wolfBoot/test-app/stm32f4.c

345 lines
9.2 KiB
C

/* main.c
*
* Test bare-metal blinking led application
*
* Copyright (C) 2018 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "system.h"
#include "timer.h"
#include "led.h"
#include "hal.h"
#include "wolfboot/wolfboot.h"
#include "spi_flash.h"
#ifdef PLATFORM_stm32f4
#ifdef SPI_FLASH
extern void spi_release(void);
#else
#define spi_release() do{}while(0)
#endif
#define UART1 (0x40011000)
#define UART1_SR (*(volatile uint32_t *)(UART1))
#define UART1_DR (*(volatile uint32_t *)(UART1 + 0x04))
#define UART1_BRR (*(volatile uint32_t *)(UART1 + 0x08))
#define UART1_CR1 (*(volatile uint32_t *)(UART1 + 0x0c))
#define UART1_CR2 (*(volatile uint32_t *)(UART1 + 0x10))
#define UART_CR1_UART_ENABLE (1 << 13)
#define UART_CR1_SYMBOL_LEN (1 << 12)
#define UART_CR1_PARITY_ENABLED (1 << 10)
#define UART_CR1_PARITY_ODD (1 << 9)
#define UART_CR1_TX_ENABLE (1 << 3)
#define UART_CR1_RX_ENABLE (1 << 2)
#define UART_CR2_STOPBITS (3 << 12)
#define UART_SR_TX_EMPTY (1 << 7)
#define UART_SR_RX_NOTEMPTY (1 << 5)
#define CLOCK_SPEED (168000000)
#define APB2_CLOCK_ER (*(volatile uint32_t *)(0x40023844))
#define UART1_APB2_CLOCK_ER (1 << 4)
#define AHB1_CLOCK_ER (*(volatile uint32_t *)(0x40023830))
#define GPIOB_AHB1_CLOCK_ER (1 << 1)
#define GPIOB_BASE 0x40020400
#define GPIOB_MODE (*(volatile uint32_t *)(GPIOB_BASE + 0x00))
#define GPIOB_AFL (*(volatile uint32_t *)(GPIOB_BASE + 0x20))
#define GPIOB_AFH (*(volatile uint32_t *)(GPIOB_BASE + 0x24))
#define UART1_PIN_AF 7
#define UART1_RX_PIN 7
#define UART1_TX_PIN 6
#define MSGSIZE 16
#define PAGESIZE (256)
static uint8_t page[PAGESIZE];
static const char ERR='!';
static const char START='*';
static const char UPDATE='U';
static const char ACK='#';
static uint8_t msg[MSGSIZE];
void uart_write(const char c)
{
uint32_t reg;
do {
reg = UART1_SR;
} while ((reg & UART_SR_TX_EMPTY) == 0);
UART1_DR = c;
}
static void uart_pins_setup(void)
{
uint32_t reg;
AHB1_CLOCK_ER |= GPIOB_AHB1_CLOCK_ER;
/* Set mode = AF */
reg = GPIOB_MODE & ~ (0x03 << (UART1_RX_PIN * 2));
GPIOB_MODE = reg | (2 << (UART1_RX_PIN * 2));
reg = GPIOB_MODE & ~ (0x03 << (UART1_TX_PIN * 2));
GPIOB_MODE = reg | (2 << (UART1_TX_PIN * 2));
/* Alternate function: use low pins (6 and 7) */
reg = GPIOB_AFL & ~(0xf << ((UART1_TX_PIN) * 4));
GPIOB_AFL = reg | (UART1_PIN_AF << ((UART1_TX_PIN) * 4));
reg = GPIOB_AFL & ~(0xf << ((UART1_RX_PIN) * 4));
GPIOB_AFL = reg | (UART1_PIN_AF << ((UART1_RX_PIN) * 4));
}
int uart_setup(uint32_t bitrate, uint8_t data, char parity, uint8_t stop)
{
uint32_t reg;
/* Enable pins and configure for AF7 */
uart_pins_setup();
/* Turn on the device */
APB2_CLOCK_ER |= UART1_APB2_CLOCK_ER;
/* Configure for TX + RX */
UART1_CR1 |= (UART_CR1_TX_ENABLE | UART_CR1_RX_ENABLE);
/* Configure clock */
UART1_BRR = CLOCK_SPEED / bitrate;
/* Configure data bits */
if (data == 8)
UART1_CR1 &= ~UART_CR1_SYMBOL_LEN;
else
UART1_CR1 |= UART_CR1_SYMBOL_LEN;
/* Configure parity */
switch (parity) {
case 'O':
UART1_CR1 |= UART_CR1_PARITY_ODD;
/* fall through to enable parity */
case 'E':
UART1_CR1 |= UART_CR1_PARITY_ENABLED;
break;
default:
UART1_CR1 &= ~(UART_CR1_PARITY_ENABLED | UART_CR1_PARITY_ODD);
}
/* Set stop bits */
reg = UART1_CR2 & ~UART_CR2_STOPBITS;
if (stop > 1)
UART1_CR2 = reg & (2 << 12);
else
UART1_CR2 = reg;
/* Turn on uart */
UART1_CR1 |= UART_CR1_UART_ENABLE;
return 0;
}
char uart_read(void)
{
char c;
volatile uint32_t reg;
do {
reg = UART1_SR;
} while ((reg & UART_SR_RX_NOTEMPTY) == 0);
c = (char)(UART1_DR & 0xff);
return c;
}
static void ack(uint32_t _off)
{
uint8_t *off = (uint8_t *)(&_off);
int i;
uart_write(ACK);
for (i = 0; i < 4; i++) {
uart_write(off[i]);
}
}
static int check(uint8_t *pkt, int size)
{
int i;
uint16_t c = 0;
uint16_t c_rx = *((uint16_t *)(pkt + 2));
uint16_t *p = (uint16_t *)(pkt + 4);
for (i = 0; i < ((size - 4) >> 1); i++)
c += p[i];
if (c == c_rx)
return 0;
return -1;
}
volatile uint32_t time_elapsed = 0;
void main(void) {
uint32_t tlen = 0;
volatile uint32_t recv_seq;
uint32_t r_total = 0;
uint32_t tot_len = 0;
uint32_t next_seq = 0;
uint32_t version = 0;
uint8_t *v_array = (uint8_t *)&version;
int i;
memset(page, 0xFF, PAGESIZE);
boot_led_on();
flash_set_waitstates();
clock_config();
led_pwm_setup();
pwm_init(CPU_FREQ, 0);
/* Dim the led by altering the PWM duty-cicle
* in isr_tim2 (timer.c)
*
* Every 50ms, the duty cycle of the PWM connected
* to the blue led increases/decreases making a pulse
* effect.
*/
timer_init(CPU_FREQ, 1, 50);
uart_setup(115200, 8, 'N', 1);
memset(page, 0xFF, PAGESIZE);
asm volatile ("cpsie i");
while(time_elapsed == 0)
WFI();
hal_flash_unlock();
version = wolfBoot_current_firmware_version();
if ((version & 0x01) == 0)
wolfBoot_success();
uart_write(START);
for (i = 3; i >= 0; i--) {
uart_write(v_array[i]);
}
while (1) {
r_total = 0;
do {
while(r_total < 2) {
msg[r_total++] = uart_read();
if ((r_total == 2) && ((msg[0] != 0xA5) || msg[1] != 0x5A)) {
r_total = 0;
continue;
}
}
msg[r_total++] = uart_read();
if ((tot_len == 0) && r_total == 2 + sizeof(uint32_t))
break;
if ((r_total > 8) && (tot_len <= ((r_total - 8) + next_seq)))
break;
} while (r_total < MSGSIZE);
if (tot_len == 0) {
tlen = msg[2] + (msg[3] << 8) + (msg[4] << 16) + (msg[5] << 24);
if (tlen > WOLFBOOT_PARTITION_SIZE - 8) {
uart_write(ERR);
uart_write(ERR);
uart_write(ERR);
uart_write(ERR);
uart_write(START);
recv_seq = 0;
tot_len = 0;
continue;
}
tot_len = tlen;
ack(0);
continue;
}
if (check(msg, r_total) < 0) {
ack(next_seq);
continue;
}
recv_seq = msg[4] + (msg[5] << 8) + (msg[6] << 16) + (msg[7] << 24);
if (recv_seq == next_seq)
{
int psize = r_total - 8;
int page_idx = recv_seq % PAGESIZE;
memcpy(&page[recv_seq % PAGESIZE], msg + 8, psize);
page_idx += psize;
if ((page_idx == PAGESIZE) || (next_seq + psize >= tot_len)) {
uint32_t dst = (WOLFBOOT_PARTITION_UPDATE_ADDRESS + recv_seq + psize) - page_idx;
if ((dst % WOLFBOOT_SECTOR_SIZE) == 0) {
hal_flash_erase(dst, WOLFBOOT_SECTOR_SIZE);
}
hal_flash_write(dst, page, PAGESIZE);
memset(page, 0xFF, PAGESIZE);
}
next_seq += psize;
}
ack(next_seq);
if (next_seq >= tot_len) {
/* Update complete */
spi_flash_probe();
wolfBoot_update_trigger();
spi_release();
hal_flash_lock();
break;
}
}
/* Wait for reboot */
while(1)
;
}
#endif /** PLATFROM_stm32f4 **/
#ifdef PLATFORM_nrf52
#define GPIO_BASE (0x50000000)
#define GPIO_OUT *((volatile uint32_t *)(GPIO_BASE + 0x504))
#define GPIO_OUTSET *((volatile uint32_t *)(GPIO_BASE + 0x508))
#define GPIO_OUTCLR *((volatile uint32_t *)(GPIO_BASE + 0x50C))
#define GPIO_PIN_CNF ((volatile uint32_t *)(GPIO_BASE + 0x700)) // Array
static void gpiotoggle(uint32_t pin)
{
uint32_t reg_val = GPIO_OUT;
GPIO_OUTCLR = reg_val & (1 << pin);
GPIO_OUTSET = (~reg_val) & (1 << pin);
}
void main(void)
{
uint32_t pin = 19;
int i;
GPIO_PIN_CNF[pin] = 1; /* Output */
while(1) {
gpiotoggle(pin);
for (i = 0; i < 800000; i++) // Wait a bit.
asm volatile ("nop");
}
}
#endif
#ifdef PLATFORM_samr21
void main(void) {
asm volatile ("cpsie i");
while(1)
WFI();
}
#endif
#ifdef PLATFORM_hifive1
void main(void) {
while(1)
;
}
#endif