wolfBoot/hal/stm32l5.c

775 lines
23 KiB
C

/* stm32l5.c
*
* Copyright (C) 2021 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include <image.h>
#include <string.h>
#include "stm32l5_partition.h"
/* Assembly helpers */
#define DMB() __asm__ volatile ("dmb")
#define ISB() __asm__ volatile ("isb")
#define DSB() __asm__ volatile ("dsb")
/* STM32 L5 register configuration */
/*!< Memory & Instance aliases and base addresses for Non-Secure/Secure peripherals */
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/*Secure */
#define RCC_BASE (0x50021000) //RM0438 - Table 4
#else
/*Non-Secure */
#define RCC_BASE (0x40021000) //RM0438 - Table 4
#endif
#define FLASH_SECURE_MMAP_BASE (0x0C000000)
#define RCC_CR (*(volatile uint32_t *)(RCC_BASE + 0x00)) //RM0438 - Table 77
#define RCC_CR_PLLRDY (1 << 25) //RM0438 - 9.8.1
#define RCC_CR_PLLON (1 << 24) //RM0438 - 9.8.1
#define RCC_CR_HSEBYP (1 << 18) //RM0438 - 9.8.1
#define RCC_CR_HSERDY (1 << 17) //RM0438 - 9.8.1
#define RCC_CR_HSEON (1 << 16) //RM0438 - 9.8.1
#define RCC_CR_HSIRDY (1 << 10) //RM0438 - 9.8.1
#define RCC_CR_HSION (1 << 8) //RM0438 - 9.8.1
#define RCC_CR_MSIRANGE_SHIFT (4) //RM0438 - 9.8.1
#define RCC_CR_MSIRANGE_11 (11)
#define RCC_CR_MSIRGSEL (1 << 3) //RM0438 - 9.8.1
#define RCC_CR_MSIPLLEN (1 << 2) //RM0438 - 9.8.1
#define RCC_CR_MSIRDY (1 << 1) //RM0438 - 9.8.1
#define RCC_CR_MSION (1 << 0) //RM0438 - 9.8.1
#define RCC_CFGR (*(volatile uint32_t *)(RCC_BASE + 0x08)) //RM0438 - Table 77
/*** APB1&2 PRESCALER ***/
#define RCC_APB_PRESCALER_DIV_NONE 0x0 // 0xx: HCLK not divided
#define RCC_APB_PRESCALER_DIV_2 0x4 // 100: HCLK divided by 2
#define RCC_APB_PRESCALER_DIV_4 0x5 // 101: HCLK divided by 4
#define RCC_APB_PRESCALER_DIV_8 0x6 // 110: HCLK divided by 8
#define RCC_APB_PRESCALER_DIV_16 0x7 // 111: HCLK divided by 16
/*** AHB PRESCALER ***/
#define RCC_AHB_PRESCALER_DIV_NONE 0x0 // 0xxx: SYSCLK not divided
#define RCC_AHB_PRESCALER_DIV_2 0x8 // 1000: SYSCLK divided by 2
#define RCC_AHB_PRESCALER_DIV_4 0x9 // 1001: SYSCLK divided by 4
#define RCC_AHB_PRESCALER_DIV_8 0xA // 1010: SYSCLK divided by 8
#define RCC_AHB_PRESCALER_DIV_16 0xB // 1011: SYSCLK divided by 16
#define RCC_AHB_PRESCALER_DIV_64 0xC // 1100: SYSCLK divided by 64
#define RCC_AHB_PRESCALER_DIV_128 0xD // 1101: SYSCLK divided by 128
#define RCC_AHB_PRESCALER_DIV_256 0xE // 1110: SYSCLK divided by 256
#define RCC_AHB_PRESCALER_DIV_512 0xF // 1111: SYSCLK divided by 512
#define RCC_CFGR_HPRE_SHIFT (0x04)
#define RCC_CFGR_PPRE2_SHIFT (0x0B)
#define RCC_CFGR_PPRE1_SHIFT (0x08)
#define RCC_CFGR_SW_MSI 0x0
#define RCC_CFGR_SW_HSI16 0x1
#define RCC_CFGR_SW_HSE 0x2
#define RCC_CFGR_SW_PLL 0x3
#define RCC_PLLCFGR (*(volatile uint32_t *)(RCC_BASE + 0x0C)) //RM0438 - Table 77
#define RCC_PLLCFGR_PLLP_SHIFT (27)
#define RCC_PLLCFGR_PLLR_SHIFT (25)
#define RCC_PLLCFGR_PLLREN (1 << 24)
#define RCC_PLLCFGR_PLLQ_SHIFT (21)
#define RCC_PLLCFGR_PLLQEN (1 << 20)
#define RCC_PLLCFGR_PLLN_SHIFT (8)
#define RCC_PLLCFGR_PLLM_SHIFT (4)
#define RCC_PLLCFGR_QR_DIV_2 0x0
#define RCC_PLLCFGR_QR_DIV_4 0x1
#define RCC_PLLCFGR_QR_DIV_6 0x2
#define RCC_PLLCFGR_QR_DIV_8 0x3
#define RCC_PLLCFGR_P_DIV_7 0x0
#define RCC_PLLCFGR_P_DIV_17 0x1
#define RCC_PLLCKSELR_PLLSRC_NONE 0x0
#define RCC_PLLCKSELR_PLLSRC_MSI 0x1
#define RCC_PLLCKSELR_PLLSRC_HSI16 0x2
#define RCC_PLLCKSELR_PLLSRC_HSE 0x3
#define RCC_APB1ENR (*(volatile uint32_t *)(RCC_BASE + 0x58))
#define RCC_APB1ENR_PWREN (1 << 28)
#define RCC_APB2ENR (*(volatile uint32_t *)(RCC_BASE + 0x60))
#define RCC_APB2ENR_SYSCFGEN (1 << 0)
/*** PWR ***/
/*!< Memory & Instance aliases and base addresses for Non-Secure/Secure peripherals */
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/*Secure */
#define PWR_BASE (0x50007000) //RM0438 - Table 4
#else
/*Non-Secure */
#define PWR_BASE (0x40007000) //RM0438 - Table 4
#endif
#define PWR_CR1 (*(volatile uint32_t *)(PWR_BASE + 0x00))
#define PWR_CR1_VOS_SHIFT (9)
#define PWR_CR1_VOS_0 (0x0)
#define PWR_CR1_VOS_1 (0x1)
#define PWR_CR1_VOS_2 (0x2)
#define PWR_CR2 (*(volatile uint32_t *)(PWR_BASE + 0x04))
#define PWR_CR2_IOSV (1 << 9)
#define PWR_CR3 (*(volatile uint32_t *)(PWR_BASE + 0x08))
#define PWR_CR3_UCPD_DBDIS (1 << 14)
#define PWR_CR4 (*(volatile uint32_t *)(PWR_BASE + 0x0C))
#define PWR_SR1 (*(volatile uint32_t *)(PWR_BASE + 0x10))
#define PWR_SR2 (*(volatile uint32_t *)(PWR_BASE + 0x14))
#define PWR_SR2_VOSF (1 << 10)
#define SYSCFG_BASE (0x50010000) //RM0438 - Table 4
/*** FLASH ***/
#define SYSCFG_APB2_CLOCK_ER_VAL (1 << 0) //RM0438 - RCC_APB2ENR - SYSCFGEN
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/*Secure*/
#define FLASH_BASE (0x50022000) //RM0438 - Table 4
#define FLASH_KEYR (*(volatile uint32_t *)(FLASH_BASE + 0x0C))
#define FLASH_OPTKEYR (*(volatile uint32_t *)(FLASH_BASE + 0x10))
#define FLASH_SR (*(volatile uint32_t *)(FLASH_BASE + 0x24))
#define FLASH_CR (*(volatile uint32_t *)(FLASH_BASE + 0x2C))
#define FLASH_SECBB1 ((volatile uint32_t *)(FLASH_BASE + 0x80)) /* Array */
#define FLASH_SECBB2 ((volatile uint32_t *)(FLASH_BASE + 0xA0)) /* Array */
#define FLASH_SECBB_NREGS 4 /* Array length for the two above */
#define FLASH_NS_BASE (0x40022000) //RM0438 - Table 4
#define FLASH_NS_KEYR (*(volatile uint32_t *)(FLASH_NS_BASE + 0x08))
#define FLASH_NS_OPTKEYR (*(volatile uint32_t *)(FLASH_NS_BASE + 0x10))
#define FLASH_NS_SR (*(volatile uint32_t *)(FLASH_NS_BASE + 0x20))
#define FLASH_NS_CR (*(volatile uint32_t *)(FLASH_NS_BASE + 0x28))
#else
/* Non-Secure only */
#define FLASH_BASE (0x40022000) //RM0438 - Table 4
#define FLASH_KEYR (*(volatile uint32_t *)(FLASH_BASE + 0x08))
#define FLASH_OPTKEYR (*(volatile uint32_t *)(FLASH_BASE + 0x10))
#define FLASH_SR (*(volatile uint32_t *)(FLASH_BASE + 0x20))
#define FLASH_CR (*(volatile uint32_t *)(FLASH_BASE + 0x28))
#endif
/* Register values (for both secure and non secure registers) */
#define FLASH_SR_EOP (1 << 0)
#define FLASH_SR_OPERR (1 << 1)
#define FLASH_SR_PROGERR (1 << 3)
#define FLASH_SR_WRPERR (1 << 4)
#define FLASH_SR_PGAERR (1 << 5)
#define FLASH_SR_SIZERR (1 << 6)
#define FLASH_SR_PGSERR (1 << 7)
#define FLASH_SR_OPTWERR (1 << 13)
#define FLASH_SR_BSY (1 << 16)
#define FLASH_CR_PG (1 << 0)
#define FLASH_CR_PER (1 << 1)
#define FLASH_CR_MER1 (1 << 2)
#define FLASH_CR_PNB_SHIFT 3
#define FLASH_CR_PNB_MASK 0x7F
#define FLASH_CR_BKER (1 << 11)
#define FLASH_CR_MER2 (1 << 15)
#define FLASH_CR_STRT (1 << 16)
#define FLASH_CR_OPTSTRT (1 << 17)
#define FLASH_CR_EOPIE (1 << 24)
#define FLASH_CR_ERRIE (1 << 25)
#define FLASH_CR_OBL_LAUNCH (1 << 27)
#define FLASH_CR_INV (1 << 29)
#define FLASH_CR_OPTLOCK (1 << 30)
#define FLASH_CR_LOCK (1 << 31)
#define FLASH_ACR (*(volatile uint32_t *)(FLASH_BASE + 0x00))
#define FLASH_ACR_LATENCY_MASK (0x0F)
#define FLASH_OPTR (*(volatile uint32_t *)(FLASH_BASE + 0x40))
#define FLASH_OPTR_DBANK (1 << 22)
#define FLASH_OPTR_SWAP_BANK (1 << 20)
#define FLASHMEM_ADDRESS_SPACE (0x08000000)
#define FLASH_PAGE_SIZE (0x800) /* 2KB */
#define FLASH_BANK2_BASE (0x08040000) /*!< Base address of Flash Bank2 */
#define BOOTLOADER_SIZE (0x8000)
#define FLASH_TOP (0x0807FFFF) /*!< FLASH end address */
#define FLASH_KEY1 (0x45670123)
#define FLASH_KEY2 (0xCDEF89AB)
#define FLASH_OPTKEY1 (0x08192A3BU)
#define FLASH_OPTKEY2 (0x4C5D6E7FU)
/* GPIO*/
#define GPIOD_BASE 0x52020C00
#define GPIOG_BASE 0x52021800
#define GPIOD_SECCFGR (*(volatile uint32_t *)(GPIOD_BASE + 0x30))
#define GPIOG_SECCFGR (*(volatile uint32_t *)(GPIOG_BASE + 0x30))
#define LED_BOOT_PIN (12) //PG12 - Discovery - Green Led
#define LED_USR_PIN (3) //PD3 - Discovery - Red Led
#define RCC_AHB2_CLOCK_ER (*(volatile uint32_t *)(RCC_BASE + 0x4C ))
#define GPIOG_AHB2_CLOCK_ER (1 << 6)
#define GPIOD_AHB2_CLOCK_ER (1 << 3)
#define TRNG_AHB2_CLOCK_ER (1 << 18)
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
#define SCS_BASE (0xE000E000UL)
#define SCB_BASE (SCS_BASE + 0x0D00UL)
#define SCB_SHCSR (*(volatile uint32_t *)(SCB_BASE + 0x24))
#define SCB_SHCSR_SECUREFAULT_EN (1<<19)
#endif
static void RAMFUNCTION flash_set_waitstates(unsigned int waitstates)
{
uint32_t reg = FLASH_ACR;
if ((reg & FLASH_ACR_LATENCY_MASK) != waitstates)
FLASH_ACR = (reg & ~FLASH_ACR_LATENCY_MASK) | waitstates ;
}
static RAMFUNCTION void flash_wait_complete(uint8_t bank)
{
while ((FLASH_SR & FLASH_SR_BSY) == FLASH_SR_BSY)
;
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
while ((FLASH_NS_SR & FLASH_SR_BSY) == FLASH_SR_BSY)
;
#endif
}
static void RAMFUNCTION flash_clear_errors(uint8_t bank)
{
FLASH_SR |= ( FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR |FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR
#if !(defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
|
FLASH_SR_OPTWERR
#endif
) ;
#if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U))
FLASH_NS_SR |= ( FLASH_SR_OPERR | FLASH_SR_PROGERR | FLASH_SR_WRPERR |FLASH_SR_PGAERR | FLASH_SR_SIZERR | FLASH_SR_PGSERR | FLASH_SR_OPTWERR);
#endif
}
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) && (!defined(FLAGS_HOME) || !defined(DISABLE_BACKUP))
static void RAMFUNCTION hal_flash_nonsecure_unlock(void)
{
flash_wait_complete(0);
if ((FLASH_NS_CR & FLASH_CR_LOCK) != 0) {
FLASH_NS_KEYR = FLASH_KEY1;
DMB();
FLASH_NS_KEYR = FLASH_KEY2;
DMB();
while ((FLASH_NS_CR & FLASH_CR_LOCK) != 0)
;
}
}
static void RAMFUNCTION hal_flash_nonsecure_lock(void)
{
flash_wait_complete(0);
if ((FLASH_NS_CR & FLASH_CR_LOCK) == 0)
FLASH_NS_CR |= FLASH_CR_LOCK;
}
static void claim_nonsecure_area(uint32_t address, int len)
{
int page_n, reg_idx;
uint32_t reg;
uint32_t end = address + len;
if (address < FLASH_BANK2_BASE)
return;
if (end > (FLASH_TOP + 1))
return;
flash_wait_complete(0);
flash_clear_errors(0);
while (address < end) {
page_n = (address - FLASH_BANK2_BASE) / FLASH_PAGE_SIZE;
reg_idx = page_n / 32;
int pos;
pos = page_n % 32;
hal_flash_nonsecure_unlock();
FLASH_SECBB2[reg_idx] |= ( 1 << pos);
ISB();
flash_wait_complete(0);
hal_flash_nonsecure_lock();
/* Erase claimed non-secure page, in secure mode */
reg = FLASH_CR & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_PER | FLASH_CR_BKER | FLASH_CR_PG | FLASH_CR_MER1 | FLASH_CR_MER2));
FLASH_CR = reg | ((page_n << FLASH_CR_PNB_SHIFT) | FLASH_CR_PER | FLASH_CR_BKER);
DMB();
FLASH_CR |= FLASH_CR_STRT;
ISB();
flash_wait_complete(0);
address += FLASH_PAGE_SIZE;
}
FLASH_CR &= ~FLASH_CR_PER ;
}
#else
#define claim_nonsecure_area(...) do{}while(0)
#endif
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
static void release_nonsecure_area(void)
{
int i;
for (i = 0; i < FLASH_SECBB_NREGS; i++)
FLASH_SECBB2[i] = 0;
}
#else
#define release_nonsecure_area(...) do{}while(0)
#endif
int RAMFUNCTION hal_flash_write(uint32_t address, const uint8_t *data, int len)
{
int i = 0;
uint32_t *src, *dst;
uint32_t dword[2];
volatile uint32_t *sr, *cr;
cr = &FLASH_CR;
sr = &FLASH_SR;
flash_clear_errors(0);
src = (uint32_t *)data;
dst = (uint32_t *)address;
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
if (address >= FLASH_BANK2_BASE)
claim_nonsecure_area(address, len);
/* Convert into secure address space */
dst = (uint32_t *)((address & (~FLASHMEM_ADDRESS_SPACE)) | FLASH_SECURE_MMAP_BASE);
#endif
while (i < len) {
dword[0] = src[i >> 2];
dword[1] = src[(i >> 2) + 1];
*cr |= FLASH_CR_PG;
dst[i >> 2] = dword[0];
ISB();
dst[(i >> 2) + 1] = dword[1];
flash_wait_complete(0);
if ((*sr & FLASH_SR_EOP) != 0)
*sr |= FLASH_SR_EOP;
*cr &= ~FLASH_CR_PG;
i+=8;
}
release_nonsecure_area();
return 0;
}
void RAMFUNCTION hal_flash_unlock(void)
{
flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_LOCK) != 0) {
FLASH_KEYR = FLASH_KEY1;
DMB();
FLASH_KEYR = FLASH_KEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_lock(void)
{
flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_LOCK) == 0)
FLASH_CR |= FLASH_CR_LOCK;
}
void RAMFUNCTION hal_flash_opt_unlock(void)
{
flash_wait_complete(0);
if ((FLASH_CR & FLASH_CR_OPTLOCK) != 0) {
FLASH_OPTKEYR = FLASH_OPTKEY1;
DMB();
FLASH_OPTKEYR = FLASH_OPTKEY2;
DMB();
while ((FLASH_CR & FLASH_CR_LOCK) != 0)
;
}
}
void RAMFUNCTION hal_flash_opt_lock(void)
{
FLASH_CR |= FLASH_CR_OPTSTRT;
flash_wait_complete(0);
FLASH_CR |= FLASH_CR_OBL_LAUNCH;
if ((FLASH_CR & FLASH_CR_OPTLOCK) == 0)
FLASH_CR |= FLASH_CR_OPTLOCK;
}
int RAMFUNCTION hal_flash_erase(uint32_t address, int len)
{
uint32_t end_address;
uint32_t p;
flash_clear_errors(0);
if (len == 0)
return -1;
if (address < ARCH_FLASH_OFFSET)
return -1;
end_address = address + len - 1;
for (p = address; p < end_address; p += FLASH_PAGE_SIZE) {
uint32_t reg;
uint32_t base;
uint32_t bker = 0;
if ((((FLASH_OPTR & FLASH_OPTR_DBANK) == 0) && (p <= FLASH_TOP)) || (p < FLASH_BANK2_BASE)) {
base = FLASHMEM_ADDRESS_SPACE;
}
else if(p >= (FLASH_BANK2_BASE) && (p <= (FLASH_TOP) ))
{
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/* When in secure mode, skip erasing non-secure pages: will be erased upon claim */
return 0;
#endif
bker = FLASH_CR_BKER;
base = FLASH_BANK2_BASE;
} else {
FLASH_CR &= ~FLASH_CR_PER ;
return 0; /* Address out of range */
}
reg = FLASH_CR & (~((FLASH_CR_PNB_MASK << FLASH_CR_PNB_SHIFT) | FLASH_CR_BKER));
reg |= ((((p - base) >> 11) << FLASH_CR_PNB_SHIFT) | FLASH_CR_PER | bker );
FLASH_CR = reg;
DMB();
FLASH_CR |= FLASH_CR_STRT;
flash_wait_complete(0);
}
/* If the erase operation is completed, disable the associated bits */
FLASH_CR &= ~FLASH_CR_PER ;
return 0;
}
static void clock_pll_off(void)
{
uint32_t reg32;
/* Select MSI as SYSCLK source. */
reg32 = RCC_CFGR;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR = (reg32 | RCC_CFGR_SW_MSI);
DMB();
/* Wait for MSI clock to be selected. */
while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_MSI) {};
/* Turn off PLL */
RCC_CR &= ~RCC_CR_PLLON;
DMB();
}
/*This implementation will setup MSI 48 MHz as PLL Source Mux, PLLCLK as System Clock Source*/
static void clock_pll_on(int powersave)
{
uint32_t reg32;
uint32_t plln, pllm, pllq, pllp, pllr, hpre, apb1pre, apb2pre , flash_waitstates;
RCC_APB2ENR |= RCC_APB2ENR_SYSCFGEN;
RCC_APB1ENR |= RCC_APB1ENR_PWREN;
PWR_CR3 |= PWR_CR3_UCPD_DBDIS;
PWR_CR1 &= ~((1 << 10) | (1 << 9));
PWR_CR1 |= (PWR_CR1_VOS_0 << PWR_CR1_VOS_SHIFT);
/* Delay after setting the voltage scaling */
reg32 = PWR_CR1;
while ((PWR_SR2 & PWR_SR2_VOSF)) {};
while ((RCC_CR & RCC_CR_MSIRDY) == 0) {};
flash_waitstates = 2;
flash_set_waitstates(flash_waitstates);
RCC_CR |= RCC_CR_MSIRGSEL;
reg32 = RCC_CR;
reg32 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4));
reg32 |= (RCC_CR_MSIRANGE_11 << RCC_CR_MSIRANGE_SHIFT);
RCC_CR = reg32;
reg32 = RCC_CR;
DMB();
/* Select clock parameters (CPU Speed = 110 MHz) */
pllm = 12;
plln = 55;
pllp = 7;
pllq = RCC_PLLCFGR_QR_DIV_2;
pllr = RCC_PLLCFGR_QR_DIV_2;
hpre = RCC_AHB_PRESCALER_DIV_NONE;
apb1pre = RCC_APB_PRESCALER_DIV_NONE;
apb2pre = RCC_APB_PRESCALER_DIV_NONE;
flash_waitstates = 5;
RCC_CR &= ~RCC_CR_PLLON;
while ((RCC_CR & RCC_CR_PLLRDY) != 0) {};
/*PLL Clock source selection*/
reg32 = RCC_PLLCFGR ;
reg32 |= RCC_PLLCKSELR_PLLSRC_MSI;
reg32 |= ((pllm-1) << RCC_PLLCFGR_PLLM_SHIFT);
reg32 |= ((plln) << RCC_PLLCFGR_PLLN_SHIFT);
reg32 |= ((pllp) << RCC_PLLCFGR_PLLP_SHIFT);
reg32 |= ((pllq) << RCC_PLLCFGR_PLLQ_SHIFT);
reg32 |= ((pllr) << RCC_PLLCFGR_PLLR_SHIFT);
RCC_PLLCFGR = reg32;
DMB();
RCC_CR |= RCC_CR_PLLON;
while ((RCC_CR & RCC_CR_PLLRDY) == 0) {};
RCC_PLLCFGR |= RCC_PLLCFGR_PLLREN;
flash_set_waitstates(flash_waitstates);
/*step down HPRE before going to >80MHz*/
reg32 = RCC_CFGR ;
reg32 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4));
reg32 |= ((RCC_AHB_PRESCALER_DIV_2) << RCC_CFGR_HPRE_SHIFT) ;
RCC_CFGR = reg32;
DMB();
/* Select PLL as SYSCLK source. */
reg32 = RCC_CFGR;
reg32 &= ~((1 << 1) | (1 << 0));
RCC_CFGR = (reg32 | RCC_CFGR_SW_PLL);
DMB();
/* Wait for PLL clock to be selected. */
while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SW_PLL) {};
/*step-up HPRE to go > 80MHz*/
reg32 = RCC_CFGR ;
reg32 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4));
reg32 |= ((hpre) << RCC_CFGR_HPRE_SHIFT) ;
RCC_CFGR = reg32;
DMB();
/*PRE1 and PRE2 conf*/
reg32 = RCC_CFGR ;
reg32 &= ~((1 << 10) | (1 << 9) | (1 << 8));
reg32 |= ((apb1pre) << RCC_CFGR_PPRE1_SHIFT) ;
reg32 &= ~((1 << 13) | (1 << 12) | (1 << 11));
reg32 |= ((apb2pre) << RCC_CFGR_PPRE2_SHIFT) ;
RCC_CFGR = reg32;
DMB();
}
static void gtzc_init(void)
{
/*configure SRAM1 */
SET_GTZC_MPCBBx_S_VCTR(1,0);
SET_GTZC_MPCBBx_S_VCTR(1,1);
SET_GTZC_MPCBBx_S_VCTR(1,2);
SET_GTZC_MPCBBx_S_VCTR(1,3);
SET_GTZC_MPCBBx_S_VCTR(1,4);
SET_GTZC_MPCBBx_S_VCTR(1,5);
SET_GTZC_MPCBBx_S_VCTR(1,6);
SET_GTZC_MPCBBx_S_VCTR(1,7);
SET_GTZC_MPCBBx_S_VCTR(1,8);
SET_GTZC_MPCBBx_S_VCTR(1,9);
SET_GTZC_MPCBBx_S_VCTR(1,10);
SET_GTZC_MPCBBx_S_VCTR(1,11);
SET_GTZC_MPCBBx_S_VCTR(1,12);
SET_GTZC_MPCBBx_S_VCTR(1,13);
SET_GTZC_MPCBBx_S_VCTR(1,14);
SET_GTZC_MPCBBx_S_VCTR(1,15);
SET_GTZC_MPCBBx_S_VCTR(1,16);
SET_GTZC_MPCBBx_S_VCTR(1,17);
SET_GTZC_MPCBBx_S_VCTR(1,18);
SET_GTZC_MPCBBx_S_VCTR(1,19);
SET_GTZC_MPCBBx_S_VCTR(1,20);
SET_GTZC_MPCBBx_S_VCTR(1,21);
SET_GTZC_MPCBBx_S_VCTR(1,22);
SET_GTZC_MPCBBx_S_VCTR(1,23);
/*configure SRAM2 */
SET_GTZC_MPCBBx_S_VCTR(2,0);
SET_GTZC_MPCBBx_S_VCTR(2,1);
SET_GTZC_MPCBBx_S_VCTR(2,2);
SET_GTZC_MPCBBx_S_VCTR(2,3);
SET_GTZC_MPCBBx_S_VCTR(2,4);
SET_GTZC_MPCBBx_S_VCTR(2,5);
SET_GTZC_MPCBBx_S_VCTR(2,6);
SET_GTZC_MPCBBx_S_VCTR(2,7);
}
#define OPTR_SWAP_BANK (1 << 20)
#define AIRCR *(volatile uint32_t *)(0xE000ED0C)
#define AIRCR_VKEY (0x05FA << 16)
#define AIRCR_SYSRESETREQ (1 << 2)
static void RAMFUNCTION stm32l5_reboot(void)
{
AIRCR = AIRCR_SYSRESETREQ | AIRCR_VKEY;
while(1)
;
}
void RAMFUNCTION hal_flash_dualbank_swap(void)
{
uint32_t cur_opts;
hal_flash_unlock();
hal_flash_opt_unlock();
cur_opts = (FLASH_OPTR & FLASH_OPTR_SWAP_BANK) >> 20;
if (cur_opts)
FLASH_OPTR &= (~FLASH_OPTR_SWAP_BANK);
else
FLASH_OPTR |= FLASH_OPTR_SWAP_BANK;
hal_flash_opt_lock();
hal_flash_lock();
stm32l5_reboot();
}
static void led_unsecure()
{
uint32_t pin;
/*Enable clock for User LED GPIOs */
RCC_AHB2_CLOCK_ER|= GPIOD_AHB2_CLOCK_ER;
RCC_AHB2_CLOCK_ER|= GPIOG_AHB2_CLOCK_ER;
PWR_CR2 |= PWR_CR2_IOSV;
/*Un-secure User LED GPIO pins */
GPIOD_SECCFGR&=~(1<<LED_USR_PIN);
GPIOG_SECCFGR&=~(1<<LED_BOOT_PIN);
}
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
static uint8_t bootloader_copy_mem[BOOTLOADER_SIZE];
static void RAMFUNCTION fork_bootloader(void)
{
uint8_t *data = (uint8_t *) FLASHMEM_ADDRESS_SPACE;
uint32_t dst = FLASH_BANK2_BASE;
uint32_t r = 0, w = 0;
int i;
/* Read the wolfBoot image in RAM */
memcpy(bootloader_copy_mem, data, BOOTLOADER_SIZE);
/* Mass-erase */
hal_flash_unlock();
hal_flash_erase(dst, BOOTLOADER_SIZE);
hal_flash_write(dst, bootloader_copy_mem, BOOTLOADER_SIZE);
hal_flash_lock();
}
#endif
void hal_init(void)
{
TZ_SAU_Setup();
#if defined(DUALBANK_SWAP) && defined(__WOLFBOOT)
if ((FLASH_OPTR & (FLASH_OPTR_SWAP_BANK | FLASH_OPTR_DBANK)) == FLASH_OPTR_DBANK)
fork_bootloader();
#endif
clock_pll_on(0);
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
/* Enable SecureFault handler (HardFault is default) */
SCB_SHCSR |= SCB_SHCSR_SECUREFAULT_EN;
gtzc_init();
#endif
}
void hal_prepare_boot(void)
{
clock_pll_off();
#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
led_unsecure();
#endif
}
#ifdef WOLFCRYPT_SECURE_MODE
#define TRNG_BASE 0x520C0800
#define TRNG_CR *((volatile uint32_t *)(TRNG_BASE + 0x00))
#define TRNG_SR *((volatile uint32_t *)(TRNG_BASE + 0x04))
#define TRNG_DR *((volatile uint32_t *)(TRNG_BASE + 0x08))
#define TRNG_SR_DRDY (1 << 0)
#define TRNG_CR_RNGEN (1 << 2)
void hal_trng_init(void)
{
RCC_AHB2_CLOCK_ER |= TRNG_AHB2_CLOCK_ER;
TRNG_CR |= TRNG_CR_RNGEN;
while ((TRNG_SR & TRNG_SR_DRDY) == 0)
;
}
/* Never used (RNG keeps running when in secure-mode) */
void hal_trng_fini(void)
{
TRNG_CR &= (~TRNG_CR_RNGEN);
}
int hal_trng_get_entropy(unsigned char *out, unsigned len)
{
unsigned i;
uint32_t rand_seed = 0;
for (i = 0; i < len; i += 4)
{
while ((TRNG_SR & TRNG_SR_DRDY) == 0)
;
rand_seed = TRNG_DR;
if ((len - i) < 4)
memcpy(out + i, &rand_seed, len - i);
else
memcpy(out + i, &rand_seed, 4);
}
return rand_seed;
}
#endif