wolfBoot/hal/renesas-rx.c

245 lines
6.9 KiB
C

/* remesas-rx.c
*
* Stubs for custom HAL implementation. Defines the
* functions used by wolfboot for a specific target.
*
* Copyright (C) 2022 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <target.h>
#include "image.h"
#include "hal.h"
#include "r_flash_rx.h"
#if defined(WOLFBOOT_RENESAS_TSIP) && \
!defined(WOLFBOOT_RENESAS_APP)
# include "wolfssl/wolfcrypt/wc_port.h"
# include "wolfssl/wolfcrypt/port/Renesas/renesas-tsip-crypt.h"
# include "wolfssl/wolfcrypt/port/Renesas/renesas_sync.h"
# include "key_data.h"
# include "wolfssl/wolfcrypt/port/Renesas/renesas_tsip_types.h"
TsipUserCtx pkInfo;
#endif
static inline void hal_panic(void)
{
while(1)
;
}
void hal_init(void)
{
#if defined(WOLFBOOT_RENESAS_TSIP) &&\
!defined(WOLFBOOT_RENESAS_APP)
int err;
uint32_t key_type = 0;
int tsip_key_type = -1;
/* retrive installed pubkey data from flash */
struct rsa2048_pub *encrypted_user_key_data =
(struct rsa2048_pub*)keystore_get_buffer(0);
#endif
if(R_FLASH_Open() != FLASH_SUCCESS)
hal_panic();
#if defined(WOLFBOOT_RENESAS_TSIP) && \
!defined(WOLFBOOT_RENESAS_APP)
err = wolfCrypt_Init();
if (err != 0) {
printf("ERROR: wolfCrypt_Init %d\n", err);
hal_panic();
}
key_type = keystore_get_key_type(0);
switch(key_type){
case AUTH_KEY_RSA2048:
tsip_key_type = TSIP_RSA2048;
break;
case AUTH_KEY_RSA4096:
tsip_key_type = TSIP_RSA4096;
break;
case AUTH_KEY_ED448:
case AUTH_KEY_ECC384:
case AUTH_KEY_ECC521:
case AUTH_KEY_ED25519:
case AUTH_KEY_ECC256:
case AUTH_KEY_RSA3072:
default:
tsip_key_type = -1;
break;
}
if (tsip_key_type == -1) {
printf("key type (%d) not supported\n", key_type);
hal_panic();
}
/* inform user key */
tsip_inform_user_keys_ex((byte*)&encrypted_user_key_data->wufpk,
(byte*)&encrypted_user_key_data->initial_vector,
(byte*)&encrypted_user_key_data->encrypted_user_key,
0/* dummy */);
/* TSIP specific RSA public key */
if (tsip_use_PublicKey_buffer_crypt(&pkInfo,
(const char*)&encrypted_user_key_data->encrypted_user_key,
RSA2048_PUB_SIZE,
tsip_key_type) != 0) {
printf("ERROR tsip_use_PublicKey_buffer\n");
hal_panic();
}
/* Init Crypt Callback */
pkInfo.sing_hash_type = sha256_mac;
pkInfo.keyflgs_crypt.bits.message_type = 1;
err = wc_CryptoCb_CryptInitRenesasCmn(NULL, &pkInfo);
if (err < 0) {
printf("ERROR: wc_CryptoCb_CryptInitRenesasCmn %d\n", err);
hal_panic();
}
#endif
}
void hal_prepare_boot(void)
{
}
#define MIN_PROG (0x8000)
#define ALIGN_FLASH(a) ((a) / MIN_PROG * MIN_PROG)
static uint8_t save[MIN_PROG];
int blockWrite(const uint8_t *data, uint32_t addr, int len)
{
for(; len; len-=MIN_PROG, data+=MIN_PROG, addr+=MIN_PROG) {
memcpy(save, data, MIN_PROG); /* for the case "data" ls a flash address */
if(R_FLASH_Write((uint32_t)save, addr, MIN_PROG) != FLASH_SUCCESS)
return -1;
}
return 0;
}
#define IS_FLASH(addr) (addr) >= 0xffc00000 ? 1 : 0
int hal_flash_write(uint32_t addr, const uint8_t *data, int len)
{
uint32_t save_len = 0;
if(addr != ALIGN_FLASH(addr)) {
save_len = (addr - ALIGN_FLASH(addr)) < len ? (addr - ALIGN_FLASH(addr)) : len;
memcpy(save, (const void *)ALIGN_FLASH(addr), MIN_PROG);
memcpy(save + (addr - ALIGN_FLASH(addr)), data, save_len);
addr = ALIGN_FLASH(addr);
if(R_FLASH_Erase((flash_block_address_t)addr, 1) != FLASH_SUCCESS)
return -1;
if(R_FLASH_Write((uint32_t)save, addr, MIN_PROG) != FLASH_SUCCESS)
return -1;
len -= save_len;
data += save_len;
addr += MIN_PROG;
}
if(len > 0) {
if(blockWrite(data, addr, ALIGN_FLASH(len)) < 0)
goto error;
addr += ALIGN_FLASH(len);
data += ALIGN_FLASH(len);
len -= ALIGN_FLASH(len);
}
if(len > 0) {
memcpy(save, (const void *)addr, MIN_PROG);
memcpy(save, data, len);
if(R_FLASH_Erase((flash_block_address_t)addr, 1) != FLASH_SUCCESS)
return -1;
if(R_FLASH_Write((uint32_t)save, addr, MIN_PROG) != FLASH_SUCCESS)
goto error;
}
return 0;
error:
return -1;
}
int hal_flash_erase(uint32_t address, int len)
{
int block_size = address >= 0xffff0000 ?
FLASH_CF_SMALL_BLOCK_SIZE : FLASH_CF_MEDIUM_BLOCK_SIZE;
if(len % block_size != 0)
return -1;
for( ; len; address+=block_size, len-=block_size) {
if(R_FLASH_Erase((flash_block_address_t)address, 1)
!= FLASH_SUCCESS)
return -1;
}
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
flash_access_window_config_t info;
info.start_addr = (uint32_t) FLASH_CF_BLOCK_132;
info.end_addr = (uint32_t) FLASH_CF_BLOCK_0;
R_BSP_InterruptsDisable();
if(R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&info)
!= FLASH_SUCCESS)
hal_panic();
R_BSP_InterruptsEnable();
return;
}
void RAMFUNCTION hal_flash_lock(void)
{
flash_access_window_config_t info;
info.start_addr = (uint32_t) FLASH_CF_BLOCK_END;
info.end_addr = (uint32_t) FLASH_CF_BLOCK_END;
R_BSP_InterruptsDisable();
if(R_FLASH_Control(FLASH_CMD_ACCESSWINDOW_SET, (void *)&info)
!= FLASH_SUCCESS)
hal_panic();
R_BSP_InterruptsEnable();
return;
}
void RAMFUNCTION hal_flash_dualbank_swap(void)
{
flash_cmd_t cmd = FLASH_CMD_SWAPFLAG_TOGGLE;
printf("FLASH_CMD_SWAPFLAG_TOGGLE=%d\n", FLASH_CMD_SWAPFLAG_TOGGLE);
hal_flash_unlock();
if(R_FLASH_Control(cmd, NULL) != FLASH_SUCCESS)
hal_panic();
hal_flash_lock();
}
void* hal_get_primary_address(void)
{
return (void*)WOLFBOOT_PARTITION_BOOT_ADDRESS;
}
void* hal_get_update_address(void)
{
return (void*)WOLFBOOT_PARTITION_UPDATE_ADDRESS;
}