Merge pull request #6888 from SparkiDev/srtp_kdf

SRTP/SRTCP KDF: add implementation
pull/6951/head
JacobBarthelmeh 2023-11-07 10:11:43 -07:00 committed by GitHub
commit 8921a720a1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 951 additions and 5 deletions

View File

@ -3547,6 +3547,22 @@ then
AM_CFLAGS="$AM_CFLAGS -DHAVE_X963_KDF"
fi
# SRTP-KDF
AC_ARG_ENABLE([srtp-kdf],
[AS_HELP_STRING([--enable-srtp-kdf],[Enable SRTP-KDF support (default: disabled)])],
[ ENABLED_SRTP_KDF=$enableval ],
[ ENABLED_SRTP_KDF=no ]
)
if test "$ENABLED_SRTP" = "yes"
then
ENABLED_SRTP_KDF="yes"
fi
if test "$ENABLED_SRTP_KDF" = "yes"
then
AM_CFLAGS="$AM_CFLAGS -DWC_SRTP_KDF -DHAVE_AES_ECB -DWOLFSSL_AES_DIRECT"
fi
# DSA
AC_ARG_ENABLE([dsa],
[AS_HELP_STRING([--enable-dsa],[Enable DSA (default: disabled)])],
@ -9583,6 +9599,7 @@ echo " * wolfCrypt Only: $ENABLED_CRYPTONLY"
echo " * HKDF: $ENABLED_HKDF"
echo " * HPKE: $ENABLED_HPKE"
echo " * X9.63 KDF: $ENABLED_X963KDF"
echo " * SRTP-KDF: $ENABLED_SRTP_KDF"
echo " * PSK: $ENABLED_PSK"
echo " * Poly1305: $ENABLED_POLY1305"
echo " * LEANPSK: $ENABLED_LEANPSK"

View File

@ -206,6 +206,7 @@
\defgroup RSA Algorithms - RSA
\defgroup SHA Algorithms - SHA 128/224/256/384/512
\defgroup SipHash Algorithm - SipHash
\defgroup SrtpKdf Algorithm - SRTP KDF
\defgroup SRP Algorithms - SRP
\defgroup ASN ASN.1

View File

@ -57,6 +57,7 @@
<li>\ref RSA</li>
<li>\ref SHA</li>
<li>\ref SipHash</li>
<li>\ref SrtpKdf</li>
<li>\ref SRP</li>
</ul>
*/

View File

@ -0,0 +1,126 @@
/*!
\ingroup SrtpKdf
\brief This function derives keys using SRTP KDF algorithm.
\return 0 Returned upon successful key derviation.
\return BAD_FUNC_ARG Returned when key or salt is NULL
\return BAD_FUNC_ARG Returned when key length is not 16, 24 or 32.
\return BAD_FUNC_ARG Returned when saltSz is larger than 14.
\return BAD_FUNC_ARG Returned when kdrIdx is less than -1 or larger than 24.
\return MEMORY_E on dynamic memory allocation failure.
\param [in] key Key to use with encryption.
\param [in] keySz Size of key in bytes.
\param [in] salt Random non-secret value.
\param [in] saltSz Size of random in bytes.
\param [in] kdrIdx Key derivation rate. kdr = 0 when -1, otherwise kdr = 2^kdrIdx.
\param [in] index Index value to XOR in.
\param [out] key1 First key. Label value of 0x00.
\param [in] key1Sz Size of first key in bytes.
\param [out] key2 Second key. Label value of 0x01.
\param [in] key2Sz Size of second key in bytes.
\param [out] key3 Third key. Label value of 0x02.
\param [in] key3Sz Size of third key in bytes.
_Example_
\code
unsigned char key[16] = { ... };
unsigned char salt[14] = { ... };
unsigned char index[6] = { ... };
unsigned char keyE[16];
unsigned char keyA[20];
unsigned char keyS[14];
int kdrIdx = 0; // Use all of index
int ret;
ret = wc_SRTP_KDF(key, sizeof(key), salt, sizeof(salt), kdrIdx, index,
keyE, sizeof(keyE), keyA, sizeof(keyA), keyS, sizeof(keyS));
if (ret != 0) {
WOLFSSL_MSG("wc_SRTP_KDF failed");
}
\endcode
\sa wc_SRTCP_KDF
\sa wc_SRTP_KDF_kdr_to_idx
*/
int wc_SRTP_KDF(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz);
/*!
\ingroup SrtpKdf
\brief This function derives keys using SRTCP KDF algorithm.
\return 0 Returned upon successful key derviation.
\return BAD_FUNC_ARG Returned when key or salt is NULL
\return BAD_FUNC_ARG Returned when key length is not 16, 24 or 32.
\return BAD_FUNC_ARG Returned when saltSz is larger than 14.
\return BAD_FUNC_ARG Returned when kdrIdx is less than -1 or larger than 24.
\return MEMORY_E on dynamic memory allocation failure.
\param [in] key Key to use with encryption.
\param [in] keySz Size of key in bytes.
\param [in] salt Random non-secret value.
\param [in] saltSz Size of random in bytes.
\param [in] kdrIdx Key derivation rate. kdr = 0 when -1, otherwise kdr = 2^kdrIdx.
\param [in] index Index value to XOR in.
\param [out] key1 First key. Label value of 0x00.
\param [in] key1Sz Size of first key in bytes.
\param [out] key2 Second key. Label value of 0x01.
\param [in] key2Sz Size of second key in bytes.
\param [out] key3 Third key. Label value of 0x02.
\param [in] key3Sz Size of third key in bytes.
_Example_
\code
unsigned char key[16] = { ... };
unsigned char salt[14] = { ... };
unsigned char index[4] = { ... };
unsigned char keyE[16];
unsigned char keyA[20];
unsigned char keyS[14];
int kdrIdx = 0; // Use all of index
int ret;
ret = wc_SRTCP_KDF(key, sizeof(key), salt, sizeof(salt), kdrIdx, index,
keyE, sizeof(keyE), keyA, sizeof(keyA), keyS, sizeof(keyS));
if (ret != 0) {
WOLFSSL_MSG("wc_SRTP_KDF failed");
}
\endcode
\sa wc_SRTP_KDF
\sa wc_SRTP_KDF_kdr_to_idx
*/
int wc_SRTCP_KDF(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz);
/*!
\ingroup SrtpKdf
\brief This function converts a kdr value to an index to use in SRTP/SRTCP KDF API.
\return Key derivation rate as an index.
\param [in] kdr Key derivation rate to convert.
_Example_
\code
word32 kdr = 0x00000010;
int kdrIdx;
int ret;
kdrIdx = wc_SRTP_KDF_kdr_to_idx(kdr);
\endcode
\sa wc_SRTP_KDF
\sa wc_SRTCP_KDF
*/
int wc_SRTP_KDF_kdr_to_idx(word32 kdr);

View File

@ -127,6 +127,7 @@
#ifdef WOLFSSL_SIPHASH
#include <wolfssl/wolfcrypt/siphash.h>
#endif
#include <wolfssl/wolfcrypt/kdf.h>
#ifndef NO_PWDBASED
#include <wolfssl/wolfcrypt/pwdbased.h>
#endif
@ -534,6 +535,9 @@
#define BENCH_PBKDF2 0x00000100
#define BENCH_SIPHASH 0x00000200
/* KDF algorithms */
#define BENCH_SRTP_KDF 0x00000001
/* Asymmetric algorithms. */
#define BENCH_RSA_KEYGEN 0x00000001
#define BENCH_RSA 0x00000002
@ -619,6 +623,8 @@ static word32 bench_cipher_algs = 0;
static word32 bench_digest_algs = 0;
/* MAC algorithms to benchmark. */
static word32 bench_mac_algs = 0;
/* KDF algorithms to benchmark. */
static word32 bench_kdf_algs = 0;
/* Asymmetric algorithms to benchmark. */
static word32 bench_asym_algs = 0;
/* Post-Quantum Asymmetric algorithms to benchmark. */
@ -797,9 +803,18 @@ static const bench_alg bench_mac_opt[] = {
#ifndef NO_PWDBASED
{ "-pbkdf2", BENCH_PBKDF2 },
#endif
#endif
#ifdef WOLFSSL_SIPHASH
{ "-siphash", BENCH_SIPHASH },
#endif
{ NULL, 0 }
};
/* All recognized KDF algorithm choosing command line options. */
static const bench_alg bench_kdf_opt[] = {
{ "-kdf", 0xffffffff },
#ifdef WC_SRTP_KDF
{ "-srtp-kdf", BENCH_SRTP_KDF },
#endif
{ NULL, 0 }
};
@ -1646,6 +1661,7 @@ static void benchmark_static_init(int force)
bench_cipher_algs = 0;
bench_digest_algs = 0;
bench_mac_algs = 0;
bench_kdf_algs = 0;
bench_asym_algs = 0;
bench_pq_asym_algs = 0;
bench_other_algs = 0;
@ -2785,12 +2801,18 @@ static void* benchmarks_do(void* args)
bench_pbkdf2();
}
#endif
#ifdef WOLFSSL_SIPHASH
if (bench_all || (bench_mac_algs & BENCH_SIPHASH)) {
bench_siphash();
}
#endif
#endif /* NO_HMAC */
#ifdef WOLFSSL_SIPHASH
if (bench_all || (bench_mac_algs & BENCH_SIPHASH)) {
bench_siphash();
}
#endif
#ifdef WC_SRTP_KDF
if (bench_all || (bench_kdf_algs & BENCH_SRTP_KDF)) {
bench_srtpkdf();
}
#endif
#ifdef HAVE_SCRYPT
if (bench_all || (bench_other_algs & BENCH_SCRYPT))
@ -6721,6 +6743,68 @@ void bench_siphash(void)
}
#endif
#ifdef WC_SRTP_KDF
void bench_srtpkdf(void)
{
double start;
int count;
int ret = 0;
byte keyE[32];
byte keyA[20];
byte keyS[14];
const byte *key = bench_key_buf;
const byte salt[14] = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e };
const byte index[6] = { 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA };
int kdrIdx = 0;
int i;
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_SRTP_KDF(key, AES_128_KEY_SIZE, salt, sizeof(salt),
kdrIdx, index, keyE, AES_128_KEY_SIZE, keyA, sizeof(keyA),
keyS, sizeof(keyS));
}
count += i;
} while (bench_stats_check(start));
bench_stats_asym_finish("KDF", 128, "SRTP", 0, count, start, ret);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_SRTP_KDF(key, AES_256_KEY_SIZE, salt, sizeof(salt),
kdrIdx, index, keyE, AES_256_KEY_SIZE, keyA, sizeof(keyA),
keyS, sizeof(keyS));
}
count += i;
} while (bench_stats_check(start));
bench_stats_asym_finish("KDF", 256, "SRTP", 0, count, start, ret);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_SRTCP_KDF(key, AES_128_KEY_SIZE, salt, sizeof(salt),
kdrIdx, index, keyE, AES_128_KEY_SIZE, keyA, sizeof(keyA),
keyS, sizeof(keyS));
}
count += i;
} while (bench_stats_check(start));
bench_stats_asym_finish("KDF", 128, "SRTCP", 0, count, start, ret);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_SRTCP_KDF(key, AES_256_KEY_SIZE, salt, sizeof(salt),
kdrIdx, index, keyE, AES_256_KEY_SIZE, keyA, sizeof(keyA),
keyS, sizeof(keyS));
}
count += i;
} while (bench_stats_check(start));
bench_stats_asym_finish("KDF", 256, "SRTCP", 0, count, start, ret);
}
#endif
#ifndef NO_RSA
#if defined(WOLFSSL_KEY_GEN)
@ -10661,6 +10745,8 @@ static void Usage(void)
print_alg(bench_digest_opt[i].str, &line);
for (i=0; bench_mac_opt[i].str != NULL; i++)
print_alg(bench_mac_opt[i].str, &line);
for (i=0; bench_kdf_opt[i].str != NULL; i++)
print_alg(bench_kdf_opt[i].str, &line);
for (i=0; bench_asym_opt[i].str != NULL; i++)
print_alg(bench_asym_opt[i].str, &line);
for (i=0; bench_other_opt[i].str != NULL; i++)
@ -10895,6 +10981,14 @@ int wolfcrypt_benchmark_main(int argc, char** argv)
optMatched = 1;
}
}
/* Known KDF algorithms */
for (i=0; !optMatched && bench_kdf_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_kdf_opt[i].str)) {
bench_kdf_algs |= bench_kdf_opt[i].val;
bench_all = 0;
optMatched = 1;
}
}
/* Known asymmetric algorithms */
for (i=0; !optMatched && bench_asym_opt[i].str != NULL; i++) {
if (string_matches(argv[1], bench_asym_opt[i].str)) {

View File

@ -95,6 +95,7 @@ void bench_hmac_sha256(int useDeviceID);
void bench_hmac_sha384(int useDeviceID);
void bench_hmac_sha512(int useDeviceID);
void bench_siphash(void);
void bench_srtpkdf(void);
void bench_rsaKeyGen(int useDeviceID);
void bench_rsaKeyGen_size(int useDeviceID, word32 keySz);
void bench_rsa(int useDeviceID);

View File

@ -52,6 +52,9 @@
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/kdf.h>
#ifdef WC_SRTP_KDF
#include <wolfssl/wolfcrypt/aes.h>
#endif
#if defined(WOLFSSL_HAVE_PRF) && !defined(NO_HMAC)
@ -870,4 +873,292 @@ int wc_SSH_KDF(byte hashId, byte keyId, byte* key, word32 keySz,
#endif /* WOLFSSL_WOLFSSH */
#ifdef WC_SRTP_KDF
/* Calculate first block to encrypt.
*
* @param [in] salt Random value to XOR in.
* @param [in] saltSz Size of random value in bytes.
* @param [in] kdrIdx Key derivation rate. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx.
* @param [in] index Index value to XOR in.
* @param [in] indexSz Size of index value in bytes.
* @param [out] block First block to encrypt.
*/
static void wc_srtp_kdf_first_block(const byte* salt, word32 saltSz, int kdrIdx,
const byte* index, byte indexSz, unsigned char* block)
{
word32 i;
/* XOR salt into zeroized buffer. */
for (i = 0; i < WC_SRTP_MAX_SALT - saltSz; i++)
block[i] = 0;
XMEMCPY(block + WC_SRTP_MAX_SALT - saltSz, salt, saltSz);
block[WC_SRTP_MAX_SALT] = 0;
/* block[15] is counter. */
/* When kdrIdx is -1, don't XOR in index. */
if (kdrIdx >= 0) {
/* Get the number of bits to shift index by. */
word32 bits = kdrIdx & 0x7;
/* Reduce index size by number of bytes to remove. */
indexSz -= kdrIdx >> 3;
if ((kdrIdx & 0x7) == 0) {
/* Just XOR in as no bit shifting. */
for (i = 0; i < indexSz; i++)
block[i + WC_SRTP_MAX_SALT - indexSz] ^= index[i];
}
else {
/* XOR in as bit shifted index. */
block[WC_SRTP_MAX_SALT - indexSz] ^= index[i+0] >> bits;
for (i = 1; i < indexSz; i++) {
block[i + WC_SRTP_MAX_SALT - indexSz] ^=
(index[i-1] << (8 - bits)) |
(index[i+0] >> bits );
}
}
}
}
/* Derive a key given the first block.
*
* @param [in, out] block First block to encrypt. Need label XORed in.
* @param [in] indexSz Size of index in bytes to calculate where label is
* XORed into.
* @param [in] label Label byte that differs for each key.
* @param [out] key Derived key.
* @param [in] keySz Size of key to derive in bytes.
* @param [in] aes AES object to encrypt with.
* @return 0 on success.
*/
static int wc_srtp_kdf_derive_key(byte* block, byte indexSz, byte label,
byte* key, word32 keySz, Aes* aes)
{
int i;
int ret = 0;
/* Calculate the number of full blocks needed for derived key. */
int blocks = keySz / AES_BLOCK_SIZE;
/* XOR in label. */
block[WC_SRTP_MAX_SALT - indexSz - 1] ^= label;
for (i = 0; (ret == 0) && (i < blocks); i++) {
/* Set counter. */
block[15] = i;
/* Encrypt block into key buffer. */
ret = wc_AesEcbEncrypt(aes, key, block, AES_BLOCK_SIZE);
/* Reposition for more derived key. */
key += AES_BLOCK_SIZE;
/* Reduce the count of key bytes required. */
keySz -= AES_BLOCK_SIZE;
}
/* Do any partial blocks. */
if ((ret == 0) && (keySz > 0)) {
byte enc[AES_BLOCK_SIZE];
/* Set counter. */
block[15] = i;
/* Encrypt block into temporary. */
ret = wc_AesEcbEncrypt(aes, enc, block, AES_BLOCK_SIZE);
if (ret == 0) {
/* Copy into key required amount. */
XMEMCPY(key, enc, keySz);
}
}
/* XOR out label. */
block[WC_SRTP_MAX_SALT - indexSz - 1] ^= label;
return ret;
}
/* Derive keys using SRTP KDF algorithm.
*
* SP 800-135 (RFC 3711).
*
* @param [in] key Key to use with encryption.
* @param [in] keySz Size of key in bytes.
* @param [in] salt Random non-secret value.
* @param [in] saltSz Size of random in bytes.
* @param [in] kdrIdx Key derivation rate. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx.
* @param [in] index Index value to XOR in.
* @param [out] key1 First key. Label value of 0x00.
* @param [in] key1Sz Size of first key in bytes.
* @param [out] key2 Second key. Label value of 0x01.
* @param [in] key2Sz Size of second key in bytes.
* @param [out] key3 Third key. Label value of 0x02.
* @param [in] key3Sz Size of third key in bytes.
* @return BAD_FUNC_ARG when key or salt is NULL.
* @return BAD_FUNC_ARG when key length is not 16, 24 or 32.
* @return BAD_FUNC_ARG when saltSz is larger than 14.
* @return BAD_FUNC_ARG when kdrIdx is less than -1 or larger than 24.
* @return MEMORY_E on dynamic memory allocation failure.
* @return 0 on success.
*/
int wc_SRTP_KDF(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz)
{
int ret = 0;
byte block[AES_BLOCK_SIZE];
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
/* Validate parameters. */
if ((key == NULL) || (keySz > AES_256_KEY_SIZE) || (salt == NULL) ||
(saltSz > WC_SRTP_MAX_SALT) || (kdrIdx < -1) || (kdrIdx > 24)) {
ret = BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_CIPHER);
if (aes == NULL) {
ret = MEMORY_E;
}
}
if (aes != NULL)
#endif
{
XMEMSET(aes, 0, sizeof(Aes));
}
/* Setup AES object. */
if (ret == 0)
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret == 0)
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
/* Calculate first block that can be used in each derivation. */
if (ret == 0)
wc_srtp_kdf_first_block(salt, saltSz, kdrIdx, index, 6, block);
/* Calculate first key if required. */
if ((ret == 0) && (key1 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, 6, 0x00, key1, key1Sz, aes);
}
/* Calculate second key if required. */
if ((ret == 0) && (key2 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, 6, 0x01, key2, key2Sz, aes);
}
/* Calculate third key if required. */
if ((ret == 0) && (key3 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, 6, 0x02, key3, key3Sz, aes);
}
/* AES object memset so can always free. */
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_CIPHER);
#endif
return ret;
}
/* Derive keys using SRTCP KDF algorithm.
*
* SP 800-135 (RFC 3711).
*
* @param [in] key Key to use with encryption.
* @param [in] keySz Size of key in bytes.
* @param [in] salt Random non-secret value.
* @param [in] saltSz Size of random in bytes.
* @param [in] kdrIdx Key derivation rate index. kdr = 0 when -1, otherwise
* kdr = 2^kdrIdx. See wc_SRTP_KDF_kdr_to_idx()
* @param [in] index Index value to XOR in.
* @param [out] key1 First key. Label value of 0x03.
* @param [in] key1Sz Size of first key in bytes.
* @param [out] key2 Second key. Label value of 0x04.
* @param [in] key2Sz Size of second key in bytes.
* @param [out] key3 Third key. Label value of 0x05.
* @param [in] key3Sz Size of third key in bytes.
* @return BAD_FUNC_ARG when key or salt is NULL.
* @return BAD_FUNC_ARG when key length is not 16, 24 or 32.
* @return BAD_FUNC_ARG when saltSz is larger than 14.
* @return BAD_FUNC_ARG when kdrIdx is less than -1 or larger than 24.
* @return MEMORY_E on dynamic memory allocation failure.
* @return 0 on success.
*/
int wc_SRTCP_KDF(const byte* key, word32 keySz, const byte* salt, word32 saltSz,
int kdrIdx, const byte* index, byte* key1, word32 key1Sz, byte* key2,
word32 key2Sz, byte* key3, word32 key3Sz)
{
int ret = 0;
byte block[AES_BLOCK_SIZE];
#ifdef WOLFSSL_SMALL_STACK
Aes* aes = NULL;
#else
Aes aes[1];
#endif
/* Validate parameters. */
if ((key == NULL) || (keySz > AES_256_KEY_SIZE) || (salt == NULL) ||
(saltSz > WC_SRTP_MAX_SALT) || (kdrIdx < -1) || (kdrIdx > 24)) {
ret = BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret == 0) {
aes = (Aes*)XMALLOC(sizeof(Aes), NULL, DYNAMIC_TYPE_CIPHER);
if (aes == NULL) {
ret = MEMORY_E;
}
}
if (aes != NULL)
#endif
{
XMEMSET(aes, 0, sizeof(Aes));
}
/* Setup AES object. */
if (ret == 0)
ret = wc_AesInit(aes, NULL, INVALID_DEVID);
if (ret == 0)
ret = wc_AesSetKey(aes, key, keySz, NULL, AES_ENCRYPTION);
/* Calculate first block that can be used in each derivation. */
if (ret == 0)
wc_srtp_kdf_first_block(salt, saltSz, kdrIdx, index, 4, block);
/* Calculate first key if required. */
if ((ret == 0) && (key1 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, 4, 0x03, key1, key1Sz, aes);
}
/* Calculate second key if required. */
if ((ret == 0) && (key2 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, 4, 0x04, key2, key2Sz, aes);
}
/* Calculate third key if required. */
if ((ret == 0) && (key3 != NULL)) {
ret = wc_srtp_kdf_derive_key(block, 4, 0x05, key3, key3Sz, aes);
}
/* AES object memset so can always free. */
wc_AesFree(aes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(aes, NULL, DYNAMIC_TYPE_CIPHER);
#endif
return ret;
}
/* Converts a kdr value to an index to use in SRTP/SRTCP KDF API.
*
* @param [in] kdr Key derivation rate to convert.
* @return Key derivation rate as an index.
*/
int wc_SRTP_KDF_kdr_to_idx(word32 kdr)
{
int idx = -1;
/* Keep shifting value down and incrementing index until top bit is gone. */
while (kdr != 0) {
kdr >>= 1;
idx++;
}
/* Index of top bit set. */
return idx;
}
#endif /* WC_SRTP_KDF */
#endif /* NO_KDF */

View File

@ -518,6 +518,9 @@ WOLFSSL_TEST_SUBROUTINE wc_test_ret_t tls13_kdf_test(void);
#endif
WOLFSSL_TEST_SUBROUTINE wc_test_ret_t x963kdf_test(void);
WOLFSSL_TEST_SUBROUTINE wc_test_ret_t hpke_test(void);
#ifdef WC_SRTP_KDF
WOLFSSL_TEST_SUBROUTINE wc_test_ret_t srtpkdf_test(void);
#endif
WOLFSSL_TEST_SUBROUTINE wc_test_ret_t arc4_test(void);
#ifdef WC_RC2
WOLFSSL_TEST_SUBROUTINE wc_test_ret_t rc2_test(void);
@ -1333,6 +1336,13 @@ options: [-s max_relative_stack_bytes] [-m max_relative_heap_memory_bytes]\n\
TEST_PASS("HPKE test passed!\n");
#endif
#if defined(WC_SRTP_KDF)
if ( (ret = srtpkdf_test()) != 0)
TEST_FAIL("SRTP KDF test failed!\n", ret);
else
TEST_PASS("SRTP KDF test passed!\n");
#endif
#if defined(HAVE_AESGCM) && defined(WOLFSSL_AES_128) && \
!defined(WOLFSSL_AFALG_XILINX_AES) && !defined(WOLFSSL_XILINX_CRYPT) && \
!defined(WOLFSSL_RENESAS_FSPSM_CRYPTONLY)
@ -24806,6 +24816,396 @@ WOLFSSL_TEST_SUBROUTINE wc_test_ret_t hpke_test(void)
}
#endif /* HAVE_HPKE && HAVE_ECC && HAVE_AESGCM */
#if defined(WC_SRTP_KDF)
typedef struct Srtp_Kdf_Tv {
const unsigned char* key;
word32 keySz;
const unsigned char* salt;
word32 saltSz;
int kdfIdx;
const unsigned char* index;
const unsigned char* ke;
const unsigned char* ka;
const unsigned char* ks;
const unsigned char* index_c;
const unsigned char* ke_c;
const unsigned char* ka_c;
const unsigned char* ks_c;
word32 keSz;
word32 kaSz;
word32 ksSz;
} Srtp_Kdf_Tv;
WOLFSSL_TEST_SUBROUTINE wc_test_ret_t srtpkdf_test(void)
{
wc_test_ret_t ret = 0;
/* 128-bit key, kdrIdx = -1 */
WOLFSSL_SMALL_STACK_STATIC const byte key_0[] = {
0xc4, 0x80, 0x9f, 0x6d, 0x36, 0x98, 0x88, 0x72,
0x8e, 0x26, 0xad, 0xb5, 0x32, 0x12, 0x98, 0x90
};
WOLFSSL_SMALL_STACK_STATIC const byte salt_0[] = {
0x0e, 0x23, 0x00, 0x6c, 0x6c, 0x04, 0x4f, 0x56,
0x62, 0x40, 0x0e, 0x9d, 0x1b, 0xd6
};
WOLFSSL_SMALL_STACK_STATIC const byte index_0[] = {
0x48, 0x71, 0x65, 0x64, 0x9c, 0xca
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_0[] = {
0xdc, 0x38, 0x21, 0x92, 0xab, 0x65, 0x10, 0x8a,
0x86, 0xb2, 0x59, 0xb6, 0x1b, 0x3a, 0xf4, 0x6f
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_0[] = {
0xb8, 0x39, 0x37, 0xfb, 0x32, 0x17, 0x92, 0xee,
0x87, 0xb7, 0x88, 0x19, 0x3b, 0xe5, 0xa4, 0xe3,
0xbd, 0x32, 0x6e, 0xe4
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_0[] = {
0xf1, 0xc0, 0x35, 0xc0, 0x0b, 0x5a, 0x54, 0xa6,
0x16, 0x92, 0xc0, 0x16, 0x27, 0x6c
};
WOLFSSL_SMALL_STACK_STATIC const byte index_c_0[] = {
0x56, 0xf3, 0xf1, 0x97
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_c_0[] = {
0xab, 0x5b, 0xe0, 0xb4, 0x56, 0x23, 0x5d, 0xcf,
0x77, 0xd5, 0x08, 0x69, 0x29, 0xba, 0xfb, 0x38
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_c_0[] = {
0xc5, 0x2f, 0xde, 0x0b, 0x80, 0xb0, 0xf0, 0xba,
0xd8, 0xd1, 0x56, 0x45, 0xcb, 0x86, 0xe7, 0xc7,
0xc3, 0xd8, 0x77, 0x0e
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_c_0[] = {
0xde, 0xb5, 0xf8, 0x5f, 0x81, 0x33, 0x6a, 0x96,
0x5e, 0xd3, 0x2b, 0xb7, 0xed, 0xe8
};
/* 192-bit key, kdrIdx = 0 */
WOLFSSL_SMALL_STACK_STATIC const byte key_1[] = {
0xbb, 0x04, 0x5b, 0x1f, 0x53, 0xc6, 0x93, 0x2c,
0x2b, 0xa6, 0x88, 0xf5, 0xe3, 0xf2, 0x24, 0x70,
0xe1, 0x7d, 0x7d, 0xec, 0x8a, 0x93, 0x4d, 0xf2
};
WOLFSSL_SMALL_STACK_STATIC const byte salt_1[] = {
0xe7, 0x22, 0xab, 0x92, 0xfc, 0x7c, 0x89, 0xb6,
0x53, 0x8a, 0xf9, 0x3c, 0xb9, 0x52
};
WOLFSSL_SMALL_STACK_STATIC const byte index_1[] = {
0xd7, 0x87, 0x8f, 0x33, 0xb1, 0x76
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_1[] = {
0x2c, 0xc8, 0x3e, 0x54, 0xb2, 0x33, 0x89, 0xb3,
0x71, 0x65, 0x0f, 0x51, 0x61, 0x65, 0xe4, 0x93,
0x07, 0x4e, 0xb3, 0x47, 0xba, 0x2d, 0x60, 0x60
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_1[] = {
0x2e, 0x80, 0xe4, 0x82, 0x55, 0xa2, 0xbe, 0x6d,
0xe0, 0x46, 0xcc, 0xc1, 0x75, 0x78, 0x6e, 0x78,
0xd1, 0xd1, 0x47, 0x08
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_1[] = {
0xe0, 0xc1, 0xe6, 0xaf, 0x1e, 0x8d, 0x8c, 0xfe,
0xe5, 0x60, 0x70, 0xb5, 0xe6, 0xea
};
WOLFSSL_SMALL_STACK_STATIC const byte index_c_1[] = {
0x40, 0xbf, 0xd4, 0xa9
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_c_1[] = {
0x94, 0x0f, 0x55, 0xce, 0x58, 0xd8, 0x16, 0x65,
0xf0, 0xfa, 0x46, 0x40, 0x0c, 0xda, 0xb1, 0x11,
0x9e, 0x69, 0xa0, 0x93, 0x4e, 0xd7, 0xf2, 0x84
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_c_1[] = {
0xf5, 0x41, 0x6f, 0xc2, 0x65, 0xc5, 0xb3, 0xef,
0xbb, 0x22, 0xc8, 0xfc, 0x6b, 0x00, 0x14, 0xb2,
0xf3, 0x3b, 0x8e, 0x29
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_c_1[] = {
0x35, 0xb7, 0x42, 0x43, 0xf0, 0x01, 0x01, 0xb4,
0x68, 0xa1, 0x28, 0x80, 0x37, 0xf0
};
/* 256-bit key, kdrIdx = 1 */
WOLFSSL_SMALL_STACK_STATIC const byte key_2[] = {
0x10, 0x38, 0x0a, 0xcd, 0xd6, 0x47, 0xab, 0xee,
0xc0, 0xd4, 0x44, 0xf4, 0x7e, 0x51, 0x36, 0x02,
0x79, 0xa8, 0x94, 0x80, 0x35, 0x40, 0xed, 0x50,
0xf4, 0x45, 0x30, 0x3d, 0xb5, 0xf0, 0x2b, 0xbb
};
WOLFSSL_SMALL_STACK_STATIC const byte salt_2[] = {
0xc7, 0x31, 0xf2, 0xc8, 0x40, 0x43, 0xb8, 0x74,
0x8a, 0x61, 0x84, 0x7a, 0x25, 0x8a
};
WOLFSSL_SMALL_STACK_STATIC const byte index_2[] = {
0x82, 0xf1, 0x84, 0x8c, 0xac, 0x42
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_2[] = {
0xb2, 0x26, 0x60, 0xaf, 0x08, 0x23, 0x14, 0x98,
0x91, 0xde, 0x5d, 0x87, 0x95, 0x61, 0xca, 0x8f,
0x0e, 0xce, 0xfb, 0x68, 0x4d, 0xd6, 0x28, 0xcb,
0x28, 0xe2, 0x27, 0x20, 0x2d, 0xff, 0x64, 0xbb
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_2[] = {
0x12, 0x6f, 0x52, 0xe8, 0x07, 0x7f, 0x07, 0x84,
0xa0, 0x61, 0x96, 0xf8, 0xee, 0x4d, 0x05, 0x57,
0x65, 0xc7, 0x50, 0xc1
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_2[] = {
0x18, 0x5a, 0x59, 0xe5, 0x91, 0x4d, 0xc9, 0x6c,
0xfa, 0x5b, 0x36, 0x06, 0x8c, 0x9a
};
WOLFSSL_SMALL_STACK_STATIC const byte index_c_2[] = {
0x31, 0x2d, 0x58, 0x15
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_c_2[] = {
0x14, 0xf2, 0xc8, 0x25, 0x02, 0x79, 0x22, 0xa1,
0x96, 0xb6, 0xf7, 0x07, 0x76, 0xa6, 0xa3, 0xc4,
0x37, 0xdf, 0xa0, 0xf8, 0x78, 0x93, 0x2c, 0xfa,
0xea, 0x35, 0xf0, 0xf3, 0x3f, 0x32, 0x6e, 0xfd
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_c_2[] = {
0x6e, 0x3d, 0x4a, 0x99, 0xea, 0x2f, 0x9d, 0x13,
0x4a, 0x1e, 0x71, 0x2e, 0x15, 0xc0, 0xca, 0xb6,
0x35, 0x78, 0xdf, 0xa4
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_c_2[] = {
0xae, 0xe4, 0xec, 0x18, 0x31, 0x70, 0x5d, 0x3f,
0xdc, 0x97, 0x89, 0x88, 0xfd, 0xff
};
/* 128-bit key, kdrIdx = 8 */
WOLFSSL_SMALL_STACK_STATIC const byte key_3[] = {
0x36, 0xb4, 0xde, 0xcb, 0x2e, 0x51, 0x23, 0x76,
0xe0, 0x27, 0x7e, 0x3e, 0xc8, 0xf6, 0x54, 0x04
};
WOLFSSL_SMALL_STACK_STATIC const byte salt_3[] = {
0x73, 0x26, 0xf4, 0x3f, 0xc0, 0xd9, 0xc6, 0xe3,
0x2f, 0x92, 0x7d, 0x46, 0x12, 0x76
};
WOLFSSL_SMALL_STACK_STATIC const byte index_3[] = {
0x44, 0x73, 0xb2, 0x2d, 0xb2, 0x60
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_3[] = {
0x79, 0x91, 0x3d, 0x7b, 0x20, 0x5d, 0xea, 0xe2,
0xeb, 0x46, 0x89, 0x68, 0x5a, 0x06, 0x73, 0x74
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_3[] = {
0x2d, 0x2e, 0x97, 0x4e, 0x76, 0x8c, 0x62, 0xa6,
0x57, 0x80, 0x13, 0x42, 0x0b, 0x51, 0xa7, 0x66,
0xea, 0x31, 0x24, 0xe6
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_3[] = {
0xcc, 0xd7, 0x31, 0xf6, 0x3b, 0xf3, 0x89, 0x8a,
0x5b, 0x7b, 0xb5, 0x8b, 0x4c, 0x3f
};
WOLFSSL_SMALL_STACK_STATIC const byte index_c_3[] = {
0x4a, 0x7d, 0xaa, 0x85
};
WOLFSSL_SMALL_STACK_STATIC const byte ke_c_3[] = {
0x34, 0x99, 0x71, 0xfe, 0x12, 0x93, 0xae, 0x8c,
0x4a, 0xe9, 0x84, 0xe4, 0x93, 0x53, 0x63, 0x88
};
WOLFSSL_SMALL_STACK_STATIC const byte ka_c_3[] = {
0xa4, 0x53, 0x5e, 0x0a, 0x9c, 0xf2, 0xce, 0x13,
0xef, 0x7a, 0x13, 0xee, 0x0a, 0xef, 0xba, 0x17,
0x05, 0x18, 0xe3, 0xed
};
WOLFSSL_SMALL_STACK_STATIC const byte ks_c_3[] = {
0xe1, 0x29, 0x4f, 0x61, 0x30, 0x3c, 0x4d, 0x46,
0x5f, 0x5c, 0x81, 0x3c, 0x38, 0xb6
};
#define SRTP_TV_CNT 4
Srtp_Kdf_Tv tv[SRTP_TV_CNT] = {
{ key_0, (word32)sizeof(key_0), salt_0, (word32)sizeof(salt_0), -1,
index_0, ke_0, ka_0, ks_0, index_c_0, ke_c_0, ka_c_0, ks_c_0,
16, 20, 14 },
{ key_1, (word32)sizeof(key_1), salt_1, (word32)sizeof(salt_1), 0,
index_1, ke_1, ka_1, ks_1, index_c_1, ke_c_1, ka_c_1, ks_c_1,
24, 20, 14 },
{ key_2, (word32)sizeof(key_2), salt_2, (word32)sizeof(salt_2), 1,
index_2, ke_2, ka_2, ks_2, index_c_2, ke_c_2, ka_c_2, ks_c_2,
32, 20, 14 },
{ key_3, (word32)sizeof(key_3), salt_3, (word32)sizeof(salt_3), 8,
index_3, ke_3, ka_3, ks_3, index_c_3, ke_c_3, ka_c_3, ks_c_3,
16, 20, 14 },
};
int i;
int idx;
unsigned char keyE[32];
unsigned char keyA[20];
unsigned char keyS[14];
for (i = 0; (ret == 0) && (i < SRTP_TV_CNT); i++) {
#ifndef WOLFSSL_AES_128
if (tv[i].keySz == AES_128_KEY_SIZE) {
continue;
}
#endif
#ifndef WOLFSSL_AES_192
if (tv[i].keySz == AES_192_KEY_SIZE) {
continue;
}
#endif
#ifndef WOLFSSL_AES_256
if (tv[i].keySz == AES_256_KEY_SIZE) {
continue;
}
#endif
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
if (XMEMCMP(keyE, tv[i].ke, 16) != 0)
return WC_TEST_RET_ENC_NC;
if (XMEMCMP(keyA, tv[i].ka, 20) != 0)
return WC_TEST_RET_ENC_NC;
if (XMEMCMP(keyS, tv[i].ks, 14) != 0)
return WC_TEST_RET_ENC_NC;
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
if (XMEMCMP(keyE, tv[i].ke_c, 16) != 0)
return WC_TEST_RET_ENC_NC;
if (XMEMCMP(keyA, tv[i].ka_c, 20) != 0)
return WC_TEST_RET_ENC_NC;
if (XMEMCMP(keyS, tv[i].ks_c, 14) != 0)
return WC_TEST_RET_ENC_NC;
}
#ifdef WOLFSSL_AES_128
i = 0;
#elif defined(WOLFSSL_AES_192)
i = 1;
#else
i = 2;
#endif
ret = wc_SRTP_KDF(tv[i].key, 33, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, 33, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, 15, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, 15, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, 15,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, 15,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(NULL, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(NULL, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, NULL, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, NULL, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
25, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
25, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
-2, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
-2, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != BAD_FUNC_ARG)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, NULL, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, NULL, tv[i].keSz, keyA, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, NULL, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, NULL, tv[i].kaSz,
keyS, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index, keyE, tv[i].keSz, keyA, tv[i].kaSz,
NULL, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
ret = wc_SRTCP_KDF(tv[i].key, tv[i].keySz, tv[i].salt, tv[i].saltSz,
tv[i].kdfIdx, tv[i].index_c, keyE, tv[i].keSz, keyA, tv[i].kaSz,
NULL, tv[i].ksSz);
if (ret != 0)
return WC_TEST_RET_ENC_EC(ret);
idx = wc_SRTP_KDF_kdr_to_idx(0);
if (idx != -1)
return WC_TEST_RET_ENC_NC;
for (i = 0; i < 32; i++) {
word32 kdr = 1 << i;
idx = wc_SRTP_KDF_kdr_to_idx(kdr);
if (idx != i)
return WC_TEST_RET_ENC_NC;
}
return 0;
}
#endif
#ifdef HAVE_ECC
/* size to use for ECC key gen tests */

View File

@ -105,6 +105,21 @@ WOLFSSL_API int wc_SSH_KDF(byte hashId, byte keyId,
#endif /* WOLFSSL_WOLFSSH */
#ifdef WC_SRTP_KDF
/* Maximum length of salt that can be used with SRTP/SRTCP. */
#define WC_SRTP_MAX_SALT 14
WOLFSSL_API int wc_SRTP_KDF(const byte* key, word32 keySz, const byte* salt,
word32 saltSz, int kdrIdx, const byte* index, byte* key1, word32 key1Sz,
byte* key2, word32 key2Sz, byte* key3, word32 key3Sz);
WOLFSSL_API int wc_SRTCP_KDF(const byte* key, word32 keySz, const byte* salt,
word32 saltSz, int kdrIdx, const byte* index, byte* key1, word32 key1Sz,
byte* key2, word32 key2Sz, byte* key3, word32 key3Sz);
WOLFSSL_API int wc_SRTP_KDF_kdr_to_idx(word32 kdr);
#endif /* WC_SRTP_KDF */
#ifdef __cplusplus
} /* extern "C" */
#endif