t *)(GPIOB_BASE + 0x18))
#define GPIOB_AFL (*(volatile uint32_t *)(GPIOB_BASE + 0x20))
#define GPIOB_AFH (*(volatile uint32_t *)(GPIOB_BASE + 0x24))
#define GPIOD_MODE (*(volatile uint32_t *)(GPIOD_BASE + 0x00))
#define GPIOD_OTYPE (*(volatile uint32_t *)(GPIOD_BASE + 0x04))
#define GPIOD_OSPD (*(volatile uint32_t *)(GPIOD_BASE + 0x08))
#define GPIOD_PUPD (*(volatile uint32_t *)(GPIOD_BASE + 0x0c))
#define GPIOD_ODR (*(volatile uint32_t *)(GPIOD_BASE + 0x14))
#define GPIOD_BSRR (*(volatile uint32_t *)(GPIOD_BASE + 0x18))
#define GPIOD_AFL (*(volatile uint32_t *)(GPIOD_BASE + 0x20))
#define GPIOD_AFH (*(volatile uint32_t *)(GPIOD_BASE + 0x24))
#define CLOCK_FREQ (64000000)
static void uart1_pins_setup(void)
{
uint32_t reg;
RCC_AHB2ENR1_CLOCK_ER|= GPIOB_AHB2ENR1_CLOCK_ER;
/* Set mode = AF */
reg = GPIOB_MODE & ~ (0x03 << (UART1_RX_PIN * 2));
GPIOB_MODE = reg | (2 << (UART1_RX_PIN * 2));
reg = GPIOB_MODE & ~ (0x03 << (UART1_TX_PIN * 2));
GPIOB_MODE = reg | (2 << (UART1_TX_PIN * 2));
/* Alternate function: use low pins (6 and 7) */
reg = GPIOB_AFL & ~(0xf << (UART1_TX_PIN * 4));
GPIOB_AFL = reg | (UART1_PIN_AF << (UART1_TX_PIN * 4));
reg = GPIOB_AFL & ~(0xf << ((UART1_RX_PIN) * 4));
GPIOB_AFH = reg | (UART1_PIN_AF << ((UART1_RX_PIN) * 4));
}
static void uart3_pins_setup(void)
{
uint32_t reg;
RCC_AHB2ENR1_CLOCK_ER|= GPIOD_AHB2ENR1_CLOCK_ER;
/* Set mode = AF */
reg = GPIOD_MODE & ~ (0x03 << (UART3_RX_PIN * 2));
GPIOD_MODE = reg | (2 << (UART3_RX_PIN * 2));
reg = GPIOD_MODE & ~ (0x03 << (UART3_TX_PIN * 2));
GPIOD_MODE = reg | (2 << (UART3_TX_PIN * 2));
/* Alternate function: use hi pins (8 and 9) */
reg = GPIOD_AFH & ~(0xf << ((UART3_TX_PIN - 8) * 4));
GPIOD_AFH = reg | (UART3_PIN_AF << ((UART3_TX_PIN - 8) * 4));
reg = GPIOD_AFH & ~(0xf << ((UART3_RX_PIN - 8) * 4));
GPIOD_AFH = reg | (UART3_PIN_AF << ((UART3_RX_PIN - 8) * 4));
}
static int uart1_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop)
{
uint32_t reg;
/* Enable pins and configure for AF */
uart1_pins_setup();
reg = RCC_CCIPR3 & (~ (RCC_CCIPR3_LPUART1SEL_MASK << RCC_CCIPR3_LPUART1SEL_SHIFT));
RCC_CCIPR3 = reg | (0 << RCC_CCIPR3_LPUART1SEL_SHIFT); /* PLL2 */
/* Configure clock */
UART1_BRR |= (uint16_t)(CLOCK_FREQ / bitrate) + 1;
/* Configure data bits */
if (data == 8)
UART1_CR1 &= ~UART_CR1_SYMBOL_LEN;
else
UART1_CR1 |= UART_CR1_SYMBOL_LEN;
/* Configure parity */
switch (parity) {
case 'O':
UART1_CR1 |= UART_CR1_PARITY_ODD;
/* fall through to enable parity */
/* FALL THROUGH */
case 'E':
UART1_CR1 |= UART_CR1_PARITY_ENABLED;
break;
default:
UART1_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD);
}
/* Set stop bits */
reg = UART1_CR2 & ~UART_CR2_STOPBITS;
if (stop > 1)
UART1_CR2 = reg & (2 << 12);
else
UART1_CR2 = reg;
/* Prescaler to DIV1 */
UART1_PRE |= 2;
/* Configure for RX+TX, turn on. */
UART1_CR1 |= UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE | UART_CR1_UART_ENABLE;
return 0;
}
static int uart1_tx(const uint8_t c)
{
volatile uint32_t reg;
do {
reg = UART1_ISR;
} while ((reg & UART_ISR_TX_EMPTY) == 0);
UART1_TDR = c;
return 1;
}
static int uart1_rx(uint8_t *c)
{
volatile uint32_t reg;
int i = 0;
reg = UART1_ISR;
if (reg & UART_ISR_RX_NOTEMPTY) {
*c = (uint8_t)UART1_RDR;
return 1;
}
return 0;
}
static int uart3_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop)
{
uint32_t reg;
/* Enable pins and configure for AF */
uart3_pins_setup();
reg = RCC_CCIPR1 & (~ (RCC_CCIPR1_USART3SEL_MASK << RCC_CCIPR1_USART3SEL_SHIFT));
RCC_CCIPR1 = reg | (0 << RCC_CCIPR1_USART3SEL_SHIFT); /* PLL2 */
/* Configure clock */
UART3_BRR = (uint16_t)(CLOCK_FREQ / bitrate) + 1;
/* Configure data bits */
if (data == 8)
UART3_CR1 &= ~UART_CR1_SYMBOL_LEN;
else
UART3_CR1 |= UART_CR1_SYMBOL_LEN;
/* Configure parity */
switch (parity) {
case 'O':
UART3_CR1 |= UART_CR1_PARITY_ODD;
/* fall through to enable parity */
/* FALL THROUGH */
case 'E':
UART3_CR1 |= UART_CR1_PARITY_ENABLED;
break;
default:
UART3_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD);
}
/* Set stop bits */
reg = UART3_CR2 & ~UART_CR2_STOPBITS;
if (stop > 1)
UART3_CR2 = reg & (2 << 12);
else
UART3_CR2 = reg;
/* Prescaler to DIV1 */
UART3_PRE |= 2;
/* Configure for RX+TX, turn on. */
UART3_CR1 |= UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE | UART_CR1_UART_ENABLE;
return 0;
}
static int uart3_tx(const uint8_t c)
{
volatile uint32_t reg;
do {
reg = UART3_ISR;
} while ((reg & UART_ISR_TX_EMPTY) == 0);
UART3_TDR = c;
return 1;
}
static int uart3_rx(uint8_t *c)
{
volatile uint32_t reg;
int i = 0;
reg = UART3_ISR;
if (reg & UART_ISR_RX_NOTEMPTY) {
*c = (uint8_t)UART3_RDR;
return 1;
}
return 0;
}
int uart_init(uint32_t bitrate, uint8_t data, char parity, uint8_t stop)
{
#if USE_UART1
return uart1_init(bitrate, data, parity, stop);
#else
return uart3_init(bitrate, data, parity, stop);
#endif
}
int uart_tx(const uint8_t c)
{
#if USE_UART1
return uart1_tx(c);
#else
return uart3_tx(c);
#endif
}
int uart_rx(uint8_t *c)
{
#if USE_UART1
return uart1_rx(c);
#else
return uart3_rx(c);
#endif
}