wolfBoot/hal/mcxa.c

174 lines
5.6 KiB
C

/* mcxa.c
*
* Copyright (C) 2021 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <target.h>
#include "image.h"
/* FSL includes */
#include "fsl_common.h"
/* Clock + RAM voltage settings */
#include "fsl_clock.h"
#include "fsl_spc.h"
/* Flash driver */
#include "fsl_romapi.h"
/*!< Core clock frequency: 96000000Hz */
#define BOARD_BOOTCLOCKFRO96M_CORE_CLOCK 96000000UL
static flash_config_t pflash;
static int flash_init = 0;
#ifdef __WOLFBOOT
/* Assert hook needed by Kinetis SDK */
void __assert_func(const char *a, int b, const char *c, const char *d)
{
while(1)
;
}
/* The following clock setting function is autogenerated by the MCUXpresso IDE */
void BOARD_BootClockFRO96M(void)
{
uint32_t coreFreq;
spc_active_mode_core_ldo_option_t ldoOption;
spc_sram_voltage_config_t sramOption;
/* Get the CPU Core frequency */
coreFreq = CLOCK_GetCoreSysClkFreq();
/* The flow of increasing voltage and frequency */
if (coreFreq <= BOARD_BOOTCLOCKFRO96M_CORE_CLOCK) {
/* Set the LDO_CORE VDD regulator level */
ldoOption.CoreLDOVoltage = kSPC_CoreLDO_NormalVoltage;
ldoOption.CoreLDODriveStrength = kSPC_CoreLDO_NormalDriveStrength;
(void)SPC_SetActiveModeCoreLDORegulatorConfig(SPC0, &ldoOption);
/* Configure Flash to support different voltage level and frequency */
FMU0->FCTRL = (FMU0->FCTRL & ~((uint32_t)FMU_FCTRL_RWSC_MASK)) | (FMU_FCTRL_RWSC(0x2U));
/* Specifies the operating voltage for the SRAM's read/write timing margin */
sramOption.operateVoltage = kSPC_sramOperateAt1P1V;
sramOption.requestVoltageUpdate = true;
(void)SPC_SetSRAMOperateVoltage(SPC0, &sramOption);
}
CLOCK_SetupFROHFClocking(96000000U); /*!< Enable FRO HF(96MHz) output */
CLOCK_SetupFRO12MClocking(); /*!< Setup FRO12M clock */
CLOCK_AttachClk(kFRO_HF_to_MAIN_CLK); /* !< Switch MAIN_CLK to FRO_HF */
/* The flow of decreasing voltage and frequency */
if (coreFreq > BOARD_BOOTCLOCKFRO96M_CORE_CLOCK) {
/* Configure Flash to support different voltage level and frequency */
FMU0->FCTRL = (FMU0->FCTRL & ~((uint32_t)FMU_FCTRL_RWSC_MASK)) | (FMU_FCTRL_RWSC(0x2U));
/* Specifies the operating voltage for the SRAM's read/write timing margin */
sramOption.operateVoltage = kSPC_sramOperateAt1P1V;
sramOption.requestVoltageUpdate = true;
(void)SPC_SetSRAMOperateVoltage(SPC0, &sramOption);
/* Set the LDO_CORE VDD regulator level */
ldoOption.CoreLDOVoltage = kSPC_CoreLDO_NormalVoltage;
ldoOption.CoreLDODriveStrength = kSPC_CoreLDO_NormalDriveStrength;
(void)SPC_SetActiveModeCoreLDORegulatorConfig(SPC0, &ldoOption);
}
/*!< Set up clock selectors - Attach clocks to the peripheries */
/*!< Set up dividers */
CLOCK_SetClockDiv(kCLOCK_DivAHBCLK, 1U); /* !< Set AHBCLKDIV divider to value 1 */
CLOCK_SetClockDiv(kCLOCK_DivFRO_HF_DIV, 1U); /* !< Set FROHFDIV divider to value 1 */
}
void hal_init(void)
{
/* Clock setting */
BOARD_BootClockFRO96M();
/* Clear the FLASH configuration structure */
memset(&pflash, 0, sizeof(pflash));
/* FLASH driver init */
FLASH_Init(&pflash);
}
void hal_prepare_boot(void)
{
}
#endif /* __WOLFBOOT */
int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len)
{
int ret;
int w = 0;
const uint8_t empty_qword[16] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
while (len > 0) {
if ((len < 16) || address & 0x0F) {
uint8_t aligned_qword[16];
uint32_t address_align = address - (address & 0x0F);
uint32_t start_off = address - address_align;
int i;
memcpy(aligned_qword, (void*)address_align, 16);
for (i = start_off; ((i < 16) && (i < len + (int)start_off)); i++) {
aligned_qword[i] = data[w++];
}
if (memcmp(aligned_qword, empty_qword, 16) != 0) {
ret = FLASH_ProgramPhrase(&pflash, address_align, aligned_qword, 16);
if (ret != kStatus_Success)
return -1;
}
address += i;
len -= i;
}
else {
uint32_t len_align = len - (len & 0x0F);
ret = FLASH_ProgramPhrase(&pflash, address, (uint8_t*)data + w, len_align);
if (ret != kStatus_Success)
return -1;
len -= len_align;
address += len_align;
}
}
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
}
void RAMFUNCTION hal_flash_lock(void)
{
}
int RAMFUNCTION hal_flash_erase(uint32_t address, int len)
{
while ((address % 4) != 0)
address --;
if (FLASH_EraseSector(&pflash, address, len, kFLASH_ApiEraseKey) != kStatus_Success)
return -1;
return 0;
}