wolfBoot/hal/zynq.c

1378 lines
45 KiB
C

/* zynq.c
*
* Copyright (C) 2021 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <string.h>
#if defined(__QNXNTO__) && !defined(NO_QNX)
#define USE_QNX
#elif defined(USE_BUILTIN_STARTUP)
/* we are using Xilinx SDK to build, so use Xilinx QSPI driver */
#ifndef USE_XQSPIPSU
#define USE_XQSPIPSU
#endif
#endif
#include <target.h>
#include "image.h"
#include "printf.h"
#ifndef ARCH_AARCH64
# error "wolfBoot zynq HAL: wrong architecture selected. Please compile with ARCH=AARCH64."
#endif
#ifdef USE_XQSPIPSU
/* Xilinx BSP Driver */
#include "xqspipsu.h"
#define QSPI_DEVICE_ID XPAR_XQSPIPSU_0_DEVICE_ID
#define QSPI_CLK_PRESACALE XQSPIPSU_CLK_PRESCALE_8
#elif defined(USE_QNX)
/* QNX QSPI driver */
#include <sys/siginfo.h>
#include "xzynq_gqspi.h"
#else
/* QSPI bare-metal */
#endif
/* QSPI bare-metal driver */
#define CORTEXA53_0_CPU_CLK_FREQ_HZ 1099989014
#define CORTEXA53_0_TIMESTAMP_CLK_FREQ 99998999
/* Generic Quad-SPI */
#define QSPI_BASE 0xFF0F0000UL
#define LQSPI_EN (*((volatile uint32_t*)(QSPI_BASE + 0x14))) /* SPI enable: 0: disable the SPI, 1: enable the SPI */
#define GQSPI_CFG (*((volatile uint32_t*)(QSPI_BASE + 0x100))) /* configuration register. */
#define GQSPI_ISR (*((volatile uint32_t*)(QSPI_BASE + 0x104))) /* interrupt status register. */
#define GQSPI_IER (*((volatile uint32_t*)(QSPI_BASE + 0x108))) /* interrupt enable register. */
#define GQSPI_IDR (*((volatile uint32_t*)(QSPI_BASE + 0x10C))) /* interrupt disable register. */
#define GQSPI_IMR (*((volatile uint32_t*)(QSPI_BASE + 0x110))) /* interrupt unmask register. */
#define GQSPI_EN (*((volatile uint32_t*)(QSPI_BASE + 0x114))) /* enable register. */
#define GQSPI_TXD (*((volatile uint32_t*)(QSPI_BASE + 0x11C))) /* TX data register. Keyhole addresses for the transmit data FIFO. */
#define GQSPI_RXD (*((volatile uint32_t*)(QSPI_BASE + 0x120))) /* RX data register. */
#define GQSPI_TX_THRESH (*((volatile uint32_t*)(QSPI_BASE + 0x128))) /* TXFIFO Threshold Level register: (bits 5:0) Defines the level at which the TX_FIFO_NOT_FULL interrupt is generated */
#define GQSPI_RX_THRESH (*((volatile uint32_t*)(QSPI_BASE + 0x12C))) /* RXFIFO threshold level register: (bits 5:0) Defines the level at which the RX_FIFO_NOT_EMPTY interrupt is generated */
#define GQSPI_GPIO (*((volatile uint32_t*)(QSPI_BASE + 0x130)))
#define GQSPI_LPBK_DLY_ADJ (*((volatile uint32_t*)(QSPI_BASE + 0x138))) /* adjusting the internal loopback clock delay for read data capturing */
#define GQSPI_GEN_FIFO (*((volatile uint32_t*)(QSPI_BASE + 0x140))) /* generic FIFO data register. Keyhole addresses for the generic FIFO. */
#define GQSPI_SEL (*((volatile uint32_t*)(QSPI_BASE + 0x144))) /* select register. */
#define GQSPI_FIFO_CTRL (*((volatile uint32_t*)(QSPI_BASE + 0x14C))) /* FIFO control register. */
#define GQSPI_GF_THRESH (*((volatile uint32_t*)(QSPI_BASE + 0x150))) /* generic FIFO threshold level register: (bits 4:0) Defines the level at which the GEN_FIFO_NOT_FULL interrupt is generated */
#define GQSPI_POLL_CFG (*((volatile uint32_t*)(QSPI_BASE + 0x154))) /* poll configuration register */
#define GQSPI_P_TIMEOUT (*((volatile uint32_t*)(QSPI_BASE + 0x158))) /* poll timeout register. */
#define GQSPI_XFER_STS (*((volatile uint32_t*)(QSPI_BASE + 0x15C))) /* transfer status register. */
#define QSPI_DATA_DLY_ADJ (*((volatile uint32_t*)(QSPI_BASE + 0x1F8))) /* adjusting the internal receive data delay for read data capturing */
#define GQSPI_MOD_ID (*((volatile uint32_t*)(QSPI_BASE + 0x1FC)))
#define QSPIDMA_DST_STS (*((volatile uint32_t*)(QSPI_BASE + 0x808)))
#define QSPIDMA_DST_CTRL (*((volatile uint32_t*)(QSPI_BASE + 0x80C)))
#define QSPIDMA_DST_I_STS (*((volatile uint32_t*)(QSPI_BASE + 0x814)))
#define QSPIDMA_DST_CTRL2 (*((volatile uint32_t*)(QSPI_BASE + 0x824)))
/* GQSPI Registers */
/* GQSPI_CFG: Configuration registers */
#define GQSPI_CFG_CLK_POL (1UL << 1) /* Clock polarity outside QSPI word: 0: QSPI clock is quiescent low, 1: QSPI clock is quiescent high */
#define GQSPI_CFG_CLK_PH (1UL << 2) /* Clock phase: 1: the QSPI clock is inactive outside the word, 0: the QSPI clock is active outside the word */
/* 000: divide by 2, 001: divide by 4, 010: divide by 8,
011: divide by 16, 100: divide by 32, 101: divide by 64,
110: divide by 128, 111: divide by 256 */
#define GQSPI_CFG_BAUD_RATE_DIV_MASK (7UL << 3)
#define GQSPI_CFG_BAUD_RATE_DIV(d) ((d << 3) & GQSPI_CFG_BAUD_RATE_DIV_MASK)
#define GQSPI_CFG_WP_HOLD (1UL << 19) /* If set, Holdb and WPn pins are actively driven by the qspi controller in 1-bit and 2-bit modes. */
#define GQSPI_CFG_EN_POLL_TIMEOUT (1UL << 20) /* Poll Timeout Enable: 0: disable, 1: enable */
#define GQSPI_CFG_ENDIAN (1UL << 26) /* Endian format transmit data register: 0: little endian, 1: big endian */
#define GQSPI_CFG_START_GEN_FIFO (1UL << 28) /* Trigger Generic FIFO Command Execution: 0:disable executing requests, 1: enable executing requests */
#define GQSPI_CFG_GEN_FIFO_START_MODE (1UL << 29) /* Start mode of Generic FIFO: 0: Auto Start Mode, 1: Manual Start Mode */
#define GQSPI_CFG_MODE_EN_MASK (3UL << 30) /* Flash memory interface mode control: 00: IO mode, 10: DMA mode */
#define GQSPI_CFG_MODE_EN(m) ((m << 30) & GQSPI_CFG_MODE_EN_MASK)
#define GQSPI_CFG_MODE_EN_IO GQSPI_CFG_MODE_EN(0)
#define GQSPI_CFG_MODE_EN_DMA GQSPI_CFG_MODE_EN(2)
/* GQSPI_ISR / GQSPI_IER / GQSPI_IDR / GQSPI_IMR: Interrupt registers */
#define GQSPI_IXR_RX_FIFO_EMPTY (1UL << 11)
#define GQSPI_IXR_GEN_FIFO_FULL (1UL << 10)
#define GQSPI_IXR_GEN_FIFO_NOT_FULL (1UL << 9)
#define GQSPI_IXR_TX_FIFO_EMPTY (1UL << 8)
#define GQSPI_IXR_GEN_FIFO_EMPTY (1UL << 7)
#define GQSPI_IXR_RX_FIFO_FULL (1UL << 5)
#define GQSPI_IXR_RX_FIFO_NOT_EMPTY (1UL << 4)
#define GQSPI_IXR_TX_FIFO_FULL (1UL << 3)
#define GQSPI_IXR_TX_FIFO_NOT_FULL (1UL << 2)
#define GQSPI_IXR_POLL_TIME_EXPIRE (1UL << 1)
#define GQSPI_IXR_ALL_MASK (GQSPI_IXR_POLL_TIME_EXPIRE | GQSPI_IXR_TX_FIFO_NOT_FULL | \
GQSPI_IXR_TX_FIFO_FULL | GQSPI_IXR_RX_FIFO_NOT_EMPTY | GQSPI_IXR_RX_FIFO_FULL | \
GQSPI_IXR_GEN_FIFO_EMPTY | GQSPI_IXR_TX_FIFO_EMPTY | GQSPI_IXR_GEN_FIFO_NOT_FULL | \
GQSPI_IXR_GEN_FIFO_FULL | GQSPI_IXR_RX_FIFO_EMPTY)
#define GQSPI_ISR_WR_TO_CLR_MASK 0x00000002U
/* GQSPI_GEN_FIFO: FIFO data register */
/* bits 0-7: Length in bytes (except when GQSPI_GEN_FIFO_EXP_MASK is set length as 255 chunks) */
#define GQSPI_GEN_FIFO_IMM_MASK (0xFFUL) /* Immediate Data Field */
#define GQSPI_GEN_FIFO_IMM(imm) (imm & GQSPI_GEN_FIFO_IMM_MASK)
#define GQSPI_GEN_FIFO_DATA_XFER (1UL << 8) /* Indicates IMM is size, otherwise byte is sent directly in IMM reg */
#define GQSPI_GEN_FIFO_EXP_MASK (1UL << 9) /* Length is Exponent (length / 255) */
#define GQSPI_GEN_FIFO_MODE_MASK (3UL << 10)
#define GQSPI_GEN_FIFO_MODE(m) ((m << 10) & GQSPI_GEN_FIFO_MODE_MASK)
#define GQSPI_GEN_FIFO_MODE_SPI GQSPI_GEN_FIFO_MODE(1)
#define GQSPI_GEN_FIFO_MODE_DSPI GQSPI_GEN_FIFO_MODE(2)
#define GQSPI_GEN_FIFO_MODE_QSPI GQSPI_GEN_FIFO_MODE(3)
#define GQSPI_GEN_FIFO_CS_MASK (3UL << 12)
#define GQSPI_GEN_FIFO_CS(c) ((c << 12) & GQSPI_GEN_FIFO_CS_MASK)
#define GQSPI_GEN_FIFO_CS_LOWER GQSPI_GEN_FIFO_CS(1)
#define GQSPI_GEN_FIFO_CS_UPPER GQSPI_GEN_FIFO_CS(2)
#define GQSPI_GEN_FIFO_CS_BOTH GQSPI_GEN_FIFO_CS(3)
#define GQSPI_GEN_FIFO_BUS_MASK (3UL << 14)
#define GQSPI_GEN_FIFO_BUS(b) ((b << 14) & GQSPI_GEN_FIFO_BUS_MASK)
#define GQSPI_GEN_FIFO_BUS_LOW GQSPI_GEN_FIFO_BUS(1)
#define GQSPI_GEN_FIFO_BUS_UP GQSPI_GEN_FIFO_BUS(2)
#define GQSPI_GEN_FIFO_BUS_BOTH GQSPI_GEN_FIFO_BUS(3)
#define GQSPI_GEN_FIFO_TX (1UL << 16)
#define GQSPI_GEN_FIFO_RX (1UL << 17)
#define GQSPI_GEN_FIFO_STRIPE (1UL << 18) /* Stripe data across the lower and upper data buses. */
#define GQSPI_GEN_FIFO_POLL (1UL << 19)
/* GQSPI_FIFO_CTRL */
#define GQSPI_FIFO_CTRL_RST_GEN_FIFO (1UL << 0)
#define GQSPI_FIFO_CTRL_RST_TX_FIFO (1UL << 1)
#define GQSPI_FIFO_CTRL_RST_RX_FIFO (1UL << 2)
/* QSPIDMA_DST_CTRL */
#define QSPIDMA_DST_CTRL_DEF 0x403FFA00UL
#define QSPIDMA_DST_CTRL2_DEF 0x081BFFF8UL
/* QSPIDMA_DST_STS */
#define QSPIDMA_DST_STS_WTC 0xE000U
/* QSPIDMA_DST_I_STS */
#define QSPIDMA_DST_I_STS_ALL_MASK 0xFEU
/* IOP System-level Control */
#define IOU_SLCR_BASSE 0xFF180000
#define IOU_TAPDLY_BYPASS (*((volatile uint32_t*)(IOU_SLCR_BASSE + 0x390)))
#define IOU_TAPDLY_BYPASS_LQSPI_RX (1UL << 2) /* LQSPI Tap Delay Enable on Rx Clock signal. 0: enable. 1: disable (bypass tap delay). */
/* Configuration used for bare-metal only */
#define GQSPI_CLK_FREQ_HZ 124987511
#define GQSPI_CLK_DIV 2 /* (CLK / (2 << val) = BUS) - DIV 2 = 37.5 MHz */
#define GQSPI_CS_ASSERT_CLOCKS 5 /* CS Setup Time (tCSS) - num of clock cycles foes in IMM */
#define GQSPI_FIFO_WORD_SZ 4
#define GQSPI_TIMEOUT_TRIES 100000
#define QSPI_FLASH_READY_TRIES 1000
/* QSPI Configuration */
#ifndef GQSPI_QSPI_MODE
#define GQSPI_QSPI_MODE GQSPI_GEN_FIFO_MODE_QSPI
#endif
#ifndef GQPI_USE_DUAL_PARALLEL
#define GQPI_USE_DUAL_PARALLEL 1 /* stripe */
#endif
#ifndef GQPI_USE_4BYTE_ADDR
#define GQPI_USE_4BYTE_ADDR 1
#endif
#ifndef GQSPI_DUMMY_READ
#define GQSPI_DUMMY_READ (8*8) /* Number of dummy clock cycles for reads */
#endif
/* Flash Parameters:
* Micron Serial NOR Flash Memory 64KB Sector Erase MT25QU01GBBB
* Stacked device (two 512Mb die)
* Dual Parallel so total addressable size is double
*/
#ifndef FLASH_DEVICE_SIZE
#define FLASH_DEVICE_SIZE 0x10000000
#endif
#ifndef FLASH_PAGE_SIZE
#define FLASH_PAGE_SIZE 512
#endif
#ifndef FLASH_NUM_PAGES
#define FLASH_NUM_PAGES 0x80000
#endif
#define FLASH_NUM_SECTORS (FLASH_DEVICE_SIZE/WOLFBOOT_SECTOR_SIZE)
/* Flash Commands */
#define WRITE_ENABLE_CMD 0x06U
#define READ_SR_CMD 0x05U
#define WRITE_DISABLE_CMD 0x04U
#define READ_ID_CMD 0x9FU
#define MULTI_IO_READ_ID_CMD 0xAFU
#define READ_FSR_CMD 0x70U
#define ENTER_QSPI_MODE_CMD 0x35U
#define EXIT_QSPI_MODE_CMD 0xF5U
#define ENTER_4B_ADDR_MODE_CMD 0xB7U
#define EXIT_4B_ADDR_MODE_CMD 0xE9U
#define FAST_READ_CMD 0x0BU
#define DUAL_READ_CMD 0x3BU
#define QUAD_READ_CMD 0x6BU
#define FAST_READ_4B_CMD 0x0CU
#define DUAL_READ_4B_CMD 0x3CU
#define QUAD_READ_4B_CMD 0x6CU
#define PAGE_PROG_CMD 0x02U
#define DUAL_PROG_CMD 0xA2U
#define QUAD_PROG_CMD 0x22U
#define PAGE_PROG_4B_CMD 0x12U
#define DUAL_PROG_4B_CMD 0x12U
#define QUAD_PROG_4B_CMD 0x34U
#define SEC_ERASE_CMD 0xD8U
#define SEC_4K_ERASE_CMD 0x20U
#define RESET_ENABLE_CMD 0x66U
#define RESET_MEMORY_CMD 0x99U
#define WRITE_EN_MASK 0x02 /* 0=Write Enabled, 1=Disabled Write */
#define FLASH_READY_MASK 0x80 /* 0=Busy, 1=Ready */
/* Return Codes */
#define GQSPI_CODE_SUCCESS 0
#define GQSPI_CODE_FAILED -100
#define GQSPI_CODE_TIMEOUT -101
/* QSPI Slave Device Information */
typedef struct QspiDev {
uint32_t mode; /* GQSPI_GEN_FIFO_MODE_SPI, GQSPI_GEN_FIFO_MODE_DSPI or GQSPI_GEN_FIFO_MODE_QSPI */
uint32_t bus; /* GQSPI_GEN_FIFO_BUS_LOW, GQSPI_GEN_FIFO_BUS_UP or GQSPI_GEN_FIFO_BUS_BOTH */
uint32_t cs; /* GQSPI_GEN_FIFO_CS_LOWER, GQSPI_GEN_FIFO_CS_UPPER */
uint32_t stripe; /* OFF=0 or ON=GQSPI_GEN_FIFO_STRIPE */
#ifdef USE_XQSPIPSU
XQspiPsu qspiPsuInst;
#elif defined(USE_QNX)
xzynq_qspi_t* qnx;
#endif
} QspiDev_t;
static QspiDev_t mDev;
/* forward declarations */
static int qspi_wait_ready(QspiDev_t* dev);
static int qspi_status(QspiDev_t* dev, uint8_t* status);
static int qspi_wait_we(QspiDev_t* dev);
#ifdef TEST_FLASH
static int test_flash(QspiDev_t* dev);
#endif
/* eFUSE support */
#define ZYNQMP_EFUSE_BASE 0xFFCC0000
#define ZYNQMP_EFUSE_STATUS (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x0008)))
#define ZYNQMP_EFUSE_SEC_CTRL (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x1058)))
#define ZYNQMP_EFUSE_PPK0_0 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10A0)))
#define ZYNQMP_EFUSE_PPK0_1 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10A4)))
#define ZYNQMP_EFUSE_PPK0_2 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10A8)))
#define ZYNQMP_EFUSE_PPK0_3 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10AC)))
#define ZYNQMP_EFUSE_PPK0_4 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10B0)))
#define ZYNQMP_EFUSE_PPK0_5 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10B4)))
#define ZYNQMP_EFUSE_PPK0_6 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10B8)))
#define ZYNQMP_EFUSE_PPK0_7 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10BC)))
#define ZYNQMP_EFUSE_PPK0_8 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10C0)))
#define ZYNQMP_EFUSE_PPK0_9 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10C4)))
#define ZYNQMP_EFUSE_PPK0_10 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10C8)))
#define ZYNQMP_EFUSE_PPK0_11 (*((volatile uint32_t*)(ZYNQMP_EFUSE_BASE + 0x10CC)))
/* eFUSE STATUS Registers */
#define ZYNQMP_EFUSE_STATUS_CACHE_DONE (1UL << 5)
#define ZYNQMP_EFUSE_STATUS_CACHE_LOAD (1UL << 4)
/* eFUSE SEC_CTRL Registers */
#define ZYNQMP_EFUSE_SEC_CTRL_PPK1_INVLD (3UL << 30) /* Revokes PPK1 */
#define ZYNQMP_EFUSE_SEC_CTRL_PPK1_WRLK (1UL << 29) /* Locks writing to PPK1 eFuses */
#define ZYNQMP_EFUSE_SEC_CTRL_PPK0_INVLD (3UL << 27) /* Revokes PPK0 */
#define ZYNQMP_EFUSE_SEC_CTRL_PPK0_WRLK (1UL << 26) /* Locks writing to PPK0 eFuses */
#define ZYNQMP_EFUSE_SEC_CTRL_RSA_EN (15UL << 11) /* Enables RSA Authentication during boot. All boots must be authenticated */
#define ZYNQMP_EFUSE_SEC_CTRL_SEC_LOCK (1UL << 10) /* Disables the reboot into JTAG mode when doing a secure lockdown. */
#define ZYNQMP_EFUSE_SEC_CTRL_JTAG_DIS (1UL << 5) /* Disables the JTAG controller. The only instructions available are BYPASS and IDCODE. */
#define ZYNQMP_EFUSE_SEC_CTRL_ENC_ONLY (1UL << 2) /* Requires all boots to be encrypted using the eFuse key. */
#define ZYNQMP_EFUSE_SEC_CTRL_AES_WRLK (1UL << 1) /* Locks writing to the AES key section of eFuse */
#define ZYNQMP_EFUSE_SEC_CTRL_AES_RDLK (1UL << 0) /* Locks the AES key CRC check function */
#ifdef DEBUG_UART
/* UART Support for Debugging */
#define ZYNQMP_UART0_BASE 0xFF000000
#define ZYNQMP_UART1_BASE 0xFF010000
#define ZYNQMP_UART_CR (*((volatile uint32_t*)(DEBUG_UART_BASE + 0x0)))
#define ZYNQMP_UART_MR (*((volatile uint32_t*)(DEBUG_UART_BASE + 0x4)))
#define ZYNQMP_UART_SR (*((volatile uint32_t*)(DEBUG_UART_BASE + 0x2C)))
#define ZYNQMP_UART_FIFO (*((volatile uint32_t*)(DEBUG_UART_BASE + 0x30)))
#define ZYNQMP_UART_BR_GEN (*((volatile uint32_t*)(DEBUG_UART_BASE + 0x18))) /* 2 - 65535: baud_sample */
#define ZYNQMP_UART_BR_DIV (*((volatile uint32_t*)(DEBUG_UART_BASE + 0x34))) /* 4 - 255: Baud rate */
/* UART Control Registers */
#define ZYNQMP_UART_CR_TX_EN 0x00000010 /* TX enabled */
#define ZYNQMP_UART_CR_RX_EN 0x00000004 /* RX enabled */
#define ZYNQMP_UART_CR_TXRST 0x00000002 /* TX logic reset */
#define ZYNQMP_UART_CR_RXRST 0x00000001 /* RX logic reset */
/* UART Mode Registers */
#define ZYNQMP_UART_MR_PARITY_NONE 0x00000020 /* No parity */
/* UART Channel Status Register (read only) */
#define ZYNQMP_UART_SR_TXFULL 0x00000010U /* TX FIFO full */
#define ZYNQMP_UART_SR_TXEMPTY 0x00000008U /* TX FIFO empty */
#define ZYNQMP_UART_SR_RXFULL 0x00000004U /* RX FIFO full */
#define ZYNQMP_UART_SR_RXEMPTY 0x00000002U /* RX FIFO empty */
/* UART Configuration */
#define UART_MASTER_CLOCK 100000000
#define DEBUG_UART_BASE ZYNQMP_UART1_BASE
#define DEBUG_UART_BAUD 115200
#define DEBUG_UART_DIV 4
static void uart_init(void)
{
/* Enable TX/RX and Reset */
ZYNQMP_UART_CR = (ZYNQMP_UART_CR_TX_EN | ZYNQMP_UART_CR_RX_EN |
ZYNQMP_UART_CR_TXRST | ZYNQMP_UART_CR_RXRST);
/* 8-bits, no parity */
ZYNQMP_UART_MR = ZYNQMP_UART_MR_PARITY_NONE;
/* baud (115200) = master clk / (BR_GEN * (BR_DIV + 1)) */
ZYNQMP_UART_BR_DIV = DEBUG_UART_DIV;
ZYNQMP_UART_BR_GEN = UART_MASTER_CLOCK / DEBUG_UART_BAUD / (DEBUG_UART_DIV+1);
}
static void uart_write(const char* buf, uint32_t sz)
{
uint32_t pos = 0;
while (sz-- > 0) {
while (ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXFULL);
ZYNQMP_UART_SR = (uint32_t)buf[pos++];
}
/* Wait till TX Fifo is empty */
while (!(ZYNQMP_UART_SR & ZYNQMP_UART_SR_TXEMPTY));
}
#endif /* DEBUG_UART */
#ifdef USE_XQSPIPSU
/* Xilinx BSP Driver */
/* Aligned page data buffer for DMA */
#ifdef __ICCARM__
#pragma data_alignment = 32
static uint8_t pageData[FLASH_PAGE_SIZE];
#pragma data_alignment = 4
#else
static uint8_t pageData[FLASH_PAGE_SIZE] __attribute__ ((aligned(32)));;
#endif
static int qspi_transfer(QspiDev_t* pDev,
const uint8_t* cmdData, uint32_t cmdSz,
const uint8_t* txData, uint32_t txSz,
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
uint32_t mode)
{
int ret;
XQspiPsu_Msg msgs[4];
uint32_t msgCnt = 0, busWidth = XQSPIPSU_SELECT_MODE_SPI;
uint8_t* rxPtr = rxData;
/* Chip Select */
if (pDev->cs == GQSPI_GEN_FIFO_CS_BOTH) {
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
XQSPIPSU_SELECT_FLASH_CS_BOTH, XQSPIPSU_SELECT_FLASH_BUS_BOTH);
}
else if (pDev->cs == GQSPI_GEN_FIFO_CS_LOWER) {
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
XQSPIPSU_SELECT_FLASH_CS_LOWER, XQSPIPSU_SELECT_FLASH_BUS_LOWER);
}
else {
XQspiPsu_SelectFlash(&pDev->qspiPsuInst,
XQSPIPSU_SELECT_FLASH_CS_UPPER, XQSPIPSU_SELECT_FLASH_BUS_UPPER);
}
/* Transfer Bus Width - only applies to read/write command */
if (mode == GQSPI_GEN_FIFO_MODE_QSPI)
busWidth = XQSPIPSU_SELECT_MODE_QUADSPI;
else if (mode == GQSPI_GEN_FIFO_MODE_DSPI)
busWidth = XQSPIPSU_SELECT_MODE_DUALSPI;
/* Command */
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].TxBfrPtr = (uint8_t*)cmdData;
msgs[msgCnt].ByteCount = cmdSz;
msgs[msgCnt].BusWidth = XQSPIPSU_SELECT_MODE_SPI;
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_TX;
msgCnt++;
/* TX */
if (txData) {
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].TxBfrPtr = (uint8_t*)txData;
msgs[msgCnt].ByteCount = txSz;
msgs[msgCnt].BusWidth = busWidth;
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_TX;
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
msgs[msgCnt].Flags |= XQSPIPSU_MSG_FLAG_STRIPE;
msgCnt++;
}
/* Dummy */
if (dummySz > 0) {
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].ByteCount = dummySz;
msgs[msgCnt].BusWidth = busWidth;
msgCnt++;
}
/* RX */
if (rxData) {
/* If RX pointer is not 32 byte aligned then use temp page data buffer */
if (((size_t)rxPtr % 32) != 0)
rxPtr = pageData;
if (rxSz > (uint32_t)sizeof(pageData))
rxSz = (uint32_t)sizeof(pageData);
memset(&msgs[msgCnt], 0, sizeof(XQspiPsu_Msg));
msgs[msgCnt].RxBfrPtr = rxPtr;
msgs[msgCnt].ByteCount = rxSz;
msgs[msgCnt].BusWidth = busWidth;
msgs[msgCnt].Flags = XQSPIPSU_MSG_FLAG_RX;
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
msgs[msgCnt].Flags |= XQSPIPSU_MSG_FLAG_STRIPE;
msgCnt++;
}
ret = XQspiPsu_PolledTransfer(&pDev->qspiPsuInst, msgs, msgCnt);
if (ret < 0) {
wolfBoot_printf("QSPI Transfer failed! %d\n", ret);
return GQSPI_CODE_FAILED;
}
/* if unaligned read, return results */
if (rxData && rxPtr == pageData) {
memcpy(rxData, pageData, rxSz);
}
return GQSPI_CODE_SUCCESS;
}
#elif defined(USE_QNX)
/* QNX QSPI driver */
static int qspi_transfer(QspiDev_t* pDev,
const uint8_t* cmdData, uint32_t cmdSz,
const uint8_t* txData, uint32_t txSz,
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
uint32_t mode)
{
int ret;
qspi_buf cmd_buf;
qspi_buf tx_buf;
qspi_buf rx_buf;
uint32_t flags;
flags = TRANSFER_FLAG_DEBUG;
if (mode == GQSPI_GEN_FIFO_MODE_QSPI)
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_QSPI);
else if (mode == GQSPI_GEN_FIFO_MODE_DSPI)
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_DSPI);
else
flags |= TRANSFER_FLAG_MODE(TRANSFER_FLAG_MODE_SPI);
if (pDev->stripe & GQSPI_GEN_FIFO_STRIPE)
flags |= TRANSFER_FLAG_STRIPE;
if (pDev->cs & GQSPI_GEN_FIFO_CS_LOWER)
flags |= TRANSFER_FLAG_LOW_DB | TRANSFER_FLAG_CS(TRANSFER_FLAG_CS_LOW);
if (pDev->cs & GQSPI_GEN_FIFO_CS_UPPER)
flags |= TRANSFER_FLAG_UP_DB | TRANSFER_FLAG_CS(TRANSFER_FLAG_CS_UP);
memset(&cmd_buf, 0, sizeof(cmd_buf));
cmd_buf.offset = (uint8_t*)cmdData;
cmd_buf.len = cmdSz;
memset(&tx_buf, 0, sizeof(tx_buf));
tx_buf.offset = (uint8_t*)txData;
tx_buf.len = txSz;
memset(&rx_buf, 0, sizeof(rx_buf));
rx_buf.offset = rxData;
rx_buf.len = rxSz;
/* Send the TX buffer */
ret = xzynq_qspi_transfer(pDev->qnx,
txData ? &tx_buf : NULL,
rxData ? &rx_buf : NULL,
&cmd_buf, flags);
if (ret < 0) {
wolfBoot_printf("QSPI Transfer failed! %d\n", ret);
return GQSPI_CODE_FAILED;
}
return GQSPI_CODE_SUCCESS;
}
#else
/* QSPI bare-metal driver */
static inline int qspi_isr_wait(uint32_t wait_mask, uint32_t wait_val)
{
uint32_t timeout = 0;
while ((GQSPI_ISR & wait_mask) == wait_val &&
++timeout < GQSPI_TIMEOUT_TRIES);
if (timeout == GQSPI_TIMEOUT_TRIES) {
return -1;
}
return 0;
}
static int qspi_gen_fifo_write(uint32_t reg_genfifo)
{
/* wait until the gen FIFO is not full to write */
if (qspi_isr_wait(GQSPI_IXR_GEN_FIFO_NOT_FULL, 0)) {
return GQSPI_CODE_TIMEOUT;
}
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
wolfBoot_printf("FifoEntry=%08x\n", reg_genfifo);
#endif
GQSPI_GEN_FIFO = reg_genfifo;
return GQSPI_CODE_SUCCESS;
}
static int gspi_fifo_tx(const uint8_t* data, uint32_t sz)
{
uint32_t tmp32, txSz;
uint8_t* txData = (uint8_t*)&tmp32;
while (sz > 0) {
/* Wait for TX FIFO not full */
if (qspi_isr_wait(GQSPI_IXR_TX_FIFO_FULL, GQSPI_IXR_TX_FIFO_FULL)) {
return GQSPI_CODE_TIMEOUT;
}
/* Write data */
txSz = sz;
if (txSz > GQSPI_FIFO_WORD_SZ)
txSz = GQSPI_FIFO_WORD_SZ;
tmp32 = 0;
memcpy(txData, data, txSz);
sz -= txSz;
data += txSz;
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
wolfBoot_printf("TXD=%08x\n", tmp32);
#endif
GQSPI_TXD = tmp32;
}
return GQSPI_CODE_SUCCESS;
}
static int gspi_fifo_rx(uint8_t* data, uint32_t sz, uint32_t discardSz)
{
uint32_t tmp32, rxSz;
uint8_t* rxData = (uint8_t*)&tmp32;
while (sz > 0) {
/* Wait for RX FIFO not empty */
if (qspi_isr_wait(GQSPI_IXR_RX_FIFO_NOT_EMPTY, 0)) {
return GQSPI_CODE_TIMEOUT;
}
/* Read data */
tmp32 = GQSPI_RXD;
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 3
wolfBoot_printf("RXD=%08x\n", tmp32);
if (discardSz > 0)
wolfBoot_printf("Discard %d\n", discardSz);
#endif
if (discardSz >= GQSPI_FIFO_WORD_SZ) {
discardSz -= GQSPI_FIFO_WORD_SZ;
continue;
}
rxSz = sz;
if (rxSz > GQSPI_FIFO_WORD_SZ)
rxSz = GQSPI_FIFO_WORD_SZ;
if (rxSz > discardSz) {
rxSz -= discardSz;
sz -= discardSz;
}
memcpy(data, rxData + discardSz, rxSz);
discardSz = 0;
sz -= rxSz;
data += rxSz;
}
return GQSPI_CODE_SUCCESS;
}
static int qspi_cs(QspiDev_t* pDev, int csAssert)
{
uint32_t reg_genfifo;
/* Select slave bus, bank, mode and cs clocks */
reg_genfifo = (pDev->bus & GQSPI_GEN_FIFO_BUS_MASK);
reg_genfifo |= GQSPI_GEN_FIFO_MODE_SPI;
if (csAssert) {
reg_genfifo |= (pDev->cs & GQSPI_GEN_FIFO_CS_MASK);
}
reg_genfifo |= GQSPI_GEN_FIFO_IMM(GQSPI_CS_ASSERT_CLOCKS);
return qspi_gen_fifo_write(reg_genfifo);
}
static int qspi_transfer(QspiDev_t* pDev,
const uint8_t* cmdData, uint32_t cmdSz,
const uint8_t* txData, uint32_t txSz,
uint8_t* rxData, uint32_t rxSz, uint32_t dummySz,
uint32_t mode)
{
int ret = GQSPI_CODE_SUCCESS;
uint32_t reg_genfifo, xferSz;
GQSPI_EN = 1; /* Enable device */
qspi_cs(pDev, 1); /* Select slave */
/* Setup bus slave selection */
reg_genfifo = ((pDev->bus & GQSPI_GEN_FIFO_BUS_MASK) |
(pDev->cs & GQSPI_GEN_FIFO_CS_MASK) |
GQSPI_GEN_FIFO_MODE_SPI);
/* Cmd Data */
xferSz = cmdSz;
while (ret == GQSPI_CODE_SUCCESS && cmdData && xferSz > 0) {
/* Enable TX and send command inline */
reg_genfifo |= GQSPI_GEN_FIFO_TX;
reg_genfifo &= ~(GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_IMM_MASK);
reg_genfifo |= GQSPI_GEN_FIFO_IMM(*cmdData); /* IMM is data */
/* Submit general FIFO operation */
ret = qspi_gen_fifo_write(reg_genfifo);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("on line %d: error %d\n", __LINE__, ret);
break;
}
/* offset size and buffer */
xferSz--;
cmdData++;
}
/* Set desired data mode and stripe */
reg_genfifo |= (mode & GQSPI_GEN_FIFO_MODE_MASK);
reg_genfifo |= (pDev->stripe & GQSPI_GEN_FIFO_STRIPE);
/* TX Data */
while (ret == GQSPI_CODE_SUCCESS && txData && txSz > 0) {
xferSz = txSz;
/* Enable TX */
reg_genfifo &= ~(GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_IMM_MASK |
GQSPI_GEN_FIFO_EXP_MASK);
reg_genfifo |= (GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_DATA_XFER);
if (xferSz > GQSPI_GEN_FIFO_IMM_MASK) {
/* Use exponent mode */
xferSz = 256; /* 2 ^ 8 = 256 */
reg_genfifo |= GQSPI_GEN_FIFO_EXP_MASK;
reg_genfifo |= GQSPI_GEN_FIFO_IMM(8); /* IMM is exponent */
}
else {
reg_genfifo |= GQSPI_GEN_FIFO_IMM(xferSz); /* IMM is length */
}
/* Submit general FIFO operation */
ret = qspi_gen_fifo_write(reg_genfifo);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("on line %d: error %d\n", __LINE__, ret);
}
/* Fill FIFO */
ret = gspi_fifo_tx(txData, xferSz);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("on line %d: error %d\n", __LINE__, ret);
break;
}
/* offset size and buffer */
txSz -= xferSz;
txData += xferSz;
}
/* Dummy operations */
if (ret == GQSPI_CODE_SUCCESS && dummySz) {
/* Send dummy clocks (Disable TX & RX) */
reg_genfifo &= ~(GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_RX |
GQSPI_GEN_FIFO_IMM_MASK | GQSPI_GEN_FIFO_EXP_MASK);
/* IMM is number of dummy clock cycles */
reg_genfifo |= GQSPI_GEN_FIFO_IMM(dummySz);
ret = qspi_gen_fifo_write(reg_genfifo); /* Submit FIFO Dummy Op */
if (rxSz > 0) {
/* Convert dummy bits to bytes */
dummySz = (dummySz + 7) / 8;
/* Adjust rxSz for dummy bytes */
rxSz += dummySz;
/* round up by FIFO Word Size */
rxSz = (((rxSz + GQSPI_FIFO_WORD_SZ - 1) / GQSPI_FIFO_WORD_SZ) *
GQSPI_FIFO_WORD_SZ);
}
}
/* RX Data */
while (ret == GQSPI_CODE_SUCCESS && rxData && rxSz > 0) {
xferSz = rxSz;
/* Enable RX */
reg_genfifo &= ~(GQSPI_GEN_FIFO_TX | GQSPI_GEN_FIFO_IMM_MASK |
GQSPI_GEN_FIFO_EXP_MASK);
reg_genfifo |= (GQSPI_GEN_FIFO_RX | GQSPI_GEN_FIFO_DATA_XFER);
if (xferSz > GQSPI_GEN_FIFO_IMM_MASK) {
/* Use exponent mode */
xferSz = 256; /* 2 ^ 8 = 256 */
reg_genfifo |= GQSPI_GEN_FIFO_EXP_MASK;
reg_genfifo |= GQSPI_GEN_FIFO_IMM(8); /* IMM is exponent */
}
else {
reg_genfifo |= GQSPI_GEN_FIFO_IMM(xferSz); /* IMM is length */
}
/* Submit general FIFO operation */
ret = qspi_gen_fifo_write(reg_genfifo);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("on line %d: error %d\n", __LINE__, ret);
break;
}
/* Read FIFO */
ret = gspi_fifo_rx(rxData, xferSz-dummySz, dummySz);
if (ret != GQSPI_CODE_SUCCESS) {
wolfBoot_printf("on line %d: error %d\n", __LINE__, ret);
}
/* offset size and buffer */
rxSz -= xferSz;
rxData += (xferSz - dummySz);
dummySz = 0; /* only first RX */
}
qspi_cs(pDev, 0); /* Deselect Slave */
GQSPI_EN = 0; /* Disable Device */
return ret;
}
#endif
static int qspi_flash_read_id(QspiDev_t* dev, uint8_t* id, uint32_t idSz)
{
int ret;
uint8_t cmd[20]; /* size multiple of uint32_t */
uint8_t status;
memset(cmd, 0, sizeof(cmd));
cmd[0] = MULTI_IO_READ_ID_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, cmd, sizeof(cmd), 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Read FlashID %s: Ret %d, %02x %02x %02x\n",
(dev->cs & GQSPI_GEN_FIFO_CS_LOWER) ? "Lower" : "Upper",
ret, cmd[0], cmd[1], cmd[2]);
if (ret == GQSPI_CODE_SUCCESS && id) {
if (idSz > sizeof(cmd))
idSz = sizeof(cmd);
memcpy(id, cmd, idSz);
}
qspi_status(dev, &status);
if (status & WRITE_EN_MASK) {
wolfBoot_printf("Write disabled: status %02x\n", status);
ret = -1;
}
return ret;
}
static int qspi_write_enable(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
uint8_t status;
memset(cmd, 0, sizeof(cmd));
cmd[0] = WRITE_ENABLE_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Write Enable: Ret %d\n", ret);
ret = qspi_wait_ready(dev);
wolfBoot_printf("wait ready: Ret %d\n", ret);
ret = qspi_wait_we(dev);
wolfBoot_printf("wait we: Ret %d\n", ret);
qspi_status(dev, &status);
if ((status & WRITE_EN_MASK) == 0) {
wolfBoot_printf("status %02x\n", status);
ret = -1;
}
return ret;
}
static int qspi_write_disable(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = WRITE_DISABLE_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Write Disable: Ret %d\n", ret);
return ret;
}
static int qspi_flash_status(QspiDev_t* dev, uint8_t* status)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = READ_FSR_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, cmd, 2, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Flash Status: Ret %d Cmd %02x %02x\n", ret, cmd[0], cmd[1]);
if (ret == GQSPI_CODE_SUCCESS && status) {
if (dev->stripe) {
cmd[0] &= cmd[1];
}
*status = cmd[0];
}
return ret;
}
static int qspi_status(QspiDev_t* dev, uint8_t* status)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = READ_SR_CMD;
ret = qspi_transfer(&mDev, cmd, 1, NULL, 0, cmd, 2, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Status: Ret %d Cmd %02x %02x\n", ret, cmd[0], cmd[1]);
if (ret == GQSPI_CODE_SUCCESS && status) {
if (dev->stripe) {
cmd[0] &= cmd[1];
}
*status = cmd[0];
}
return ret;
}
static int qspi_wait_ready(QspiDev_t* dev)
{
int ret;
uint32_t timeout;
uint8_t status = 0;
timeout = 0;
while (++timeout < QSPI_FLASH_READY_TRIES) {
ret = qspi_flash_status(dev, &status);
if (ret == GQSPI_CODE_SUCCESS && (status & FLASH_READY_MASK)) {
return ret;
}
}
wolfBoot_printf("Flash Ready Timeout!\n");
return GQSPI_CODE_TIMEOUT;
}
static int qspi_wait_we(QspiDev_t* dev)
{
int ret;
uint32_t timeout;
uint8_t status = 0;
timeout = 0;
while (++timeout < QSPI_FLASH_READY_TRIES) {
ret = qspi_status(dev, &status);
if (ret == GQSPI_CODE_SUCCESS &&
(status & WRITE_EN_MASK)
) {
return ret;
}
}
wolfBoot_printf("Flash WE Timeout!\n");
return GQSPI_CODE_TIMEOUT;
}
#if GQPI_USE_4BYTE_ADDR == 1
static int qspi_enter_4byte_addr(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = ENTER_4B_ADDR_MODE_CMD;
(void)qspi_wait_ready(&mDev); /* Wait for not busy */
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Enter 4-byte address mode: Ret %d\n", ret);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
}
qspi_write_disable(&mDev);
}
return ret;
}
static int qspi_exit_4byte_addr(QspiDev_t* dev)
{
int ret;
uint8_t cmd[4]; /* size multiple of uint32_t */
memset(cmd, 0, sizeof(cmd));
cmd[0] = EXIT_4B_ADDR_MODE_CMD;
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_transfer(dev, cmd, 1, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Exit 4-byte address mode: Ret %d\n", ret);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
}
qspi_write_disable(&mDev);
}
return ret;
}
#endif
/* QSPI functions */
void qspi_init(uint32_t cpu_clock, uint32_t flash_freq)
{
int ret;
uint32_t reg_cfg;
uint8_t id_low[4];
#if GQPI_USE_DUAL_PARALLEL == 1
uint8_t id_hi[4];
#endif
uint32_t timeout;
#ifdef USE_XQSPIPSU
XQspiPsu_Config *QspiConfig;
#endif
(void)cpu_clock;
(void)flash_freq;
memset(&mDev, 0, sizeof(mDev));
#ifdef USE_XQSPIPSU
/* Xilinx BSP Driver */
QspiConfig = XQspiPsu_LookupConfig(QSPI_DEVICE_ID);
if (QspiConfig == NULL) {
wolfBoot_printf("QSPI config lookup failed\n");
return;
}
ret = XQspiPsu_CfgInitialize(&mDev.qspiPsuInst, QspiConfig, QspiConfig->BaseAddress);
if (ret != 0) {
wolfBoot_printf("QSPI config init failed\n");
return;
}
XQspiPsu_SetOptions(&mDev.qspiPsuInst, XQSPIPSU_MANUAL_START_OPTION);
XQspiPsu_SetClkPrescaler(&mDev.qspiPsuInst, QSPI_CLK_PRESACALE);
#elif defined(USE_QNX)
/* QNX QSPI driver */
mDev.qnx = xzynq_qspi_open();
if (mDev.qnx == NULL) {
wolfBoot_printf("QSPI failed to open\n");
return;
}
#else
/* QSPI bare-metal driver */
/* Disable Linear Mode in case FSBL enabled it */
LQSPI_EN = 0;
/* Select Generic Quad-SPI */
GQSPI_SEL = 1;
/* Clear and disable interrupts */
reg_cfg = GQSPI_ISR;
GQSPI_ISR |= GQSPI_ISR_WR_TO_CLR_MASK; /* Clear poll timeout counter interrupt */
QSPIDMA_DST_I_STS = QSPIDMA_DST_I_STS; /* clear all active interrupts */
QSPIDMA_DST_STS |= QSPIDMA_DST_STS_WTC; /* mark outstanding DMA's done */
GQSPI_IDR = GQSPI_IXR_ALL_MASK; /* disable interrupts */
QSPIDMA_DST_I_STS = QSPIDMA_DST_I_STS_ALL_MASK; /* disable interrupts */
/* Reset FIFOs */
if (GQSPI_ISR & GQSPI_IXR_RX_FIFO_EMPTY) {
GQSPI_FIFO_CTRL |= (GQSPI_FIFO_CTRL_RST_TX_FIFO | GQSPI_FIFO_CTRL_RST_RX_FIFO);
}
if (reg_cfg & GQSPI_IXR_RX_FIFO_EMPTY) {
GQSPI_FIFO_CTRL |= GQSPI_FIFO_CTRL_RST_RX_FIFO;
}
GQSPI_EN = 0; /* Disable device */
/* Initialize clock divisor, write protect hold and start mode */
reg_cfg = GQSPI_CFG_MODE_EN_IO; /* Use I/O Transfer Mode */
reg_cfg |= GQSPI_CFG_BAUD_RATE_DIV(GQSPI_CLK_DIV); /* Clock Divider */
reg_cfg |= GQSPI_CFG_WP_HOLD; /* Use WP Hold */
reg_cfg |= GQSPI_CFG_START_GEN_FIFO; /* Start GFIFO command execution */
reg_cfg &= ~(GQSPI_CFG_CLK_POL | GQSPI_CFG_CLK_PH); /* Use POL=0,PH=0 */
GQSPI_CFG = reg_cfg;
/* use tap delay bypass < 40MHz SPI clock */
IOU_TAPDLY_BYPASS |= IOU_TAPDLY_BYPASS_LQSPI_RX;
GQSPI_LPBK_DLY_ADJ = 0;
QSPI_DATA_DLY_ADJ = 0;
/* Initialize hardware parameters for Threshold and Interrupts */
GQSPI_TX_THRESH = 1;
GQSPI_RX_THRESH = 1;
GQSPI_GF_THRESH = 16;
/* Reset DMA */
QSPIDMA_DST_CTRL = QSPIDMA_DST_CTRL_DEF;
QSPIDMA_DST_CTRL2 = QSPIDMA_DST_CTRL2_DEF;
/* Interrupts unmask and enable */
GQSPI_IMR = GQSPI_IXR_ALL_MASK;
GQSPI_IER = GQSPI_IXR_ALL_MASK;
GQSPI_EN = 1; /* Enable Device */
#endif /* USE_QNX */
(void)reg_cfg;
/* ------ Flash Read ID (retry) ------ */
timeout = 0;
while (++timeout < QSPI_FLASH_READY_TRIES) {
/* Slave Select - lower chip */
mDev.mode = GQSPI_GEN_FIFO_MODE_SPI;
mDev.bus = GQSPI_GEN_FIFO_BUS_LOW;
mDev.cs = GQSPI_GEN_FIFO_CS_LOWER;
ret = qspi_flash_read_id(&mDev, id_low, sizeof(id_low));
if (ret != GQSPI_CODE_SUCCESS) {
continue;
}
#if GQPI_USE_DUAL_PARALLEL == 1
/* Slave Select - upper chip */
mDev.mode = GQSPI_GEN_FIFO_MODE_SPI;
mDev.bus = GQSPI_GEN_FIFO_BUS_UP;
mDev.cs = GQSPI_GEN_FIFO_CS_UPPER;
ret = qspi_flash_read_id(&mDev, id_hi, sizeof(id_hi));
if (ret != GQSPI_CODE_SUCCESS) {
continue;
}
/* ID's for upper and lower must match */
if ((id_hi[0] == 0 || id_hi[0] == 0xFF) ||
(id_hi[0] != id_low[0] &&
id_hi[1] != id_low[1] &&
id_hi[2] != id_low[2]))
{
wolfBoot_printf("Flash ID error!\n");
continue;
}
#endif
break; /* success */
}
/* Slave Select */
mDev.mode = GQSPI_QSPI_MODE;
#if GQPI_USE_DUAL_PARALLEL == 1
mDev.bus = GQSPI_GEN_FIFO_BUS_BOTH;
mDev.cs = GQSPI_GEN_FIFO_CS_BOTH;
mDev.stripe = GQSPI_GEN_FIFO_STRIPE;
#endif
#if GQPI_USE_4BYTE_ADDR == 1
/* Enter 4-byte address mode */
ret = qspi_enter_4byte_addr(&mDev);
if (ret != GQSPI_CODE_SUCCESS)
return;
#endif
#ifdef TEST_FLASH
test_flash(&mDev);
#endif
}
void zynq_init(uint32_t cpu_clock)
{
qspi_init(cpu_clock, 0);
}
void zynq_exit(void)
{
int ret;
#if GQPI_USE_4BYTE_ADDR == 1
/* Exit 4-byte address mode */
ret = qspi_exit_4byte_addr(&mDev);
if (ret != GQSPI_CODE_SUCCESS)
return;
#endif
#ifdef USE_QNX
if (mDev.qnx) {
xzynq_qspi_close(mDev.qnx);
mDev.qnx = NULL;
}
#endif
(void)ret;
}
/* public HAL functions */
void hal_init(void)
{
uint32_t cpu_freq = 0;
#ifdef DEBUG_ZYNQ
const char* bootMsg = "\nwolfBoot Secure Boot\n";
#ifdef DEBUG_UART
uart_init();
uart_write(bootMsg, strlen(bootMsg));
#endif
wolfBoot_printf(bootMsg);
#endif /* DEBUG_ZYNQ */
/* This is only allowed for EL-3 */
//asm volatile("msr cntfrq_el0, %0" : : "r" (cpu_freq) : "memory");
zynq_init(cpu_freq);
}
void hal_prepare_boot(void)
{
zynq_exit();
}
/* Flash functions must be relocated to RAM for execution */
int RAMFUNCTION hal_flash_write(uintptr_t address, const uint8_t *data, int len)
{
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
}
void RAMFUNCTION hal_flash_lock(void)
{
}
int RAMFUNCTION hal_flash_erase(uintptr_t address, int len)
{
return 0;
}
/* Xilinx Write uses SPI mode and Page Program 0x02 */
/* Issues using write with QSPI mode */
int RAMFUNCTION ext_flash_write(uintptr_t address, const uint8_t *data, int len)
{
int ret = 0;
uint8_t cmd[8]; /* size multiple of uint32_t */
uint32_t xferSz, page, pages, idx = 0;
uintptr_t addr;
/* write by page */
pages = ((len + (FLASH_PAGE_SIZE-1)) / FLASH_PAGE_SIZE);
for (page = 0; page < pages; page++) {
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
xferSz = len;
if (xferSz > FLASH_PAGE_SIZE)
xferSz = FLASH_PAGE_SIZE;
addr = address + (page * FLASH_PAGE_SIZE);
if (mDev.stripe) {
/* For dual parallel the address divide by 2 */
addr /= 2;
}
/* ------ Write Flash (page at a time) ------ */
memset(cmd, 0, sizeof(cmd));
cmd[idx++] = PAGE_PROG_CMD;
#if GQPI_USE_4BYTE_ADDR == 1
cmd[idx++] = ((addr >> 24) & 0xFF);
#endif
cmd[idx++] = ((addr >> 16) & 0xFF);
cmd[idx++] = ((addr >> 8) & 0xFF);
cmd[idx++] = ((addr >> 0) & 0xFF);
ret = qspi_transfer(&mDev, cmd, idx,
(const uint8_t*)(data + (page * FLASH_PAGE_SIZE)),
xferSz, NULL, 0, 0, GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Flash Page %d Write: Ret %d\n", page, ret);
if (ret != GQSPI_CODE_SUCCESS)
break;
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
if (ret != GQSPI_CODE_SUCCESS) {
break;
}
qspi_write_disable(&mDev);
}
}
return ret;
}
#if GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_QSPI && GQPI_USE_4BYTE_ADDR == 1
#define FLASH_READ_CMD QUAD_READ_4B_CMD
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_DSPI && GQPI_USE_4BYTE_ADDR == 1
#define FLASH_READ_CMD DUAL_READ_4B_CMD
#elif GQPI_USE_4BYTE_ADDR == 1
#define FLASH_READ_CMD FAST_READ_4B_CMD
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_QSPI
#define FLASH_READ_CMD QUAD_READ_CMD
#elif GQSPI_QSPI_MODE == GQSPI_GEN_FIFO_MODE_DSPI
#define FLASH_READ_CMD DUAL_READ_CMD
#else
#define FLASH_READ_CMD FAST_READ_CMD
#endif
int RAMFUNCTION ext_flash_read(uintptr_t address, uint8_t *data, int len)
{
int ret;
uint8_t cmd[8]; /* size multiple of uint32_t */
uint32_t idx = 0;
if (mDev.stripe) {
/* For dual parallel the address divide by 2 */
address /= 2;
}
/* ------ Read Flash ------ */
memset(cmd, 0, sizeof(cmd));
cmd[idx++] = FLASH_READ_CMD;
#if GQPI_USE_4BYTE_ADDR == 1
cmd[idx++] = ((address >> 24) & 0xFF);
#endif
cmd[idx++] = ((address >> 16) & 0xFF);
cmd[idx++] = ((address >> 8) & 0xFF);
cmd[idx++] = ((address >> 0) & 0xFF);
ret = qspi_transfer(&mDev, cmd, idx, NULL, 0, data, len, GQSPI_DUMMY_READ,
mDev.mode);
#if defined(DEBUG_ZYNQ) && DEBUG_ZYNQ >= 2
wolfBoot_printf("Flash Read: Ret %d\r\n", ret);
#endif
return ret;
}
/* Issues a sector erase based on flash address */
/* Assumes len is not > sector size */
int RAMFUNCTION ext_flash_erase(uintptr_t address, int len)
{
int ret;
uint8_t cmd[8]; /* size multiple of uint32_t */
uint32_t idx = 0;
if (mDev.stripe) {
/* For dual parallel the address divide by 2 */
address /= 2;
}
ret = qspi_write_enable(&mDev);
if (ret == GQSPI_CODE_SUCCESS) {
/* ------ Erase Flash ------ */
memset(cmd, 0, sizeof(cmd));
cmd[idx++] = SEC_ERASE_CMD;
#if GQPI_USE_4BYTE_ADDR == 1
cmd[idx++] = ((address >> 24) & 0xFF);
#endif
cmd[idx++] = ((address >> 16) & 0xFF);
cmd[idx++] = ((address >> 8) & 0xFF);
cmd[idx++] = ((address >> 0) & 0xFF);
ret = qspi_transfer(&mDev, cmd, idx, NULL, 0, NULL, 0, 0,
GQSPI_GEN_FIFO_MODE_SPI);
wolfBoot_printf("Flash Erase: Ret %d\n", ret);
if (ret == GQSPI_CODE_SUCCESS) {
ret = qspi_wait_ready(&mDev); /* Wait for not busy */
}
qspi_write_disable(&mDev);
}
return ret;
}
void RAMFUNCTION ext_flash_lock(void)
{
}
void RAMFUNCTION ext_flash_unlock(void)
{
}
#ifdef MMU
void* hal_get_dts_address(void)
{
return (void*)WOLFBOOT_DTS_BOOT_ADDRESS;
}
#endif
#ifdef TEST_FLASH
#define TEST_ADDRESS 0x2800000 /* 40MB */
static int test_flash(QspiDev_t* dev)
{
int ret;
uint32_t i;
uint8_t pageData[FLASH_PAGE_SIZE];
#ifndef TEST_FLASH_READONLY
/* Erase sector */
ret = ext_flash_erase(TEST_ADDRESS, WOLFBOOT_SECTOR_SIZE);
wolfBoot_printf("Erase Sector: Ret %d\n", ret);
/* Write Pages */
for (i=0; i<sizeof(pageData); i++) {
pageData[i] = (i & 0xff);
}
ret = ext_flash_write(TEST_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Write Page: Ret %d\n", ret);
#endif /* !TEST_FLASH_READONLY */
/* Read page */
memset(pageData, 0, sizeof(pageData));
ret = ext_flash_read(TEST_ADDRESS, pageData, sizeof(pageData));
wolfBoot_printf("Read Page: Ret %d\n", ret);
wolfBoot_printf("Checking...\n");
/* Check data */
for (i=0; i<sizeof(pageData); i++) {
wolfBoot_printf("check[%3d] %02x\n", i, pageData[i]);
if (pageData[i] != (i & 0xff)) {
wolfBoot_printf("Check Data @ %d failed\n", i);
return GQSPI_CODE_FAILED;
}
}
wolfBoot_printf("Flash Test Passed\n");
return ret;
}
#endif /* TEST_FLASH */