wolfBoot/hal/stm32l5.c

418 lines
11 KiB
C

/* stm32l5.c
*
* Copyright (C) 2021 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <image.h>
#include <string.h>
#include "hal.h"
#include "hal/stm32l5.h"
static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates)
{
uint32_t reg = FLASH_ACR;
if ((reg & FLASH_ACR_LATENCY_MASK) != waitstates)
FLASH_ACR = (reg & ~FLASH_ACR_LATENCY_MASK) | waitstates ;
}
void RAMFUNCTION hal_flash_wait_complete(uint8_t bank)
{
while ((FLASH_SR & FLASH_SR_BSY) == FLASH_SR_BSY)
;
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
while ((FLASH_NS_SR & FLASH_SR_BSY) == FLASH_SR_BSY)
;
#endif
}
void RAMFUNCTION hal_flash_clear_errors(uint8_t bank)
{
FLASH_SR |= ( FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR |
FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR
#if !(defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
|
FLASH_SR_OPTWERR
#endif
) ;
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
FLASH_NS_SR |= ( FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR |
FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR |
FLASH_SR_OPTWERR);
#endif
}
int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len)
{
int i = 0;
uint32_t *src, *dst;
uint32_t dword[2];
volatile uint32_t *sr, *cr;
cr = &FLASH_CR;
sr = &FLASH_SR;
hal_flash_clear_errors(0);
src = (uint32_t *)data;
dst = (uint32_t *)address;
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
if (address >= FLASH_BANK2_BASE)
hal_tz_claim_nonsecure_area(address, len);
/* Convert into secure address space */
dst = (uint32_t *)((address & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE);
#endif
while (i < len) {
dword[0] = src[i >> 2];
dword[1] = src[(i >> 2) + 1];
*cr |= FLASH_CR_PG;
dst[i >> 2] = dword[0];
ISB();
dst[(i >> 2) + 1] = dword[1];
hal_flash_wait_complete(0);
if ((*sr & FLASH_SR_EOP) != 0)
*sr |= FLASH_SR_EOP;
*cr &= ~FLASH_CR_PG;
i+=8;
}
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
hal_tz_release_nonsecure_area();
#endif
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
hal_flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_LOCK) != 0) {
FLASH_KEYR = FLASH_KEY1;
DMB();
FLASH_KEYR = FLASH_KEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_lock(void)
{
hal_flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_LOCK) == 0)
FLASH_CR |= FLASH_CR_LOCK;
}
void RAMFUNCTION hal_flash_opt_unlock(void)
{
hal_flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_OPTLOCK) != 0) {
FLASH_OPTKEYR = FLASH_OPTKEY1;
DMB();
FLASH_OPTKEYR = FLASH_OPTKEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_opt_lock(void)
{
FLASH_CR |= FLASH_CR_OPTSTRT;
hal_flash_wait_complete(0);
FLASH_CR |= FLASH_CR_OBL_LAUNCH;
if ((FLASH_CR & FLASH_CR_OPTLOCK) == 0)
FLASH_CR |= FLASH_CR_OPTLOCK;
}
int RAMFUNCTION hal_flash_erase(uint32_t address, int len)
{
uint32_t end_address;
uint32_t p;
hal_flash_clear_errors(0);
if (len == 0)
return -1;
if (address < ARCH_FLASH_OFFSET)
return -1;
end_address = address + len - 1;
for (p = address; p < end_address; p += FLASH_PAGE_SIZE) {
uint32_t reg;
uint32_t base;
uint32_t bker = 0;
if ((((FLASH_OPTR & FLASH_OPTR_DBANK) == 0) && (p <= FLASH_TOP)) ||
(p < FLASH_BANK2_BASE)) {
base = FLASHMEM_ADDRESS_SPACE;
}
else if(p >= (FLASH_BANK2_BASE) && (p <= (FLASH_TOP) ))
{
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/* When in secure mode, skip erasing non-secure pages: will be erased upon claim */
return 0;
#endif
bker = FLASH_CR_BKER;
base = FLASH_BANK2_BASE;
} else {
FLASH_CR &= ~FLASH_CR_PER ;
return 0; /* Address out of range */
}
reg = FLASH_CR & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_BKER));
reg |= ((((p - base) >> 11) << FLASH_CR_PNB_SHIFT) | FLASH_CR_PER | bker );
FLASH_CR = reg;
DMB();
FLASH_CR |= FLASH_CR_STRT;
hal_flash_wait_complete(0);
}
/* If the erase operation is completed, disable the associated bits */
FLASH_CR &= ~FLASH_CR_PER ;
return 0;
}
static void clock_pll_off(void)
{
uint32_t reg32;
/* Select MSI as SYSCLK source. */
reg32 = RCC_CFGR;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR = (reg32 | RCC_CFGR_SW_MSI);
DMB();
/* Wait for MSI clock to be selected. */
while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_MSI) {};
/* Turn off PLL */
RCC_CR &= ~RCC_CR_PLLON;
DMB();
}
/*This implementation will setup MSI 48 MHz as PLL Source Mux, PLLCLK as System Clock Source*/
static void clock_pll_on(int powersave)
{
uint32_t reg32;
uint32_t plln, pllm, pllq, pllp, pllr, hpre, apb1pre, apb2pre , flash_waitstates;
RCC_APB2ENR |= RCC_APB2ENR_SYSCFGEN;
RCC_APB1ENR |= RCC_APB1ENR_PWREN;
PWR_CR3 |= PWR_CR3_UCPD_DBDIS;
PWR_CR1 &= ~((1 << 10) | (1 << 9));
PWR_CR1 |= (PWR_CR1_VOS_0 << PWR_CR1_VOS_SHIFT);
/* Delay after setting the voltage scaling */
reg32 = PWR_CR1;
while ((PWR_SR2 & PWR_SR2_VOSF)) {};
while ((RCC_CR & RCC_CR_MSIRDY) == 0) {};
flash_waitstates = 2;
flash_set_waitstates(flash_waitstates);
RCC_CR |= RCC_CR_MSIRGSEL;
reg32 = RCC_CR;
reg32 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4));
reg32 |= (RCC_CR_MSIRANGE_11 << RCC_CR_MSIRANGE_SHIFT);
RCC_CR = reg32;
reg32 = RCC_CR;
DMB();
/* Select clock parameters (CPU Speed = 110 MHz) */
pllm = 12;
plln = 55;
pllp = 7;
pllq = RCC_PLLCFGR_QR_DIV_2;
pllr = RCC_PLLCFGR_QR_DIV_2;
hpre = RCC_AHB_PRESCALER_DIV_NONE;
apb1pre = RCC_APB_PRESCALER_DIV_NONE;
apb2pre = RCC_APB_PRESCALER_DIV_NONE;
flash_waitstates = 5;
RCC_CR &= ~RCC_CR_PLLON;
while ((RCC_CR & RCC_CR_PLLRDY) != 0) {};
/*PLL Clock source selection*/
reg32 = RCC_PLLCFGR ;
reg32 |= RCC_PLLCKSELR_PLLSRC_MSI;
reg32 |= ((pllm-1) << RCC_PLLCFGR_PLLM_SHIFT);
reg32 |= ((plln) << RCC_PLLCFGR_PLLN_SHIFT);
reg32 |= ((pllp) << RCC_PLLCFGR_PLLP_SHIFT);
reg32 |= ((pllq) << RCC_PLLCFGR_PLLQ_SHIFT);
reg32 |= ((pllr) << RCC_PLLCFGR_PLLR_SHIFT);
RCC_PLLCFGR = reg32;
DMB();
RCC_CR |= RCC_CR_PLLON;
while ((RCC_CR & RCC_CR_PLLRDY) == 0) {};
RCC_PLLCFGR |= RCC_PLLCFGR_PLLREN;
flash_set_waitstates(flash_waitstates);
/*step down HPRE before going to >80MHz*/
reg32 = RCC_CFGR ;
reg32 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4));
reg32 |= ((RCC_AHB_PRESCALER_DIV_2) << RCC_CFGR_HPRE_SHIFT) ;
RCC_CFGR = reg32;
DMB();
/* Select PLL as SYSCLK source. */
reg32 = RCC_CFGR;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR = (reg32 | RCC_CFGR_SW_PLL);
DMB();
/* Wait for PLL clock to be selected. */
while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_PLL) {};
/*step-up HPRE to go > 80MHz*/
reg32 = RCC_CFGR ;
reg32 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4));
reg32 |= ((hpre) << RCC_CFGR_HPRE_SHIFT) ;
RCC_CFGR = reg32;
DMB();
/*PRE1 and PRE2 conf*/
reg32 = RCC_CFGR ;
reg32 &= ~((1 << 10) | (1 << 9) | (1 << 8));
reg32 |= ((apb1pre) << RCC_CFGR_PPRE1_SHIFT) ;
reg32 &= ~((1 << 13) | (1 << 12) | (1 << 11));
reg32 |= ((apb2pre) << RCC_CFGR_PPRE2_SHIFT) ;
RCC_CFGR = reg32;
DMB();
}
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
static void periph_unsecure()
{
uint32_t pin;
/*Enable clock for User LED GPIOs */
RCC_AHB2_CLOCK_ER|= LED_AHB2_ENABLE;
/* Enable clock for LPUART1 */
RCC_APB1_CLOCK_ER |= UART1_APB1_CLOCK_ER_VAL;
PWR_CR2 |= PWR_CR2_IOSV;
/*Un-secure User LED GPIO pins */
#ifdef STM32_DISCOVERY
GPIO_SECCFGR(GPIOD_BASE) &= ~(1<<LED_USR_PIN);
GPIO_SECCFGR(GPIOG_BASE) &= ~(1<<LED_BOOT_PIN);
#else /* Nucleo board */
GPIO_SECCFGR(GPIOA_BASE) &= ~(1<<LED_BOOT_PIN);
GPIO_SECCFGR(GPIOB_BASE) &= ~(1<<LED_USR_PIN);
GPIO_SECCFGR(GPIOC_BASE) &= ~(1<<LED_EXTRA_PIN);
#endif
/* Unsecure LPUART1 */
TZSC_PRIVCFGR1 &= ~(TZSC_PRIVCFG1_LPUARTPRIV);
GPIO_SECCFGR(GPIOG_BASE) &= ~(1<<UART1_TX_PIN);
GPIO_SECCFGR(GPIOG_BASE) &= ~(1<<UART1_RX_PIN);
}
#endif
#define OPTR_SWAP_BANK (1 << 20)
#define AIRCR *(volatile uint32_t *)(0xE000ED0C)
#define AIRCR_VKEY (0x05FA << 16)
#define AIRCR_SYSRESETREQ (1 << 2)
static void RAMFUNCTION stm32l5_reboot(void)
{
AIRCR = AIRCR_SYSRESETREQ | AIRCR_VKEY;
while(1)
;
}
void RAMFUNCTION hal_flash_dualbank_swap(void)
{
uint32_t cur_opts;
hal_flash_unlock();
hal_flash_opt_unlock();
cur_opts = (FLASH_OPTR & FLASH_OPTR_SWAP_BANK) >> 20;
if (cur_opts)
FLASH_OPTR &= (~FLASH_OPTR_SWAP_BANK);
else
FLASH_OPTR |= FLASH_OPTR_SWAP_BANK;
hal_flash_opt_lock();
hal_flash_lock();
stm32l5_reboot();
}
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
static uint8_t bootloader_copy_mem[BOOTLOADER_SIZE];
static void RAMFUNCTION fork_bootloader(void)
{
uint8_t *data = (uint8_t *) FLASHMEM_ADDRESS_SPACE;
uint32_t dst = FLASH_BANK2_BASE;
uint32_t r = 0, w = 0;
int i;
/* Return if content already matches */
if (memcmp(data, (void *)FLASH_BANK2_BASE, BOOTLOADER_SIZE) == 0)
return;
/* Read the wolfBoot image in RAM */
memcpy(bootloader_copy_mem, data, BOOTLOADER_SIZE);
/* Mass-erase */
hal_flash_unlock();
hal_flash_erase(dst, BOOTLOADER_SIZE);
hal_flash_write(dst, bootloader_copy_mem, BOOTLOADER_SIZE);
hal_flash_lock();
}
#endif
void hal_init(void)
{
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
if ((FLASH_OPTR & (FLASH_OPTR_SWAP_BANK | FLASH_OPTR_DBANK)) == FLASH_OPTR_DBANK)
fork_bootloader();
#endif
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
hal_tz_sau_init();
hal_gtzc_init();
#endif
clock_pll_on(0);
}
void hal_prepare_boot(void)
{
clock_pll_off();
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
periph_unsecure();
#endif
}