wolfcrypt-jni/examples/provider/CryptoBenchmark.java

696 lines
28 KiB
Java

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import java.security.Provider;
import java.security.SecureRandom;
import java.security.Security;
import java.security.spec.AlgorithmParameterSpec;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import javax.crypto.KeyAgreement;
import java.math.BigInteger;
import javax.crypto.interfaces.DHPublicKey;
import javax.crypto.spec.DHParameterSpec;
import java.security.spec.ECGenParameterSpec;
import java.util.*;
import com.wolfssl.provider.jce.WolfCryptProvider;
import com.wolfssl.wolfcrypt.FeatureDetect;
public class CryptoBenchmark {
/* Constants for benchmark configuration */
private static final int WARMUP_ITERATIONS = 5;
private static final int TEST_ITERATIONS = 5;
private static final int DATA_SIZE = 1024 * 1024;
private static final int AES_BLOCK_SIZE = 16;
private static final int DES3_BLOCK_SIZE = 8;
private static final int GCM_TAG_LENGTH = 128;
private static final int[] RSA_KEY_SIZES = {2048, 3072, 4096};
private static final int RSA_MIN_TIME_SECONDS = 1; /* minimum time to run each test */
private static final int SMALL_MESSAGE_SIZE = 32; /* small message size for RSA ops */
private static final String[] ECC_CURVES = {"secp256r1"}; /* Can add more curves benchmark.c only uses secp256r1 */
private static final int[] DH_KEY_SIZES = {2048}; /* Can add more key sizes benchmark.c only uses 2048 */
private static final String DH_ALGORITHM = "DiffieHellman";
/* Class to store benchmark results */
private static class BenchmarkResult {
/* Result fields */
String provider;
String operation;
double throughput;
/* Constructor */
BenchmarkResult(String provider, String operation, double throughput) {
this.provider = provider;
this.operation = operation;
this.throughput = throughput;
}
}
/* List to store all benchmark results */
private static final List<BenchmarkResult> results = new ArrayList<>();
/* Static AES key buffer */
private static final byte[] STATIC_AES_KEY = new byte[] {
(byte)0x01, (byte)0x23, (byte)0x45, (byte)0x67,
(byte)0x89, (byte)0xab, (byte)0xcd, (byte)0xef,
(byte)0xfe, (byte)0xde, (byte)0xba, (byte)0x98,
(byte)0x76, (byte)0x54, (byte)0x32, (byte)0x10,
(byte)0x89, (byte)0xab, (byte)0xcd, (byte)0xef,
(byte)0x01, (byte)0x23, (byte)0x45, (byte)0x67,
(byte)0xf0, (byte)0xf1, (byte)0xf2, (byte)0xf3,
(byte)0xf4, (byte)0xf5, (byte)0xf6, (byte)0xf7
};
/* Static DESede (Triple DES) key buffer */
private static final byte[] STATIC_DES3_KEY = new byte[] {
(byte)0x01, (byte)0x23, (byte)0x45, (byte)0x67,
(byte)0x89, (byte)0xab, (byte)0xcd, (byte)0xef,
(byte)0xfe, (byte)0xdc, (byte)0xba, (byte)0x98,
(byte)0x76, (byte)0x54, (byte)0x32, (byte)0x10,
(byte)0x89, (byte)0xab, (byte)0xcd, (byte)0xef,
(byte)0x01, (byte)0x23, (byte)0x45, (byte)0x67
};
private static byte[] generateTestData(int size) {
return new byte[size];
}
/* Bytes sizes from WC_*_DIGEST_SIZE for corresponding algorithm in text.c */
private static int getHmacKeySize(String algorithm) {
switch (algorithm) {
case "HmacMD5":
return 16;
case "HmacSHA1":
return 20;
case "HmacSHA256":
return 32;
case "HmacSHA384":
return 48;
case "HmacSHA512":
return 64;
default:
throw new IllegalArgumentException("Unsupported HMAC algorithm: " + algorithm);
}
}
private static void printProviderInfo(Provider provider) {
System.out.printf("%s version: %.1f%n", provider.getName(), provider.getVersion());
}
private static void printDeltaTable() {
/* Variables for table generation */
Map<String, Map<String, Double>> groupedResults;
Map<String, Double> providerResults;
double wolfSpeed;
String provider;
double otherSpeed;
double deltaValue;
double deltaPercent;
System.out.println("\nPerformance Delta (compared to wolfJCE)");
System.out.println("--------------------------------------------------------------------------------");
System.out.println("| Operation | Provider | Delta | Delta |");
System.out.println("| | | Value* | (%) |");
System.out.println("|------------------------------------------|--------------|----------|----------|");
/* Group results by operation */
groupedResults = new HashMap<>();
for (BenchmarkResult result : results) {
groupedResults
.computeIfAbsent(result.operation, k -> new HashMap<>())
.put(result.provider, result.throughput);
}
/* Sort operations to group RSA operations together */
List<String> sortedOperations = new ArrayList<>(groupedResults.keySet());
Collections.sort(sortedOperations, (a, b) -> {
boolean aIsRSA = a.startsWith("RSA");
boolean bIsRSA = b.startsWith("RSA");
if (aIsRSA && !bIsRSA) return -1;
if (!aIsRSA && bIsRSA) return 1;
return a.compareTo(b);
});
/* Calculate and print deltas */
for (String operation : sortedOperations) {
providerResults = groupedResults.get(operation);
wolfSpeed = providerResults.getOrDefault("wolfJCE", 0.0);
boolean isRSAOperation = operation.startsWith("RSA");
for (Map.Entry<String, Double> providerEntry : providerResults.entrySet()) {
provider = providerEntry.getKey();
if (!provider.equals("wolfJCE")) {
otherSpeed = providerEntry.getValue();
/* Adjust provider name for RSA operations */
String displayProvider = provider;
if (isRSAOperation) {
if (operation.contains("key gen")) {
displayProvider = "SunRsaSign"; // Key generation uses SunRsaSign
} else {
displayProvider = "SunJCE"; // Public/private operations use SunJCE
}
}
if (isRSAOperation) {
deltaValue = wolfSpeed - otherSpeed;
deltaPercent = ((wolfSpeed / otherSpeed) - 1.0) * 100;
} else {
deltaValue = wolfSpeed - otherSpeed;
deltaPercent = ((wolfSpeed / otherSpeed) - 1.0) * 100;
}
/* Ensure unique operation-provider combination */
String uniqueKey = operation + "|" + displayProvider;
if (!groupedResults.containsKey(uniqueKey)) {
System.out.printf("| %-40s | %-12s | %+8.2f | %+8.1f |%n",
operation.replace("RSA", "RSA/ECB/PKCS1Padding RSA"),
displayProvider,
deltaValue,
deltaPercent);
/* Mark this combination as processed */
groupedResults.put(uniqueKey, null);
}
}
}
}
System.out.println("--------------------------------------------------------------------------------");
System.out.println("* Delta Value: MiB/s for symmetric ciphers, operations/second for RSA and ECC");
}
/* Run symmetric encryption/decryption benchmarks */
private static void runEncDecBenchmark(String algorithm, String mode, String padding,
String providerName) throws Exception {
SecretKey key;
byte[] ivBytes;
AlgorithmParameterSpec params;
byte[] testData;
byte[] encryptedData = null;
double dataSizeMiB;
Cipher cipher;
String cipherName = algorithm + "/" + mode + "/" + padding;
/* Timing variables */
long startTime;
long endTime;
long encryptTime;
long decryptTime;
double encryptThroughput;
double decryptThroughput;
double encryptTimeMS;
double decryptTimeMS;
/* Use appropriate key based on algorithm */
if (algorithm.equals("AES")) {
key = new SecretKeySpec(STATIC_AES_KEY, "AES");
} else if (algorithm.equals("DESede")) {
key = new SecretKeySpec(STATIC_DES3_KEY, "DESede");
} else {
throw new IllegalArgumentException("Unsupported algorithm: " + algorithm);
}
/* Generate random IV */
SecureRandom secureRandom = new SecureRandom();
if (algorithm.equals("AES")){
ivBytes = new byte[AES_BLOCK_SIZE];
secureRandom.nextBytes(ivBytes);
} else if (algorithm.equals("DESede")) {
ivBytes = new byte[DES3_BLOCK_SIZE];
secureRandom.nextBytes(ivBytes);
} else {
throw new IllegalArgumentException("Unsupported algorithm: " + algorithm);
}
if (mode.equals("GCM")) {
params = new GCMParameterSpec(GCM_TAG_LENGTH, ivBytes);
} else {
params = new IvParameterSpec(ivBytes);
}
testData = generateTestData(DATA_SIZE);
/* Initialize cipher with specific provider */
cipher = Cipher.getInstance(cipherName, providerName);
/* Warm up phase */
for (int i = 0; i < WARMUP_ITERATIONS; i++) {
if (mode.equals("GCM")) {
secureRandom.nextBytes(ivBytes);
params = new GCMParameterSpec(GCM_TAG_LENGTH, ivBytes);
}
cipher.init(Cipher.ENCRYPT_MODE, key, params);
encryptedData = cipher.doFinal(testData);
cipher.init(Cipher.DECRYPT_MODE, key, params);
cipher.doFinal(encryptedData);
}
/* Benchmark encryption */
startTime = System.nanoTime();
for (int i = 0; i < TEST_ITERATIONS; i++) {
if (mode.equals("GCM")) {
secureRandom.nextBytes(ivBytes);
params = new GCMParameterSpec(GCM_TAG_LENGTH, ivBytes);
}
cipher.init(Cipher.ENCRYPT_MODE, key, params);
encryptedData = cipher.doFinal(testData);
}
endTime = System.nanoTime();
encryptTime = (endTime - startTime) / TEST_ITERATIONS;
dataSizeMiB = (DATA_SIZE * TEST_ITERATIONS) / (1024.0 * 1024.0);
encryptTimeMS = encryptTime / 1000000.0;
encryptThroughput = (DATA_SIZE / (encryptTime / 1000000000.0)) / (1024.0 * 1024.0);
String testName = String.format("%s (%s)", cipherName, providerName);
System.out.printf(" %-40s %8.3f MiB %8.3f ms %8.3f MiB/s%n",
testName + " enc", dataSizeMiB, encryptTimeMS, encryptThroughput);
results.add(new BenchmarkResult(providerName, cipherName + " enc", encryptThroughput));
/* Benchmark decryption */
startTime = System.nanoTime();
for (int i = 0; i < TEST_ITERATIONS; i++) {
cipher.init(Cipher.DECRYPT_MODE, key, params);
cipher.doFinal(encryptedData);
}
endTime = System.nanoTime();
decryptTime = (endTime - startTime) / TEST_ITERATIONS;
decryptTimeMS = decryptTime / 1000000.0;
decryptThroughput = (DATA_SIZE / (decryptTime / 1000000000.0)) / (1024.0 * 1024.0);
System.out.printf(" %-40s %8.3f MiB %8.3f ms %8.3f MiB/s%n",
testName + " dec", dataSizeMiB , decryptTimeMS, decryptThroughput);
/* Store decryption result */
results.add(new BenchmarkResult(providerName, cipherName + " dec", decryptThroughput));
}
/* Print RSA results in simpler format */
private static void printKeyGenResults(int operations, double totalTime, String operation,
String providerName, String mode) {
/* Variables for result calculations */
double avgTimeMs;
double opsPerSec;
/* Calculate metrics */
avgTimeMs = (totalTime * 1000.0) / operations;
opsPerSec = operations / totalTime;
/* Print formatted results */
System.out.printf("%-12s %-8s %8d ops took %.3f sec, avg %.3f ms, %.3f ops/sec%n",
operation + " (" + mode + ")",
" ",
operations,
totalTime,
avgTimeMs,
opsPerSec);
/* Store results for delta table */
String fullOperation = operation;
results.add(new BenchmarkResult(providerName, fullOperation, opsPerSec));
}
/* Run RSA benchmarks for specified provider and key size */
private static void runRSABenchmark(String providerName, int keySize) throws Exception {
/* Variables for benchmark operations */
KeyPairGenerator keyGen;
Cipher cipher;
byte[] testData;
int keyGenOps;
long startTime;
double elapsedTime;
KeyPair keyPair;
int publicOps;
int privateOps;
byte[] encrypted;
String keyGenOp;
String cipherMode = "RSA/ECB/PKCS1Padding";
/* Initialize key generator and cipher */
if (providerName.equals("SunJCE")) {
keyGen = KeyPairGenerator.getInstance("RSA", "SunRsaSign");
cipher = Cipher.getInstance(cipherMode, "SunJCE");
providerName = "SunRsaSign";
} else {
keyGen = KeyPairGenerator.getInstance("RSA", providerName);
cipher = Cipher.getInstance(cipherMode, providerName);
}
testData = generateTestData(SMALL_MESSAGE_SIZE);
/* Key Generation benchmark */
keyGen.initialize(keySize);
keyGenOps = 0;
startTime = System.nanoTime();
elapsedTime = 0;
/* Run key generation benchmark */
do {
keyGen.generateKeyPair();
keyGenOps++;
elapsedTime = (System.nanoTime() - startTime) / 1_000_000_000.0;
} while (elapsedTime < RSA_MIN_TIME_SECONDS);
keyGenOp = String.format("RSA %d key gen", keySize);
printKeyGenResults(keyGenOps, elapsedTime, keyGenOp, providerName, cipherMode);
/* For 2048-bit keys, test public/private operations */
if (keySize == 2048) {
/* Generate key pair for public/private operations */
keyPair = keyGen.generateKeyPair();
/* Public key operations benchmark */
publicOps = 0;
startTime = System.nanoTime();
do {
cipher.init(Cipher.ENCRYPT_MODE, keyPair.getPublic());
cipher.doFinal(testData);
publicOps++;
elapsedTime = (System.nanoTime() - startTime) / 1_000_000_000.0;
} while (elapsedTime < RSA_MIN_TIME_SECONDS);
printKeyGenResults(publicOps, elapsedTime, "RSA 2048 public", providerName, cipherMode);
/* Private key operations benchmark */
cipher.init(Cipher.ENCRYPT_MODE, keyPair.getPublic());
encrypted = cipher.doFinal(testData);
privateOps = 0;
startTime = System.nanoTime();
do {
cipher.init(Cipher.DECRYPT_MODE, keyPair.getPrivate());
cipher.doFinal(encrypted);
privateOps++;
elapsedTime = (System.nanoTime() - startTime) / 1_000_000_000.0;
} while (elapsedTime < RSA_MIN_TIME_SECONDS);
printKeyGenResults(privateOps, elapsedTime, "RSA 2048 private", providerName, cipherMode);
}
}
/* ECC keygen benchmark */
private static void runECCBenchmark(String providerName, String curveName) throws Exception {
KeyPairGenerator keyGen;
int keyGenOps = 0;
long startTime;
double elapsedTime;
/* Initialize key generator */
if (providerName.equals("SunJCE")) {
keyGen = KeyPairGenerator.getInstance("EC", "SunEC");
providerName = "SunEC";
} else {
keyGen = KeyPairGenerator.getInstance("EC", providerName);
keyGen.initialize(new ECGenParameterSpec(curveName));
}
/* Key Generation benchmark */
startTime = System.nanoTime();
elapsedTime = 0;
/* Run key generation benchmark */
do {
keyGen.generateKeyPair();
keyGenOps++;
elapsedTime = (System.nanoTime() - startTime) / 1_000_000_000.0;
} while (elapsedTime < RSA_MIN_TIME_SECONDS);
String keyGenOp = String.format("ECC %s key gen", curveName);
printKeyGenResults(keyGenOps, elapsedTime, keyGenOp, providerName, "EC");
}
/* HMAC benchmark */
private static void runHmacBenchmark(String algorithm, String providerName) throws Exception {
Mac mac;
byte[] testData;
double dataSizeMiB;
long startTime;
long endTime;
long elapsedTime;
double throughput;
/* Generate test data */
testData = generateTestData(DATA_SIZE);
/* Initialize Mac with specific provider */
mac = Mac.getInstance(algorithm, providerName);
/* Initialize Mac with a random key of appropriate length */
SecureRandom secureRandom = new SecureRandom();
int keySize = getHmacKeySize(algorithm);
byte[] keyBytes = new byte[keySize];
secureRandom.nextBytes(keyBytes);
SecretKeySpec key = new SecretKeySpec(keyBytes, algorithm);
mac.init(key);
/* Warm up phase */
for (int i = 0; i < WARMUP_ITERATIONS; i++) {
mac.update(testData);
mac.doFinal();
}
/* Benchmark */
startTime = System.nanoTime();
for (int i = 0; i < TEST_ITERATIONS; i++) {
mac.update(testData);
mac.doFinal();
}
endTime = System.nanoTime();
elapsedTime = (endTime - startTime) / TEST_ITERATIONS;
dataSizeMiB = (DATA_SIZE * TEST_ITERATIONS) / (1024.0 * 1024.0);
throughput = (DATA_SIZE / (elapsedTime / 1000000000.0)) / (1024.0 * 1024.0);
String testName = String.format("%s (%s)", algorithm, providerName);
System.out.printf(" %-40s %8.3f MiB took %.3f seconds, %8.3f MiB/s%n",
testName, dataSizeMiB, elapsedTime / 1_000_000_000.0, throughput);
/* Store result */
results.add(new BenchmarkResult(providerName, algorithm, throughput));
}
/* Run DH benchmarks for specified provider and key size */
private static void runDHBenchmark(String providerName, int keySize) throws Exception {
/* Variables for benchmark operations */
KeyPairGenerator keyGen;
KeyAgreement keyAgreement;
int keyGenOps;
int agreementOps;
long startTime;
double elapsedTime;
KeyPair keyPair1 = null;
KeyPair keyPair2 = null;
/* Standard DH parameters for 2048-bit key from RFC 3526 */
BigInteger p = new BigInteger(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" +
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD" +
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" +
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" +
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" +
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" +
"83655D23DCA3AD961C62F356208552BB9ED529077096966D" +
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" +
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" +
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510" +
"15728E5A8AACAA68FFFFFFFFFFFFFFFF", 16);
BigInteger g = BigInteger.valueOf(2);
DHParameterSpec dhParams = new DHParameterSpec(p, g);
/* Get KeyPairGenerator for DH */
keyGen = KeyPairGenerator.getInstance("DH", providerName);
/* Initialize with parameters */
keyGen.initialize(dhParams);
/* Key Generation benchmark */
keyGenOps = 0;
startTime = System.nanoTime();
elapsedTime = 0;
/* Run key generation benchmark */
do {
keyGen.generateKeyPair();
keyGenOps++;
elapsedTime = (System.nanoTime() - startTime) / 1_000_000_000.0;
} while (elapsedTime < RSA_MIN_TIME_SECONDS);
String keyGenOp = String.format("DH %d key gen", keySize);
printKeyGenResults(keyGenOps, elapsedTime, keyGenOp, providerName, DH_ALGORITHM);
/* Generate key pairs for agreement operations */
keyPair1 = keyGen.generateKeyPair();
keyPair2 = keyGen.generateKeyPair();
/* Key Agreement benchmark */
keyAgreement = KeyAgreement.getInstance("DH", providerName);
agreementOps = 0;
startTime = System.nanoTime();
elapsedTime = 0;
/* Run key agreement benchmark */
do {
keyAgreement.init(keyPair1.getPrivate());
keyAgreement.doPhase(keyPair2.getPublic(), true);
keyAgreement.generateSecret();
agreementOps++;
elapsedTime = (System.nanoTime() - startTime) / 1_000_000_000.0;
} while (elapsedTime < RSA_MIN_TIME_SECONDS);
String agreementOp = String.format("DH %d agree", keySize);
printKeyGenResults(agreementOps, elapsedTime, agreementOp, providerName, DH_ALGORITHM);
}
public static void main(String[] args) {
try {
/* Check if Bouncy Castle is available */
boolean hasBouncyCastle = false;
Provider bcProvider = null;
try {
Class<?> bcClass = Class.forName("org.bouncycastle.jce.provider.BouncyCastleProvider");
bcProvider = (Provider) bcClass.getDeclaredConstructor().newInstance();
hasBouncyCastle = true;
} catch (Exception e) {
/* Bouncy Castle not available */
}
/* Create provider list based on availability */
java.util.List<Provider> providerList = new java.util.ArrayList<>();
java.util.List<String> providerNameList = new java.util.ArrayList<>();
providerList.add(new WolfCryptProvider());
providerNameList.add("wolfJCE");
providerList.add(new com.sun.crypto.provider.SunJCE());
providerNameList.add("SunJCE");
if (hasBouncyCastle && bcProvider != null) {
providerList.add(bcProvider);
providerNameList.add("BC");
}
Provider[] providers = providerList.toArray(new Provider[0]);
String[] providerNames = providerNameList.toArray(new String[0]);
/* Print provider versions */
for (Provider provider : providers) {
printProviderInfo(provider);
}
System.out.println("-----------------------------------------------------------------------------");
System.out.println(" Symmetric Cipher Benchmark");
System.out.println("-----------------------------------------------------------------------------\n");
/* Run symmetric benchmarks */
for (int i = 0; i < providers.length; i++) {
Security.insertProviderAt(providers[i], 1);
runEncDecBenchmark("AES", "CBC", "NoPadding", providerNames[i]);
runEncDecBenchmark("AES", "CBC", "PKCS5Padding", providerNames[i]);
runEncDecBenchmark("AES", "GCM", "NoPadding", providerNames[i]);
if (FeatureDetect.Des3Enabled()) {
runEncDecBenchmark("DESede", "CBC", "NoPadding", providerNames[i]);
}
}
/* Run RSA benchmarks */
System.out.println("\n-----------------------------------------------------------------------------");
System.out.println("RSA Benchmark Results");
System.out.println("-----------------------------------------------------------------------------");
for (Provider provider : providers) {
Security.insertProviderAt(provider, 1);
System.out.println("\n" + (provider.getName().equals("SunJCE") ? "SunJCE / SunRsaSign" : provider.getName()) + ":");
for (int keySize : RSA_KEY_SIZES) {
runRSABenchmark(provider.getName(), keySize);
}
Security.removeProvider(provider.getName());
}
System.out.println("\n-----------------------------------------------------------------------------");
System.out.println("ECC Benchmark Results");
System.out.println("-----------------------------------------------------------------------------");
for (Provider provider : providers) {
if (provider instanceof WolfCryptProvider && !FeatureDetect.EccKeyGenEnabled()) {
continue;
}
Security.insertProviderAt(provider, 1);
System.out.println("\n" + (provider.getName().equals("SunJCE") ? "SunJCE / SunEC" : provider.getName()) + ":");
for (String curve : ECC_CURVES) {
try {
runECCBenchmark(provider.getName(), curve);
} catch (Exception e) {
System.out.printf("Failed to benchmark %s with provider %s: %s%n",
curve, provider.getName(), e.getMessage());
}
}
}
System.out.println("\n-----------------------------------------------------------------------------");
System.out.println("HMAC Benchmark Results");
System.out.println("-----------------------------------------------------------------------------");
for (int i = 0; i < providers.length; i++) {
Security.insertProviderAt(providers[i], 1);
if (FeatureDetect.HmacMd5Enabled()) {
runHmacBenchmark("HmacMD5", providerNames[i]);
}
if (FeatureDetect.HmacShaEnabled()) {
runHmacBenchmark("HmacSHA1", providerNames[i]);
}
if (FeatureDetect.HmacSha256Enabled()) {
runHmacBenchmark("HmacSHA256", providerNames[i]);
}
if (FeatureDetect.HmacSha384Enabled()) {
runHmacBenchmark("HmacSHA384", providerNames[i]);
}
if (FeatureDetect.HmacSha512Enabled()) {
runHmacBenchmark("HmacSHA512", providerNames[i]);
}
}
System.out.println("\n-----------------------------------------------------------------------------");
System.out.println("DH Benchmark Results");
System.out.println("-----------------------------------------------------------------------------");
for (Provider provider : providers) {
if (provider instanceof WolfCryptProvider && !FeatureDetect.DhEnabled()) {
continue;
}
Security.insertProviderAt(provider, 1);
System.out.println("\n" + provider.getName() + ":");
for (int keySize : DH_KEY_SIZES) {
try {
runDHBenchmark(provider.getName(), keySize);
} catch (Exception e) {
System.out.printf("Failed to benchmark DH %d with provider %s: %s%n",
keySize, provider.getName(), e.getMessage());
}
}
}
System.out.println("-----------------------------------------------------------------------------\n");
/* Print delta table */
printDeltaTable();
} catch (Exception e) {
System.err.println("Benchmark failed: " + e.getMessage());
e.printStackTrace();
}
}
}