
CyaSSL Manual
12.23.2010
Version 1.0

Table of Contents

Chapter 1: Introduction
Chapter 2: Obtaining Support

I. Where to Find Help and Information
II. Bug Reports and Support Issues

Chapter 3: Licensing
I. Open Source
II. Commercial Licensing
III. FLOSS Exception Details

Chapter 4: SSL/TLS Overview
I. General Architecture
II. Differences between SSL and TLS Protocol Versions
III. Reference Information on SSL/TLS

Chapter 5: Overview of CyaSSL
I. Overview
II. Supported Cipher Suites
III. Choosing the Correct yaSSL Technology
IV. Why Developers Choose CyaSSL
V. Product Release Information

Chapter 6: Building CyaSSL
I. Downloading CyaSSL
II. Building on *nix
III. Building on Windows
IV. Building in a Non-Standard Environment
V. ./configure Options

Chapter 7: Getting Started
I. General Description
II. Testsuite
III. Client Example
IV. Server Example
V. EchoServer Example

VI. EchoClient Example
VII. Benchmark
VIII. Changing a Client Application to Use CyaSSL
IX. Changing a Server Application to Use CyaSSL

Chapter 8: Additional Features
I. Stream Ciphers
II. AES-NI Support
III. Digitally Signing and Authenticating with CyaSSL
IV. IPv6 Support
V. SSL Sniffer Support
VI. Thread Safety

Chapter 9: Extensions Reference
I. Startup and Exit
II. Compression
III. CyaSSL Debugging
IV. Domain Name check for Server Certificates
V. No File System and Using Certificates
VI. Handshake Callback
VII. Timeout Callback
VIII. Pre Shared Keys
IX. TLS 1.1 and 1.2
X. RSA Key Generation
XI. Certificate Generation
XII. Standard Library Abstraction Layer
XIII. Input / Output Buffers
XIV. CyaSSL NTRU Cipher Suites

Chapter 10: CTaoCrypt Usage Reference
I. Hash Functions

a. MD5
b. SHA
c. Other Hashes

II. Message Digests
III. Block Ciphers

a. DES and 3DES
b. AES

IV. Stream Ciphers
a. ARC4

b. RABBIT
c. HC-128

V. Public Key Cryptography
a. RSA

Chapter 11: SSL Tutorial
I. Introduction
II. Source Code
III. Base Example Modifications
IV. Initial Setup
V. Initial Compilation
VI. Libraries
VII. Headers
VIII. Startup/Shutdown
IX. SSL Object
X. Sending Data
XI. Signal Handling
XII. Echo Server
XIII. Certificates

Chapter 12: Best Practices for Embedded Devices
I. Creating Private Keys

Chapter 13: OpenSSL Compatibility
I. Compatibility with OpenSSL
II. Differences Between CyaSSL and OpenSSL
III. Supported OpenSSL Structs
IV. Supported OpenSSL Functions
V. x509 Certificates

Chapter 14: Consulting
I. Feature Additions and Porting
II. Competitive Upgrade Program
III. Design Consulting

Appendix A: FLOSS Exception
I. Exception Intent
II. Legal Terms and Conditions

Chapter 1: Introduction

yaSSL focuses on providing embedded security solutions with an emphasis on speed
and size. With dual-licensed products to cater to a diversity of users ranging from
the hobbyist to the user with commercial needs, yaSSL is happy to help customers
and community members in any way we can. Our products are Open Source, giving
customers the freedom to look under the hood.

CyaSSL is a C-language-based SSL library targeted for embedded and RTOS
environments, primarily because of its small size and speed. CyaSSL is commonly
used in applications for standard operating environments as well because of its royalty
free pricing and cross platform support. CyaSSL supports the industry standards up to
the current TLS 1.2 level, and is up to 20 times smaller than OpenSSL.

This manual is written as a technical guide to the CyaSSL embedded SSL library. It
will explain how to obtain support, licensing details, a quick overview of SSL and TLS,
details on building and integrating CyaSSL as well as a reference for CTaoCrypt and
CyaSSL.

Chapter 2: Obtaining Support

I. Where to Find Help and Information

For product support, we maintain an online forum for the yaSSL related product family.
Please post to our forums or contact us at support@yassl.com with any questions.

yaSSL Forums (http://www.yassl.com/forums)

For information regarding our products, questions regarding licensing, or general
comments, please contact us at info@yassl.com.

II. Bugs Reports and Support Issues

If you are submitting a bug report or asking about a problem you are encountering,
please include the following information with your submission:

1. CyaSSL version number
2. Operating System version
3. Compiler version
4. The exact error you are seeing
5. A description of how we can reproduce or try to replicate this problem

With the above information, we will do our best to resolve your problems. Without
this information, it is very hard to pinpoint the source of the problem. We value your
feedback and make it a priority to get back to you as soon as possible.

Chapter 3: Licensing

I. Open Source

The founders and employees of yaSSL believe in Open Source Systems. As such, the
source code for CyaSSL is available for all to use, modify, test and enjoy under the
GPL. CyaSSL may be modified to the needs of the user as long as the user adheres to
version two of the GPL License. The GPL license can be found on the gnu.org website
(http://www.gnu.org/licenses/old-licenses/gpl-2.0.html).

We do not reserve features! As such, everything available in our commercial version
is also available in our GPL version. For more information on our licensing, please see
our web site or contact info@yassl.com.

II. Commercial Licensing

Businesses and enterprises who wish to incorporate CyaSSL into proprietary
appliances or other commercial software products for re-distribution must license
commercial versions. Commercial licenses for CyaSSL and yaSSL are available for
$5,000 USD, which includes one year of developer support. Licenses are generally
issued for one product line and include unlimited distribution.

III. FLOSS Exception Details

We want specified Free/Libre and Open Source Software ("FLOSS") applications
to be able to use specified GPL-licensed yaSSL libraries despite the fact that not all
FLOSS licenses are compatible with version 2 of the GNU General Public License.
Please read more about our FLOSS Exception in Appendix A.

Chapter 4: SSL/TLS Overview

I. General Architecture

The CyaSSL embedded SSL library implements SSL 3.0, TLS 1.0, TLS 1.1 and TLS 1.2
protocols. TLS 1.2 is currently the most secure and up to date version of the standard.
The TLS protocol is implemented as defined in RFC 5246. Two record layer protocols
exist within SSL, the message layer and the handshake layer. Handshake messages
are used to negotiate a common cipher suite, create secrets, and enable a secure
connection. The message layer encapsulates the handshake layer while also supporting
alert processing and application data transfer. A general diagram of how the SSL
protocol fits into existing protocols can be seen below in Figure 1.

(Figure 1: SSL Protocol Diagram)

II. Differences between SSL and TLS Protocol Versions

Secure Socket Layer (SSL) and Transport Security Layer (TLS) are both cryptographic
protocols which provide secure communication over networks. These different versions
are all in widespread use today in applications such as web browsing, e-mail, instant
messaging and VoIP, and each is slightly different from the others.

CyaSSL supports these protocols to best suit your needs and requirements. Below you

http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg

will find both an explanation and the major differences between the different SSL and
TLS protocol versions.

SSL 3.0
This protocol was released in 1996 but began with the creation of SSL 1.0 developed by
Netscape. Version 1.0 wasn't released, and version 2.0 had a number of security flaws,
thus leading to the release of SSL 3.0. Some major improvements of SSL 3.0 over SSL
2.0 are:

● Separation of the transport of data from the message layer
● Use of a full 128 bits of keying material even when using the Export cipher
● Ability of the client and server to send chains of certificates, thus allowing

organizations to use certificate hierarchy which is more than two certificates
deep.

● Implementing a generalized key exchange protocol, allowing Diffie-Hellman and
Fortezza key exchanges as well as non-RSA certificates.

● Allowing for record compression and decompression
● Ability to fall back to SSL 2.0 when a 2.0 client is encountered

Netscape's Original SSL 3.0 Draft: http://www.mozilla.org/projects/security/pki/nss/ssl/
draft302.txt

Comparison of SSLv2 and SSLv3: http://stason.org/TULARC/security/ssl-talk/4-11-
What-is-the-difference-between-SSL-2-0-and-3-0.html

TLS 1.0
This protocol was first defined in RFC 2246 in January of 1999. This was an upgrade
from SSL 3.0 and the differences were not dramatic, but they are significant enough that
SSL 3.0 and TLS 1.0 don't inter-operate. Some of the major differences between SSL
3.0 and TLS 1.0 are:

● Key derivation functions are different
● MACs are different - SSL 3.0 uses a modification of an early HMAC while TLS

1.0 uses HMAC.
● The Finished messages are different
● TLS has more alerts
● TLS requires DSS/DH support

RFC 2246:
http://tools.ietf.org/html/rfc2246

http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fwww.mozilla.org%2Fprojects%2Fsecurity%2Fpki%2Fnss%2Fssl%2Fdraft302.txt&sa=D&sntz=1&usg=AFQjCNHC-cdCgSu-PL6MAn8RATnRguzlZg
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Fstason.org%2FTULARC%2Fsecurity%2Fssl-talk%2F4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html&sa=D&sntz=1&usg=AFQjCNEJwSbFGdaOKrmMHqyooPSkpMzQBQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc2246&sa=D&sntz=1&usg=AFQjCNGUg1Avcsqkk6O78TmzdN5Xxj0ZNQ

TLS 1.1
This protocol was defined in RFC 4346 in April of 2006, and is an update to TLS 1.0.
The major changes are:

● The Implicit Initialization Vector (IV) is replaced with an explicit IV to protect
against Cipher block chaining (CBC) attacks.

● Handling of padded errors is changed to use the bad_record_mac alert rather
than the decryption_failed alert to protect against CBC attacks.

● IANA registries are defined for protocol parameters
● Premature closes no longer cause a session to be non-resumable.

RFC 4346:
http://tools.ietf.org/html/rfc4346#section-1.1

TLS 1.2
This protocol was defined in RFC 5246 in August of 2008. Based on TLS 1.1, TLS 1.2
contains improved flexibility. The major differences include:

● The MD5/SHA-1 combination in the pseudorandom function (PRF) was replaced
with cipher-suite-specified PRFs.

● The MD5/SHA-1 combination in the digitally-signed element was replaced with
a single hash. Signed elements include a field explicitly specifying the hash
algorithm used.

● There was substantial cleanup to the client's and server's ability to specify which
hash and signature algorithms they will accept.

● Addition of support for authenticated encryption with additional data modes.
● TLS Extensions definition and AES Cipher Suites were merged in.
● Tighter checking of EncryptedPreMasterSecret version numbers.
● Many of the requirements were tightened
● Verify_data length depends on the cipher suite
● Description of Bleichenbacher/Dlima attack defenses cleaned up.

RFC 5246:
http://tools.ietf.org/html/rfc5246

III. Reference Information on SSL

Interesting Resources
TLS - Wikipedia
(http://en.wikipedia.org/wiki/Transport_Layer_Security)

http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4346%23section-1.1&sa=D&sntz=1&usg=AFQjCNH5YMgubkGUz0SnEui7bDcRvA9MxA
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5246&sa=D&sntz=1&usg=AFQjCNHNn2oGb6__ECAd4v4NoOjm-NwjPg

SSL versus TLS - What's the Difference?
(http://luxsci.com/blog/ssl-versus-tls-whats-the-difference.html)
Cisco - SSL: Foundation for Web Security
(http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html)

Protocol Specifications
SSL 3.0 Specification (http://tools.ietf.org/id/draft-ietf-tls-ssl-version3-00.txt)
TLS v1.0 Specification (http://www.ietf.org/rfc/rfc2246.txt)
TLS v1.1 Specification (http://www.ietf.org/rfc/rfc4346.txt)
TLS v1.2 Specification (http://www.ietf.org/rfc/rfc5246.txt)

Technology Discussion
SSL Intro and Links
(http://www.kegel.com/ssl/)
Transport Security Layer - Wikipedia (http://en.wikipedia.org/wiki/
Transport_Layer_Security)

https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en

Chapter 5: Overview of CyaSSL

I. Overview

CyaSSL is a small and fast SSL/TLS implementation written in the C programming
language. A description and general diagram of the SSL protocol can be found in
Chapter 4: SSL/TLS Overview. CyaSSL is primarily targeted at embedded and RTOS
environments because of both its speed and size, but is commonly applied in standard
operating environments as well because of its royalty free pricing and cross platform
portability. CyaSSL supports the industry standards up to the current TLS 1.2 level,
and is up to 20 times smaller than OpenSSL. User benchmarking and feedback reports
dramatically better performance from CyaSSL over OpenSSL.

CyaSSL is built for maximum portability in ANSI standard C, and is very easy to
compile on new platforms. CyaSSL supports the C programming language as a primary
interface, but also supports several other host languages, including Java, PHP, Perl,
and Python (through a swig interface). If you have interest in hosting CyaSSL in another
programming language we do not currently support, please contact us. The following
table lists features included in the most recent release of CyaSSL.

CyaSSL Features
(version 1.6.5)

Benefits

SSL version 3 and TLS versions 1, 1.1 and 1.2
 (client and server)

Support for the most up to date standards
with backwards compatibility

Minimum size of 30-100kb, depending on build
options and operating environment

Small build size for use in resource
constrained environments

Runtime memory usage between 5-50kb Minimal dynamic memory use

DTLS support (client and server) Streaming Multimedia

OpenSSL compatibility layer Standard API and ease of migration from
OpenSSL

MySQL integration Wide distribution and testing

http://www.google.com/url?q=http%3A%2F%2Fswig.org%2F&sa=D&sntz=1&usg=AFQjCNHHhhSUBuFZr74XZJv1s-ToXU9ecQ
http://www.google.com/url?q=http%3A%2F%2Fswig.org%2F&sa=D&sntz=1&usg=AFQjCNHHhhSUBuFZr74XZJv1s-ToXU9ecQ

zlib compression support Highly configurable compression support

RSA Key Generation Fast run-time key generation support

PSK Pre-Shared Keys Avoid RSA operations in limited
environments

Simple API Easy to learn and use

PEM and DER certificate support No need to reconfigure certificates or
keys

Intel AES-NI support Super fast chip level encryption

Client authentication support Use certificates to verify clients

Sniffer support Decode SSL encrypted packets easily

Supported Algorithms
- MD2, MD4, MD5, SHA-1, SHA-512, RIPEMD
- DES, 3DES, AES, ARC4, RABBIT, HC-128
- RSA, DSS, DH
- HMAC, PBKDF2

- Multiple hashing functions available
- 3 block ciphers and 3 stream ciphers
- 3 Public key options
- Password based key derivation

Supported Web Servers
- GoAhead, Mongoose, Lighttpd et al

Multiple lightweight embedded web server
options. CyaSSL is also used in the
yaSSL Embedded Web Server.

(Table 1: CyaSSL Features)

II. Supported Cipher Suites

The following cipher suites are supported by the CyaSSL embedded SSL library. A
cipher suite is a combination of authentication, encryption, and message authentication
code (MAC) algorithms which are used during the TLS or SSL handshake to negotiate
security settings for a connection.

Each cipher suite defines a key exchange algorithm, a bulk encryption algorithm, and a
message authentication code algorithm (MAC). They key exchange algorithm (RSA,
DSS, DH) determines how the client and server will authenticate during the handshake

process. The bulk encryption algorithm (DES, 3DES, AES, ARC4, RABBIT, HC-128),
including block ciphers and stream ciphers, is used to encrypt the message stream.
The message authentication code (MAC) algorithm (MD2, MD5, SHA-1, SHA-512,
RIPEMD) is a hash function used to create the message digest.

CyaSSL Cipher Suites
(version 1.6.0)

TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_PSK_WITH_AES_256_CBC_SHA
TLS_PSK_WITH_AES_128_CBC_SHA

TLS Cipher Suites

SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL Cipher Suites

TLS_RSA_WITH_HC_128_CBC_MD5
TLS_RSA_WITH_HC_128_CBC_SHA
TLS_RSA_WITH_RABBIT_CBC_SHA

TLS Cipher Suites with Stream Ciphers

(Table 2: CyaSSL Cipher Suites)

III. Choosing the Correct yaSSL Technology

Getting started with either CyaSSL or yaSSL begins with evaluating your project and
usage needs. Common requirements for an SSL library include:

1. Small footprint!
2. Best available performance (Performance is a high priority for many, but it almost

always comes with trade offs)
3. Direct access to the crypto library API
4. Specific Operating System and chipset requirements
5. OpenSSL compatibility
6. Compiler Restrictions
7. Host language preferences
8. Interest and ability to use assembly level optimizations
9. Hardware being used

To meet these needs, we offer multiple product options. These options include:
1. CyaSSL: Our full featured C based embedded SSL implementation.
2. yaSSL: Our C++ embedded SSL implementation.
3. CTaoCrypt / TaoCrypt: Our bundled or stand alone cryptography libraries.
4. Our OpenSSL compatibility layer.
5. Custom performance optimizations for specialized hardware through our

consulting offerings.

CyaSSL is the optimal choice when minimal size and maximum performance in an
embedded environment is the top priority. The most active development is taking place
on CyaSSL with new feature additions and optimizations. yaSSL may be your best
choice if you are a C++ aficionado and like to work under the hood. CTaoCrypt and
TaoCrypt provide our standalone crypto library, which is callable from within CyaSSL
and yaSSL. The OpenSSL compatibility layer is included with both CyaSSL and yaSSL
as well.

IV. Why Developers Choose CyaSSL

There are many reasons to choose CyaSSL as your embedded SSL solution. The top
reasons include size (CyaSSL can be built as small as 30k), CyaSSL supports the
newest standards: TLS 1.1 and 1.2, DTLS, and Stream Ciphers, it is multi-platform,
royalty free, and contains an OpenSSL compatibility API to ease porting into older
applications. For a complete feature list, see the CyaSSL Product Page (http://
yassl.com/yaSSL/Products_cyassl.html).

We continue to improve and add to the CyaSSL feature set. If you are looking for
something we don’t currently offer, please contact us.

V. Product Release Information

We regularly post update information on Twitter. For additional release information, you
can keep track of our projects on Freshmeat, follow us on Facebook, or follow our daily
blog.

CyaSSL (http://freshmeat.net/projects/cyassl/)
TaoCrypt (http://freshmeat.net/projects/taocrypt/)
yaSSL on Twitter (http://twitter.com/CyaSSL)
yaSSL on Facebook (http://www.facebook.com/pages/YaSSL/147081235315602)
Daily Blog (http://yassl.com/yaSSL/News/News.html)

http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en
https://docs0.google.com/document/d/1Go0e-Eu-fArM0hN4pt7v1QLN02EkClm81i0ZfFHbgRM/edit?hl=en

Chapter 6: Building CyaSSL

CyaSSL was written with portability in mind, and should generally be easy to build on
most systems. If you have difficulty building CyaSSL, do not hesitate to seek support
through our support forums (http://www.yassl.com/forums) or contact us directly at
support@yassl.com.

I. Downloading CyaSSL

CyaSSL may be downloaded from the yaSSL website Download page as a ZIP file:

http://yassl.com/yaSSL/Download.html

After downloading the ZIP file, unzip the file using the unzip command. To use native
line endings, enable the “-a” modifier when using unzip. From the unzip man page,
the “-a” modifier functionality is described:

“The -a option causes files identified by zip as text files (those with the `t' label in zipinfo
listings, rather than `b') to be automatically extracted as such, converting line endings,
end-of-file characters and the character set itself as necessary. (For example, Unix
files use line feeds (LFs) for end-of-line (EOL) and have no end-of-file (EOF) marker;
Macintoshes use carriage returns (CRs) for EOLs; and most PC operating systems use
CR+LF for EOLs and control-Z for EOF. In addition, IBM mainframes and the Michigan
Terminal System use EBCDIC rather than the more common ASCII character set, and
NT supports Unicode.)”

II. Building on *nix

When building CyaSSL on Linux, *BSD, OS X, Solaris, or other *nix like systems, use
the autconf system. To build CyaSSL you only need to run two commands:

./configure

make

To install CyaSSL run:

make install

http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA

You may need superuser privileges to install, in which case proceed the command with
sudo:

sudo make install

To test the build run the testsuite program from the testsuite directory.

III. Windows

MSVC 6: Because some developers still use MSVC6, CyaSSL includes project files
and a workspace for it. Though it is now deprecated and no longer supported.

VS 2005 / VS 2008: Solutions are included for Visual Studio 2005/2008 in the root
directory of the install.

To test each build choose Build All and then run the testsuite program.

IV. Building in a non-standard environment

While not officially supported, we try to help people wishing to build CyaSSL in a non
standard environment, particularly with embedded and cross-compilation systems.
Below are some notes on getting started with this.

1. Place all of the .c files from src/ and ctaocrypt/src into the same directory.

2. Place all of the .h files from include/ and ctaocrypt/include into the same directory
as above.

3. Create an openssl directory below the directory containing the files above and

place all the .h files from include/openssl into the openssl directory.

4. Even though all of the CyaSSL headers are now in the same directory as the
source files some build systems will still want to explicitly know where the header
files are so you may need to specify that.

5. CyaSSL defaults to a little endian system unless the configure process detects

big endian. Since you aren't using the configure process you'll need to define
BIG_ENDIAN_ORDER if you are using a big endian system.

6. CyaSSL benefits speed wise from having a 64 bit type available. The configure
process determines if long or long long is 64 bits and if so sets up a define. So
if sizeof(long) is 8 bytes on your system define SIZEOF_LONG 8. If it isn't but
sizeof(long long) is 8 bytes then define SIZEOF_LONG_LONG 8.

7. Try and build the library, and let us know if you run into any problems. If you

need help, then contact us at info@yassl.com.

8. Some defines that can modify the build are listed below:

CYASSL_CALLBACKS is an extension that allows debugging callbacks through the
use of signals in an environment without a debugger, it is off by default. It can also
be used to set up a timer with blocking sockets. Please see the "CyaSSL Extensions
Reference" section below for more information.

SINGLE_THREADED is a switch that turns off the use of mutexes. CyaSSL currently
only uses one for the session cache, if your use of CyaSSL is always single threaded
you can turn this on.

HAVE_LIBZ is an extension that can allow for compression of data over the connection.
It is off by default and normally shouldn't be used, see the note below under configure
notes libz.

NO_* removes parts from the build, you can also remove the respective source file as
well from the build but not the header file.

NO_RC4 removes the use of the ARC4 steam cipher form the build. ARC4 is built in by
default because it is still popular and widely used.

NO_DES removes the use of DES3 encryptions. DES3 is built in by default because
some older servers still use it and it's required by SSL 3.0.

NO_DH and NO_AES are the same as the two above, they are widely used.

NO_RABBIT and NO_HC128 remove stream cipher extensions from the build.

NO_MD4 removes MD4 from the build, MD4 is broken and shouldn't be used.

NO_DSA removes DSA since it's being phased out of popular use.

NO_PSK turns off the use of the pre shared key extension. It is built in by default.

OPENSSL_EXTRA builds even more OpenSSL compatibility into the library. It is off by
default.

NO_CYASSL_CLIENT removes calls specific to the client and is for a server only build.
You should only use this if you want to remove a few calls for the sake of size.

NO_CYASSL_SERVER likewise removes calls specific to the server side.

NO_FILESYSTEM is used if stdio isn't available to load certificates and key files. This
enables the use of buffer extensions to be used instead of the file ones.

NO_TLS turns off TLS which isn't recommended.

NO_INLINE disables the automatic inlining of small heavily used functions. Turning this
on will slow down CyaSSL and actually make it bigger since these are small functions,
usually much smaller then function call setup/return.

NO_MAIN_DRIVER is used in the normal build environment to determine whether a
test application is called on its own or through the testsuite driver application. You'll
only need to use it with the test files; test.c, client.c, server.c, echoclient.c, echoserver.c,
and testsuite.c

DEBUG_CYASSL builds in the ability to debug to steer. It is off by default.

TEST_IPV6 turns on testing of IPV6 in the test applications. CyaSSL proper is IP
neutral, but the testing applications use IPV4 by default.

CYASSL_DTLS turns on the use of DTLS or datagram TLS, this isn't widely supported
or used so it is off by default.

V. ./configure Options

--enable-debug Enable CyaSSL debugging support,
disabled by default

--enable-small Enable the smallest possible build,
disabled by default

--enable-singleThreaded Enable single threaded mode, no multi
thread protections

--enable-dtls Enable CyaSSL DTLS support, this is
disabled by default

--enable-opensslExtra Enable extra OpenSSL API compatibility,
increases the size

--enable-ipv6 Enable testing of IPv6, CyaSSL proper is
IP neutral

--enable-fastmath Enable fast math for BigInts, default is
disabled

--enable-fasthugemath Enable fast math + huge code for BigInt,
default is disabled

--enable-bigcache Enable a big session cache, default is
disabled

--enable-hugecace Enable a huge session cache, default is
disabled

--enable-sniffer Enable CyaSSL sniffer support

--enable-aesni Enable CyaSSL AES-NI support

--enable-ripemd Enable CyaSSL RIPEMD-160 support

--enable-sha512 Enable CyaSSL SHA-512 support

--enable-sessioncerts Enable session cert storing

--enable-keygen Enable key generation

--enable-certgen Enable cert generation

--disable-shared Disable the building of a shared CyaSSL
library

--disable-static Disable the building of a static CyaSSL
library

--with-libz Optionally include libz for compression

--enable-psk Enable Pre Shared Key support

--enable-hc128 Enable streaming cipher HC-128

--enable-ntru Enable a build with NTRU (license
required)

./configure Notes

Debug - enabling debug support allows easier debugging by compiling with debug
information and defining the constant DEBUG_CYASSL which outputs messages to
stderr. To turn debug logging on at runtime call CyaSSL_Debugging_ON(). To turn
debug logging off at runtime call CyaSSL_Debugging_OFF().

Small - enabling the small build option will create the smallest possible CyaSSL
library. This will also remove features that may be desired like TLS, HMAC, SHA-256,
error strings, or others. Only use this if the default build is too big and you don't mind
losing features. A full list of features which are disabled are TLS, HMAC, AES, DES3,
SHA256, Error Strings, HC128, RABBIT, PSK, DSA, and DH.

Single Threaded - enabling single threaded mode turns off multi thread protection of
the session cache. Only enable single threaded mode if you know your application is
single threaded or your application is multi threaded and only one thread at a time will
be accessing the library.

DTLS - enabling DTLS support allows users of the library to also run DTLS in addition
to TLS and SSL. DTLS support is still experimental so please send us any comments/
questions/suggestions.

OpenSSL Extra - enabling openssl extra includes a larger set of OpenSSL compatibility
functions. The basic build will enable enough functions for most TLS/SSL needs. But if
you're porting an application that uses 10s or 100s of OpenSSL calls then enabling this
will allow better support. Our OpenSSL compatibility layer is under active development,
so if there is a function missing that you need, then please contact us and we'll try to
help.

IPV6 - enabling IPV6 changes the test applications to use IPv6 instead of IPv4. CyaSSL
proper is IP neutral, either version can be used, but currently the test applications are IP
dependent, IPv4 by default.

fastmath - enabling fastmath will speed up public key operations like RSA, DH,
and DSA. This switches the big integer library to a faster one that uses assembly if
possible. Assembly inclusion is dependent on compiler and processor combinations.
Some combinations will need additional configure flags and some may not be possible.
Help with optimizing fastmath with new assembly routines is available on a consulting
basis.

On ia32, for example, all of the registers need to be available so high optimization and
omitting the frame pointer needs to be taken care of. CyaSSL will add "-O3 -fomit-
frame-pointer" to GCC for non debug builds. If you're using a different compiler you may
need to add these manually to CFLAGS during configure.

OS X will also need "-mdynamic-no-pic" added to CFLAGS. In addition, if you're building
in shared mode for ia32 on OS X you'll need to pass options to LDFLAGS as well:

LDFLAGS="-Wl,-read_only_relocs,warning"

This gives warning for some symbols instead of errors.

fastmath also changes the way dynamic and stack memory is used. The normal math
library uses dynamic memory for big integers. fastmath uses fixed size buffers that hold
4096 bit integers by default, allowing for 2048 bit by 2048 bit multiplications. If you need
4096 bit by 4096 bit multiplications then change FP_MAX_SIZE in tfm.h. A couple of
functions in the library use several temporary big integers meaning the stack can get
relatively large. This should only come into play on embedded systems or in threaded
environments where the stack size is set to a low value. If stack corruption occurs with
fastmath during public key operations in those environments increase the stack size to
accommodate the stack usage.

fasthugemath - enabling fasthugemath includes support for the fastmath library and
greatly increases the code size by unrolling loops for popular key sizes during public
key operations. Try using the benchmark utility before and after using fasthughmath to
see if the slight speedup is worth the increased code size.

bigcache - enabling the big session cache will increase the session cache from 33
sessions to 1055 sessions. The default session cache size of 33 is adequate for TLS

clients and embedded servers. The big session cache is suitable for servers that aren't
under heavy load, basically allowing 200 new sessions per minute or so.

hugecache - enabling the huge session cache will increase the session cache size to
65,791 sessions. This option is for servers that are under heavy load, over 13,000 new
sessions per minute are possible or over 200 new sessions per second.

sniffer - enabling sniffer support will allow the collection of SSL traffic packets as well
as the ability to decrypt those packets with the correct key file.

aesni - enabling AES-NI support will allow AES instructions to be called directly from
the chip when using an AES-NI supported chip. This provides speed increases for AES
functions.

keygen - enabling support for RSA key generation allows generating keys of varying
lengths up to 4096 bits. CyaSSL provides both DER and PEM formatting.

certgen - enables support for self-signed x509 v3 certificate generation.

disable shared - disabling the shared library build will exclude a CyaSSL shared library
from being built. By default both a shared and static library are built. During testing,
integration, or on limited systems you can save time and space by disabling either
library from the build process.

disable static - disabling the static library build will exclude a CyaSSL static library from
being built.

libz - enabling libz will allow compression support in CyaSSL from the libz library. Think
twice about including this option and using it by calling CyaSSL_set_compression()
 . While compressing data before sending decreases the actual size of the messages
being sent and received, the amount of data saved by compression usually takes longer
in time to analyze then it does to send it raw on all but the slowest of networks.

PSK - Pre Shared Key support is now off by default since it’s not commonly used. To
enable this feature simply turn it on, no other action is required.

HC-128 - Though we really like the speed of this steaming cipher, it takes up some
room in the cipher union for users who aren’t using it. To keep the default build small in
as many aspects as we can, we’ve disabled this cipher by default. In order to use this
cipher or the corresponding cipher suite just turn it on, no other action is required.

NTRU - This turns on the ability for CyaSSL to use NTRU cipher suites. An NTRU
license is required to build and use these. Without the NTRU library the build will fail.

Chapter 7 : Getting Started

I. General Description

CyaSSL is about 10 times smaller than yaSSL and up to 20 times smaller than
OpenSSL when using the compile options described below. User benchmarking and
feedback also reports dramatically better performance from CyaSSL vs. OpenSSL in
the vast majority of standard SSL operations.

For instructions on the build process please see Chapter 6, above.

II. Testsuite

The testsuite program is designed test the ability of CyaSSL and its cryptography library
CTaoCrypt to run on the system. On a successful run you should see output like:

MD5 test passed!

MD4 test passed!

SHA test passed!

SHA-256 test passed!

HMAC test passed!

ARC4 test passed!

HC-128 test passed!

Rabbit test passed!

DES test passed!

DES3 test passed!

AES test passed!

RANDOM test passed!

RSA test passed!

DH test passed!

DSA test passed!

OPENSSL test passed!

peer's cert info:

issuer : /C=US/ST=Oregon/L=Portland/O=yaSSL/CN=www.yassl.com/

emailAddress=info@yassl.com

subject: /C=US/ST=Oregon/L=Portland/O=yaSSL/CN=www.yassl.com/

emailAddress=info@yassl.com

peer's cert info:

issuer : /C=US/ST=Oregon/L=Portland/O=sawtooth/CN=www.sawtooth-

consulting.com/emailAddress=info@yassl.com

subject: /C=US/ST=Oregon/L=Portland/O=taoSoftDev/

CN=www.taosoftdev.com/emailAddress=info@yassl.com

Client message: hello cyassl!

Server response: I hear you fa shizzle!

sending server shutdown command: quit!

client sent quit command: shutting down!

b88596cd2362310b2506f9d73693cefd input

b88596cd2362310b2506f9d73693cefd output

All tests passed!

This indicates that everything is configured and built correctly. If any of the tests fail
make sure the build system was set up correctly. Likely culprits include having the
wrong endianness or not properly setting the 64 bit type. If you've set anything to the
non-default settings try removing those and rebuilding, retesting.

III. Client Example

You can use the client example found in examples/client to test CyaSSL against any
SSL server. To test against secure gmail try:

./client gmail.google.com 443

peer's cert info:

issuer : /C=US/O=Google Inc/CN=Google Internet Authority

subject: /C=US/ST=California/L=Mountain View/O=Google Inc/

CN=*.google.com

SSL connect ok, sending GET...

Server response: HTTP/1.0 302 Found

Cache-Control: private

Location: http://www.google.com

Content-Type: text/html; charset=UTF-8

Content-Length: 218

Date: Tue, 16 Feb 2010 22:25:02 GMT

Server: GFE/2.0

X-XSS-Protection: 0

This tells the client to connect to gmail.google.com on the https port of 443 and sends a
generic GET. The rest is the initial output from the server that fits into the read buffer.

If no command line arguments are given then the client attempts to connect to the

localhost on the CyaSSL default port of 11111. It also loads the client certificate in case
the server wants to perform client authentication.

If one command line argument is given the client attempts to connect to the localhost
at port 11111 the argument number of times and gives the average time in milliseconds
that it took to perform SSL_connect(). For example,

./client 100

SSL_connect avg took: 0.653 milliseconds

If you'd like to change the default host from localhost or the default port from 11111 you
can change these settings in test.h located in /examples. The variables yasslIP and
yasslPort control these settings. Rebuild all of the examples including testsuite when
changing these settings otherwise the test programs won't be able to connect to each
other.

IV. Server Example

The server example demonstrates a simple SSL server that performs client
authentication and fails if the client doesn't present a certificate. Only one client
connection is accepted and then the server quits. The client example in normal mode
(no command line arguments) will work just fine against the example server. But if you
specify command line arguments for the client example then a client certificate isn't
loaded and the SSL_connect() will fail. The server will report an error "-245, peer didn't
send cert".

V. EchoServer Example

The echoserver example sits in an endless loop waiting for an unlimited number of
client connections. Whatever the client sends the echoserver echos back. Client
authentication isn't performed so the example client can be used against the echoserver
in all 3 modes. Four special commands aren't echoed back and instruct the echoserver
to take a different action.

1. "quit" If the echoserver receives the string "quit" it will shutdown.

2. "break" If the echoserver receives the string "break" it will stop the current
session but continue handling requests. This is particularly useful for DTLS
testing.

3. "printstats" If the echoserver receives the string "printstats" it will print out
statistics for the session cache.

4. "GET" If the echoserver receives the string "GET" it will handle it as an http get

and send back a simple page with the message "greeting from CyaSSL". This
allows testing of various TLS/SSL clients like Safari, IE, Firefox, gnutls, and the
like against the echoserver example.

The output of the echoserver is echoed to stdout unless NO_MAIN_DRIVER is
defined. You can redirect output through the shell or through the first command line
argument. To create a file named output.txt with the output from the echoserver run:

./echoserver outupt.txt

VI. EchoClient Example

The echoclient example can be run in interactive mode or batch mode with files. To run
in interactive mode and write 3 strings "hello", "cyassl", and "quit" results in:

./echoclient

hello

hello

cyassl

cyassl

quit

sending server shutdown command: quit!

To use an input file specify the file name on the command line as the first argument. To
echo the contents of the file input.txt issue:

./echoclient input.txt

If you want the result to be written out to a file you can specify the output file name as
an additional command line argument. The following command will echo the contents of
file input.txt and write the result from the server to output.txt:

./echoclient input.txt output.txt

The testsuite program does just that but hashes the input and output files to make sure
that the client and server were getting/sending the correct and expected results.

VII. Benchmark

The benchmark utility located in ctaocrypt/benchmark can be used to benchmark the
cryptographic functionality of CTaoCrypt. Typical output may look like:

./benchmark

AES 5 megs took 0.043 seconds, 116.50 MB/s

ARC4 5 megs took 0.026 seconds, 194.72 MB/s

HC128 5 megs took 0.006 seconds, 901.07 MB/s

RABBIT 5 megs took 0.017 seconds, 299.11 MB/s

3DES 5 megs took 0.284 seconds, 17.62 MB/s

MD5 5 megs took 0.015 seconds, 334.59 MB/s

SHA 5 megs took 0.031 seconds, 163.16 MB/s

SHA-256 5 megs took 0.052 seconds, 96.28 MB/s

RSA 1024 encryption took 0.06 milliseconds, avg

RSA 1024 decryption took 0.61 milliseconds, avg

DH 1024 key generation 0.25 milliseconds, avg

DH 1024 key agreement 0.27 milliseconds, avg

This is especially useful for comparing the public key speed before and after changing
the math library. You can test the results using the normal math library, the fastmath
library, and the fasthugemath library.

VIII. Changing a Client Application to Use CyaSSL

1. Include the CyaSSL OpenSSL compatibility header

#include <openssl/ssl.h>

2. Change all calls from read() (or recv()) to SSL_read() so

result = read(fd, buffer, bytes);

becomes

result = SSL_read(ssl, buffer, bytes);

3. Change all calls from write (or send) to SSL_write() so

result = write(fd, buffer, bytes);

becomes

result = SSL_write(ssl, buffer, bytes);

4. You can manually call SSL_connect() but that's not even necessary, the first

call to SSL_read() or SSL_write() will initiate the SSL_connect() if it hasn't taken
place yet.

5. Initialize CyaSSL and the SSL_CTX. You can use one SSL_CTX no matter how

many SSL objects you end up creating. Basically you'll just have to load CA
certificates to verify the server you're connecting to. Basic initialization looks like:

InitCyaSSL();

SSL_CTX* ctx;

if ((ctx = SSL_CTX_new(TLSv1_client_method())) == NULL) {

 fprintf(stderr, "SSL_CTX_new error.\n");

 exit(EXIT_FAILURE);

}

if (SSL_CTX_load_verify_locations(ctx,"./ca-cert.pem",0) !=

SSL_SUCCESS) {

 fprintf(stderr, "Error loading ./ca-cert.pem,"

 " please check the file.\n");

 exit(EXIT_FAILURE);

}

6. Create the SSL object after each tcp connect and associate the file descriptor

with the session:

// after connecting to socket fd

SSL* ssl;

if ((ssl = SSL_new(ctx)) == NULL) {

 fprintf(stderr, "SSL_new error.\n");

 exit(EXIT_FAILURE);

}

SSL_set_fd(ssl, fd);

7. Error checking. Each SSL_read() SSL_write() call will return the number of bytes
written upon success, 0 upon connection closure, and -1 for an error, just like
read() and write(). In the event of an error you can use two calls to get more
information about the error:

char errorString[80];

int err = SSL_get_error(ssl, 0);

ERR_error_string(err, buffer);

If you are using non blocking sockets you can test for errno EAGAIN/
EWOULDBLOCK or more correctly you can test the specific error code for
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE.

8. Cleanup. After each SSL object is done being used you can free it up by calling:

SSL_free(ssl);

When you are completely done using SSL altogether you can free the SSL_CTX
object by calling:

SSL_CTX_free(ctx);

FreeCyassl();

IX. Changing a Server Application to Use CyaSSL

1. Follow the instructions above for a client except change the client method call in
step 5 to a server one, so

SSL_CTX_new(TLSv1_client_method())

becomes

SSL_CTX_new(TLSv1_server_method())

or even

SSL_CTX_new(SSLv23_server_method())

To allow SSLv3 and TLSv1+ clients to connect to the server.

2. Add the server's certificate and key file to the initialization in step 5 above:

if (SSL_CTX_use_certificate_file(ctx,"./server-cert.pem",

SSL_FILETYPE_PEM) != SSL_SUCCESS) {

 fprintf(stderr, "Error loading ./server-cert.pem,"

 " please check the file.\n");

 exit(EXIT_FAILURE);

}

if (SSL_CTX_use_PrivateKey_file(ctx,"./server-key.pem",

 SSL_FILETYPE_PEM)

 != SSL_SUCCESS) {

 fprintf(stderr, "Error loading ./server-key.pem,"

 " please check the file.\n");

 exit(EXIT_FAILURE);

}

Chapter 8: Additional Features

I. Stream Ciphers
Ever wondered what the difference between a block cipher and a stream cipher was?
A block cipher has to be encrypted in chunks that are the block size for the cipher. For
example, AES has block size of 16 bytes. So if you're encrypting a bunch of small, 2 or
3 byte, chucks back and forth, over 80% of the data is useless padding, decreasing the
speed of the encryption/decryption process and needlessly wasting network bandwidth
to boot. Basically block ciphers are designed for large chucks of data, have block sizes
requiring padding, and use a fixed, unvarying transformation.

Stream ciphers work well for large or small chucks of data. They are suitable for smaller
data sizes because no block size is required. If speed is a concern, stream ciphers are
your answer, because they use a simpler transformation that typically involves an xor'd
keystream. So if you need to stream media, encrypt various data sizes including small
ones, or have a need for a fast cipher then stream ciphers are your best bet.

SSL uses RC4 as the default stream cipher. It's a pretty good one, though it's getting a
little older. There are some interesting advancements being made in the field and nearly
two years ago CyaSSL added two ciphers from the eStream project into the code base,
RABBIT and HC-128. RABBIT is nearly twice as fast as RC4 and HC-128 is about 5
times as fast! So if you've ever decided not to use SSL because of speed concerns,
using CyaSSL's stream ciphers should lessen or eliminate that performance doubt.

RC4, RABBIT and HC-128 stream ciphers are built by default into CyaSSL. Please
see the examples or the documentation for usage. Links to these ciphers can be found
below:

Stream Cipher http://en.wikipedia.org/wiki/Stream_cipher

Block Cipher http://en.wikipedia.org/wiki/Block_cipher

HC-128 http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

Rabbit http://www.cryptico.com/Files/filer/rabbit_fse.pdf

RC4 http://en.wikipedia.org/wiki/Rc4

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStream_cipher&sa=D&sntz=1&usg=AFQjCNELm4GB3kwqsUT64OxlvMI1oDXMBA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBlock_cipher&sa=D&sntz=1&usg=AFQjCNGiZWxmq_0TP7vK5WSF-YuuG9TPFg
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.ecrypt.eu.org%2Fstream%2Fp3ciphers%2Fhc%2Fhc128_p3.pdf&sa=D&sntz=1&usg=AFQjCNF9fxIZviayfsLi59rWjYYV-ye2EQ
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fwww.cryptico.com%2FFiles%2Ffiler%2Frabbit_fse.pdf&sa=D&sntz=1&usg=AFQjCNGepogcShNMHBQA9T_c28jdK1k90w
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRc4&sa=D&sntz=1&usg=AFQjCNGYvV9dL5YNo7UJRIBRD2463e3C0A

II. AES-NI Support

AES is a key encryption standard used by governments worldwide, which CyaSSL
has always supported. Intel has released a new set of instructions that is a faster way
to implement AES. CyaSSL is currently the first SSL library to fully support the new
instruction set for production environments.

Essentially, Intel has added AES instructions at the chip level that perform the
computational-intensive parts of the AES algorithm, boosting performance.

We have added the functionality to CyaSSL to allow it to call the instructions directly
from the chip, instead of running the algorithm in software. This means that when you’re
running CyaSSL on a chipset that supports AES-NI, you can run your AES crypto 5-10
times faster!

References and further reading, ordered from general to specific are listed below. See
the CyaSSL README for instructions on building CyaSSL with AES-NI.

AES (Wikipedia) http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AES-NI (Wikipedia) http://en.wikipedia.org/wiki/AES_instruction_set

AES-NI (Intel Software
Network page)

http://software.intel.com/en-us/articles/intel-advanced-
encryption-standard-instructions-aes-ni/

III. Digitally Signing and Authenticating with CyaSSL

CyaSSL is a popular tool for digitally signing applications, libraries, or files prior to
loading them on embedded devices. Most desktop and server operating systems
allow creation of this type of functionality through system libraries, but stripped down
embedded operating systems do not. The reason that embedded RTOS environments
do not include digital signature functionality is because it has historically not been a
requirement for most embedded applications. In today’s world of connected devices and
heightened security concerns, digitally signing what is loaded onto your embedded or
mobile device has become a top priority.

Examples of embedded connected devices where this requirement was not found in

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAdvanced_Encryption_Standard&sa=D&sntz=1&usg=AFQjCNHAmw5_Yv8x1YXjpeZmrGOcM2ZFxw
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FAES_instruction_set&sa=D&sntz=1&usg=AFQjCNHbM1kssHl9ElOKhayzDPLDJ1E1ww
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg
http://www.google.com/url?q=http%3A%2F%2Fsoftware.intel.com%2Fen-us%2Farticles%2Fintel-advanced-encryption-standard-instructions-aes-ni%2F&sa=D&sntz=1&usg=AFQjCNGU_cLZPch26ya2WNhb0yZOr-crlg

years past include set top boxes, DVR’s, POS systems, both VoIP and mobile phones,
and even automobile-based computing systems. Because CyaSSL supports the key
embedded and real time operating systems, encryption standards and authentication
functionality, it is a natural choice for embedded systems developers to use when
adding digital signature functionality.

Generally, the process for setting up code and file signing on an embedded device are
as follows:

1. The embedded systems developer will generate an RSA key pair.
2. A server-side script-based tool is developed

a. The server side tool will create a hash of the code to be loaded on the
device with SHA-256 for example.

b. The hash is then digitally signed, also called RSA private encrypt.
c. A package is created that contains the code along with the digital

signature.
3. The package is loaded on the device along with a way to get the RSA public

key. The hash is re-created on the device then digitally verified (also called RSA
public decrypt) against the existing digital signature.

Benefits to enabling digital signatures on your device:

1. Easily enable a secure method for allowing third parties to load files to your
device.

2. Ensure against malicious files finding their way on to your device.
3. Digitally secure firmware updates
4. Ensure against firmware updates from unauthorized parties

More background on code signing:

A great article on the topic at embedded.com: http://embedded.com/design/
216500493?printable=true

General information on code signing:
http://en.wikipedia.org/wiki/Code_signing

IV. IPv6 Support

If you are an adopter of IPv6 and want to use an embedded SSL implementation
then you may have been wondering if CyaSSL supports IPv6. The answer is yes, we
do support CyaSSL running on top of IPv6. Note that our current test applications
default to IPv4, so as to apply to a broader number of systems. Please see http://

http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2F&sa=D&sntz=1&usg=AFQjCNEypdfaYNPWcIZmzQap_lM3AdULwA
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2F&sa=D&sntz=1&usg=AFQjCNEypdfaYNPWcIZmzQap_lM3AdULwA
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2F&sa=D&sntz=1&usg=AFQjCNEypdfaYNPWcIZmzQap_lM3AdULwA
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2F&sa=D&sntz=1&usg=AFQjCNEypdfaYNPWcIZmzQap_lM3AdULwA
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fembedded.com%2Fdesign%2F216500493%3Fprintable%3Dtrue&sa=D&sntz=1&usg=AFQjCNElXqixlsmNNV3r3E9eQCchkTvGXg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCode_signing&sa=D&sntz=1&usg=AFQjCNGMTXTI2z5CxBq7IriJKCzdUoI8rQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ

www.yassl.com/yaSSL/Docs_Building_CyaSSL.html --enable-ipv6 to change the test
applications to IPv6.

Further information on IPv6 can be found here:
http://en.wikipedia.org/wiki/IPv6.

V. SSL Sniffer Support

Beginning with the CyaSSL 1.5.0 release, we have provided a build option allowing the
CyaSSL embedded SSL library to be built with SSL Sniffer functionality. This means
that you can collect SSL traffic packets and with the correct key file, are able to decrypt
them as well. This could be useful for several reasons, including:

● Analyzing Network Problems
● Detecting network misuse by internal and external users
● Monitoring network usage and data in motion
● Debugging client/server communications

To enable sniffer support, build CyaSSL with the --enable-sniffer option on *nix or use
the vcproj files on Windows. You will need to have pcap installed on *nix or WinPcap
on Windows. There are five main sniffer functions which can be found in sniffer.h. They
are listed below with a short description of each:

ssl_SetPrivateKey - Sets the private key for a specific server and port.
ssl_DecodePacket - Passes in a TCP/IP packet for decoding.
ssl_Trace - Enables / Disables debug tracing to the traceFile.
ssl_InitSniffer - Initialize the overall sniffer.
ssl_FreeSniffer - Free the overall sniffer.

To look at CyaSSL's sniffer support and see a complete example, please see
the "snifftest" app in the "ssSniffer/sslSnifferTest" folder from the CyaSSL download.

Keep in mind that because the encryption keys are setup in the SSL Handshake, the
handshake needs to be decoded by the sniffer in order for future application data to be
decoded. For example, if you are using "snifftest" with the CyaSSL example echoserver
and echoclient, the snifftest application must be started before the handshake begins
between the server and client.

VI. Thread Safety

http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNFliVPjFXjX3dJpaUj-PTNCSn6-tQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIPv6&sa=D&sntz=1&usg=AFQjCNEXrVpD13fmPx6IbfkJ4vt80x_UaQ

CyaSSL is thread safe by design. Multiple threads can enter the library simultaneously
without creating conflicts because CyaSSL avoids global data, static data, and the
sharing of objects. The user must still take care to avoid potential problems in two
areas.

A client may share an SSL object across multiple threads but access must be
synchronized, i.e., trying to read/write at the same time from two different threads with
the same SSL pointer is not supported.

CyaSSL could take a more aggressive (constrictive) stance and lock out other users
when a function is entered that cannot be shared but this level of granularity seems
counter-intuitive. All users (even single threaded ones) will pay for the locking and
multi-thread ones won't be able to re-enter the library even if they aren't sharing
objects across threads. This penalty seems much too high and CyaSSL leaves the
responsibility of synchronizing shared objects in the hands of the user.

Besides sharing SSL pointers, users must also take care to completely initialize an
SSL_CTX before passing the structure to SSL_new(). The same SSL_CTX can create
multiple SSLs but the SSL_CTX is only read during SSL_new() creation and any future
(or simultaneous changes) to the SSL_CTX will not be reflected once the SSL object is
created.

Again, multiple threads should synchronize writing access to a SSL_CTX and it is
advised that a single thread initialize the SSL_CTX to avoid the synchronization and
update problem described above.

Chapter 9: Extensions Reference

I. Startup and Exit

All applications should call InitCyaSSL() before using the library and call FreeCyaSSL()
at program termination. Currently these functions only initialize and free the shared
mutex for the session cache in multi-user mode but in the future they may do more so
it's always a good idea to use them.

II. Compression

CyaSSL supports data compression with the zlib library. The ./configure build
system detects the presence of this library, if you're building in some other way
define the constant HAVE_LIBZ and include the path to zlib.h for your includes.
Compression is off by default for a given cipher, to turn it on, use the function
CyaSSL_set_compression() before SSL connecting or accepting. Both the client and
server must have compression turned on in order for compression to be used.

III. CyaSSL Debugging

CyaSSL has support for debugging through log messages in environments where
debugging is limited. To turn logging on use the function CyaSSL_Debugging_ON() and
to turn it off use CyaSSL_Deubgging_OFF(). In a normal build (release mode) these
functions will have no effect. In a debug build define DEBUG_CYASSL to ensure these
functions are turned on.

IV. Domain Name check for server certificate

CyaSSL has an extension on the client that automatically checks the domain of the
server certificate. In OpenSSL mode nearly a dozen function calls are needed to
perform this. CyaSSL checks that the date of the certificate is in range, verifies the
signature, and additionally verifies the domain if you call

CyaSSL_check_domain_name(SSL* ssl, cons char* dn)

before calling SSL_connect(). CyaSSL will match the X509 issuer name of peer's server

certificate against dn (the expected domain name). If the names match SSL_connect()
will proceed normally, however if there is a name mismatch, SSL_connect() will return a
fatal error and SSL_get_error() will return DOMAIN_NAME_MISMATCH.

Checking the domain name of the certificate is an important step that verifies the
server is actually who it claims to be. This extension is intended to ease the burden of
performing the check.

V. No File System and using Certificates

Normally a file system is used to load private keys, certificates, and CAs. Since
CyaSSL is sometimes used in environments without a full file system an extension
to use memory buffers instead is provided. To use the extension define the constant
NO_FILESYSTEM and the following functions will be made available:

int CyaSSL_CTX_load_verify_buffer(SSL_CTX*, const unsigned char*,

 long)

int CyaSSL_CTX_use_certificate_buffer(SSL_CTX*, const unsigned

 char*, long, int)

int CyaSSL_CTX_use_PrivateKey_buffer(SSL_CTX*, const unsigned

 char*, long, int)

int CyaSSL_CTX_use_certificate_chain_buffer(SSL_CTX*,

 const unsigned char*,long)

Use these functions exactly like their counterparts that are named file instead of buffer.
And instead of providing a file name provide a memory buffer.

VI. HandShake Callback

CyaSSL has an extension that allows a HandShake CallBack to be set for connect or
accept. Use the extended functions:

int CyaSSL_connect_ex(SSL*, HandShakeCallBack, TimeoutCallBack,

 Timeval)

int CyaSSL_accept_ex(SSL*, HandShakeCallBack, TimeoutCallBack,

 Timeval)

HandShakeCallBack is defined as:

typedef int (*HandShakeCallBack)(HandShakeInfo*);

HandShakeInfo is defined in openssl/cyassl_callbacks.h (which should be added to a
non-standard build):

typedef struct handShakeInfo_st {

char cipherName[MAX_CIPHERNAME_SZ + 1]; /* negotiated name */

char packetNames[MAX_PACKETS_HANDSHAKE][MAX_PACKETNAME_SZ+1];

 /* SSL packet names */

int numberPackets; /* actual # of packets */

int negotiationError; /* cipher/parameter err */

} HandShakeInfo;

No dynamic memory is used since the maximum number of SSL packets in
a handshake exchange is known. Packet names can be accessed through
packetNames[idx] up to numberPackets. The callback will be called whether or not a
handshake error occured. Example usage is also in the client example.

VII. Timeout Callback

The same extensions as above are used, they can call be called with either, both, or
neither callbacks. TimeoutCallback is defined as:

typedef int (*TimeoutCallBack)(TimeoutInfo*);

Where TimeoutInfo looks like:

typedef struct timeoutInfo_st {

char timeoutName[MAX_TIMEOUT_NAME_SZ +1]; /*timeout Name*/

int flags; /* for future use*/

int numberPackets; /* actual # of packets */

PacketInfo packets[MAX_PACKETS_HANDSHAKE]; /* list of packets */

Timeval timeoutValue; /* timer that caused it */

} TimeoutInfo;

Again, no dynamic memory is used for this structure since a maximum number of SSL
packets is known for a handshake. Timeval is just a typedef for struct timeval.

PacketInfo is defined like this:

typedef struct packetInfo_st {

 char packetName[MAX_PACKETNAME_SZ + 1]; /* SSL name */

 Timeval timestamp; /* when it occured */

 unsigned char value[MAX_VALUE_SZ]; /* if fits, it's here */

 unsigned char* bufferValue; /* otherwise here (non 0) */

 int valueSz; /* sz of value or buffer */

} PacketInfo;

Here, dynamic memory may be used. If the SSL packet can fit in value then that's
where it's placed. valueSz holds the length and bufferValue is 0. If the packet is too
big for value, only Certificate packets should cause this, then the packet is placed in
bufferValue. valueSz still holds the size.

If memory is allocated for a Certificate packet then it is reclaimed after the callback
returns. The timeout is implemented using signals, specifically SIGALRM, and is thread
safe. If a previous alarm is set of type ITIMER_REAL then it is reset, along with the
correct handler, afterwards. The old timer will be time adjusted for any time CyaSSL
spends processing. If an existing timer is shorter than the passed timer, the existing
timer value is used. It is still reset afterwards. An existing timer that expires will be reset
if has an interval associated with it. The callback will only be issued if a timeout occurs.

See the client example for usage.

VIII. Pre Shared Keys

CyaSSL has added support for two ciphers with pre shared keys:

TLS_PSK_WITH_AES_256_CBC_SHA
TLS_PSK_WITH_AES_128_CBC_SHA

These new suites are automatically built into CyaSSL though they can be turned off
at build time with the constant NO_PSK. To only use these ciphers at runtime use the
function SSL_CTX_set_cipher_list().

On the client use the function SSL_CTX_set_psk_client_callback() to setup the
callback. The client example in CyaSSL_Home/examples/client/client.c gives
example usage for setting up the client identity and key, though the actual callback is
implemented in exampes/test.h.

CyaSSL supports identities and hints up to 128 octets and pre shared keys up to 64
octets.

IX. TLS 1.1 and 1.2

CyaSSL easily supports TLS 1.1 and TLS 1.2. You can use them by using the functions:

TLSv1_1_server_method(void);

TLSv1_1_client_method(void);

for TLS 1.1 or for TLS 1.2:

TLSv1_2_server_method(void);

TLSv1_2_client_method(void);

X. RSA Key Generation

CyaSSL supports RSA key generation of varying lengths up to 4096 bits. Key
generation is off by default but can be turned on during the ./configure process with:

--enable-keygen

or by defining CYASSL_KEY_GEN in Windows or non-standard environments. Creating
a key is easy, only requiring one function from rsa.h:

int MakeRsaKey(RsaKey* key, int size, long e, RNG* rng);

Where size is the length in bits and e is the public exponent, using 65537 is usually a
good choice for e. The following from ctaocrypt/test/test.c gives an example creating an
RSA key of 1024 bits:

RsaKey genKey;

RNG rng;

int ret;

InitRng(&rng);

InitRsaKey(&genKey, 0);

ret = MakeRsaKey(&genKey, 1024, 65537, &rng);

if (ret < 0)

 /* ret contains error */;

The RsaKey genKey can now be used like any other RsaKey. If you need to export the
key CyaSSL provides both DER and PEM formatting in asn.h. Always convert the key
to DER format first, and then if you need PEM use the generic DerToPem() function like
this:

byte der[4096];

int derSz = RsaKeyToDer(&genKey, der, sizeof(der));

if (derSz < 0)

 /* derSz contains error */;

The buffer der now holds a DER format of the key. To convert the DER buffer to PEM
use the conversion function:

byte pem[4096];

int pemSz = DerToPem(der, derSz, pem, sizeof(pem),

 PRIVATEKEY_TYPE);

if (pemSz < 0)

 /* pemSz contains error */;

The last argument of DerToPem() takes a type parameter, usually either
PRIVATEKEY_TYPE or CERT_TYPE. Now the buffer pem holds the PEM format of the
key.

XI. Certificate Generation

CyaSSL now supports x509 v3 certificate generation. Certificate generation is off by
default but can be turned on during the ./configure process with:

--enable-certgen

or by defining CYASSL_CERT_GEN in Windows or non-standard environments.

Before a certificate can be generated the user needs to provide information about the
subject of the certificate. This information is contained in a structure from asn.h named
Cert:

/* for user to fill for certificate generation */

typedef struct Cert {

 int version; /* x509 version */

 byte serial[SERIAL_SIZE]; /* serial number */

 int sigType; /* signature algo type */

 CertName issuer; /* issuer info */

 int daysValid; /* validity days */

 int selfSigned; /* self signed flag */

 CertName subject; /* subject info */

} Cert;

Where CertName looks like:

typedef struct CertName {

 char country[NAME_SIZE];

 char state[NAME_SIZE];

 char locality[NAME_SIZE];

 char org[NAME_SIZE];

 char unit[NAME_SIZE];

 char commonName[NAME_SIZE];

 char email[NAME_SIZE];

} CertName;

Before filling in the subject information an initialization function needs to be called like
this:

Cert myCert;

InitCert(&myCert);

InitCert() sets defaults for some of the variables including setting the version to 3 (0x02),
the serial number to 0 (randomly generated), the sigType to MD5_WITH_RSA, the
daysValid to 500, and selfSigned to 1 (TRUE). Currently only MD5_WITH_RSA (by far
the most common) and self signed are supported though the next release will allow
other signers and other signature types.

Now the user can initialize the subject information like this example from ctaocrypt/test/
test.c

strncpy(myCert.subject.country, "US", NAME_SIZE);

strncpy(myCert.subject.state, "OR", NAME_SIZE);

strncpy(myCert.subject.locality, "Portland", NAME_SIZE);

strncpy(myCert.subject.org, "yaSSL", NAME_SIZE);

strncpy(myCert.subject.unit, "Development", NAME_SIZE);

strncpy(myCert.subject.commonName, "www.yassl.com", NAME_SIZE);

strncpy(myCert.subject.email, "info@yassl.com", NAME_SIZE);

Then, a self-signed certificate can be generated using the variables genKey and rng
from the above key generation example (of course any valid RsaKey or RNG can be
used):

byte derCert[4096];

int certSz = MakeSelfCert(&myCert, derCert, sizeof(derCert), &key,

 &rng);

if (certSz < 0)

 /* certSz contains the error */;

The buffer derCert now contains a DER format of the certificate. If you need a PEM
format of the certificate you can use the generic DerToPem function and specify the
type to be CERT_TYPE like this:

byte pemCert[4096];

int pemCertSz = DerToPem(derCert, certSz, pemCert,

 sizeof(pemCert), CERT_TYPE);

if (pemCertSz < 0)

 /* pemCertSz contains error */;

Now the buffer pemCert holds the PEM format of the certificate.

If you wish to create a CA signed certificate then a couple steps are required. After
filling in the subject information you’ll need to set the issuer information from the CA
ceritifcate. This can be done with SetIssuer() like this:

ret = SetIssuer(&myCert, “ca-cert.pem”);

if (ret < 0)

/* ret contains error */;

Then you’ll need to perform the two-step process of creating the certificate and then
signing it (MakeSelfCert() does these both in one step). You’ll need the private keys
from both the issuer (caKey) and the subject (key). Please see the example in test.c for
complete usage.

byte derCert[4096];

int certSz = MakeCert(&myCert, derCert, sizeof(derCert), &key,

 &rng);

if (certSz < 0);

 /* certSz contains the error */;

certSz = SignCert(&myCert, derCert, sizeof(derCert), &caKey, &rng);

if (certSz < 0);

 /* certSz contains the error */;

The buffer derCert now contains a DER format of the CA signed certificate. If you need

a PEM format of the certificate please see the self signed example above.

XII. Standard Library Abstraction Layer

CyaSSL can now be built without the C standard library. Though the user will have to
map the functions they wish to use instead of the C standard ones.

A. Memory Use

Most C programs use malloc() and free() for dynamic memory allocation. CyaSSL uses
XMALLOC() and XFREE() instead. By default, these point to the C runtime versions.
By defining XMALLOC_USER, the user can provide their own hooks. Each memory
function takes two additional arguments over the standard ones, a heap hint, and an
allocation type. The user is free to ignore these or use them in any way they like. You
can find the CyaSSL memory functions in types.h.

B. string.h

CyaSSL uses several functions that behave like string.h’s memcpy(), memset(), and
memcmp() amongst others. They are abstracted to XMEMCPY(), XMEMSET(), and
XMEMCMP() respectively. And by default, they point to the C standard library versions.
Defining XSTRING_USER allows the user to provide their own hooks in types.h. For
example, by default XMEMCPY() is:

#define XMEMCPY(d,s,l) memcpy((d),(s),(l))

After defining XSTRING_USER you could do:

#define XMEMCPY(d,s,l) my_memcpy((d),(s),(l))

Or if you prefer to avoid macros:

external void* my_memcpy(void* d, const void* s, size_t n);

to set CyaSSL’s abstraction layer to point to your version my_memcpy().

C. math.h

CyaSSL uses two functions that behave like math.h’s pow() and log(). They are only
required by Diffie-Hellman, so if you exclude DH from the build, then you don’t have to
provide your own. They are abstracted to XPOW() and XLOG() and found in dh.c.

D. File System Use

By default, CyaSSL uses the system’s file system for the purpose of loading keys and
certificates. This can be turned off by defining NO_FILESYSTEM, see item V. If instead,
you’d like to use a file system but not the system one, you can use the XFILE() layer
in ssl.c to point the file system calls to the ones you’d like to use. See the example
provided by the MICRIUM define.

XIII. Input / Output Buffers

CyaSSL now uses small static buffers for input and output. They default to 128 bytes
and are controlled by the RECORD_SIZE define in cyassl_int.h. If an input record
is received that is greater in size than the static buffer, then a dynamic buffer is
temporarily used to handle the request and then freed. You can set the static buffer size
up to the MAX_RECORD_SIZE which is 2^16 or 16,384.

If you prefer the previous way that CyaSSL operated, with 16Kb static buffers
that will never need dynamic memory, you can still get that option by defining
LARGE_STATIC_BUFFERS.

If small static buffers are used and the user requests an SSL_write() that is bigger than
the buffer size, then a dynamic block up to MAX_RECORD_SIZE is used to send the
data. Users wishing to only send the data in chunks of the current buffer size (and avoid
dynamic memory use) can do this by defining STATIC_CHUNKS_ONLY.

XIV. CyaSSL NTRU Cipher Suites

CyaSSL has support for 4 cipher suites utilizing NTRU:

TLS_NTRU_RSA_WITH_3DES_EDE_CBC_SHA
TLS_NTRU_RSA_WITH_RC4_128_SHA
TLS_NTRU_RSA_WITH_AES_128_CBC_SHA
TLS_NTRU_RSA_WITH_AES_256_CBC_SHA

The strongest one, AES-256, is the default. If CyaSSL is enabled with NTRU and the
NTRU package is available then these cipher suites are built into the CyaSSL library.
A CyaSSL client will have these cipher suites available without any interaction needed
by the user. On the other hand, a CyaSSL server application will need to load an NTRU
private key and NTRU x509 certificate in order for those cipher suites to be available for

use.

The example servers echoserver and server both use the define HAVE_NTRU (which is
turned on by enabling NTRU) to note whether or not to load NTRU keys and certificates.
The CyaSSL package comes with test keys and certificates in the certs/ directory. ntru-
cert.pem is the certificate and ntru-key.raw is the private key blob.

The CyaSSL NTRU cipher suites are given the highest preference order when the
protocol picks a suite. Their exact preference order is the reverse of the above
listed suites, i.e., AES-256 will be picked first and 3DES last before moving onto
the “standard” cipher suites. Basically, if a user builds NTRU into CyaSSL and both
sides of the connection support NTRU then an NTRU cipher suite will be picked unless
a user on one side has explicitly excluded them by stating to only use different cipher
suites.

Chapter 10: CTaoCrypt Usage Reference

CTaoCrypt is the cryptography library primarily used by CyaSSL. It is optimized
for speed, small footprint, and portability. CyaSSL can also interchange with other
cryptography libraries as required.

Types used in the examples:

typedef unsigned char byte;

typedef unsigned int word32;

I. Hash Functions
MD5

To use MD5 include the MD5 header "md5.h". The structure to use is Md5 which is a
typedef. Before using, the hash initialization must be done with the InitMd5() call. Use
Md5Update() to update the hash and Md5Final() to retrieve the final hash

byte md5sum[MD5_DIGEST_SIZE];

byte buffer[1024];

// fill buffer with data to hash

Md5 md5;

InitMd5(&md5);

Md5Update(&md5, buffer, sizeof(buffer)); // can be called again and

again

Md5Final(&md5, md5sum);

md5sum now contains the digest of the hashed data in buffer.

SHA

To use SHA include the SHA header "sha.h". The structure to use is Sha which is a
typedef. Before using the hash initialization must be done with the InitSha() call. Use
ShaUpdate() to update the hash and ShaFinal() to retrieve the final hash:

byte shaSum[SHA_DIGEST_SIZE];

byte buffer[1024];

// fill buffer with data to hash

Sha sha;

InitSha(&sha);

ShaUpdate(&sha, buffer, sizeof(buffer)); // can be called again and

again

ShaFinal(&sha, shaSum);

shaSum now contains the digest of the hashed data in buffer.

Other Hashes

Likewise, the same procedures can be used with MD4 "m4.h" (which is outdated and
considered broken) and SHA-256 "sha256.h".

II. Message Digests

CTaoCrypt currently provides HMAC for message digest needs. The structure Hmac
is found in the header "hmac.h". HMAC initialization is done with HmacSetKey(). 3
different types are supported with HMAC; MD5, SHA, and SHA-256. Here's an example
with SHA-256.

Hmac hmac;

byte key[24]; // fill key with keying material

byte buferr[2048]; // fill buffer with data to digest

byte hmacDigest[SHA256_DIGEST_SIZE];

HmacSetKey(&hmac, SHA256, key, sizeof(key));

HmacUpdate(&hmac, buffer, sizeof(buffer));

HmacFinal(&hmac, hmacDigest);

hmacDigest now contains the digest of the hashed data in buffer.

III. Block Ciphers

DES and 3DES

CTaoCrypt provides support for DES and 3DES (Des3 since 3 is an invalid leading C
identifier). To use these include the header "des.h". The structures you can use are
Des and Des3. Initialization is done through Des_SetKey() or Des3_SetKey(). CBC

encryption/decryption is provided through Des_CbcEnrypt() / Des_CbcDecrypt() and
Des3_CbcEncrypt() / Des_CbcDecrypt(). Des has a key size of 8 bytes (24 for 3DES)
and the block size is 8 bytes, so only pass increments of 8 bytes to encrypt/decrypt
functions. If your data isn't in a block size increment you'll need to add padding to make
sure it is. Each SetKey() also takes an IV (an initialization vector that is the same size
as the key size). Usage is usually like the following:

Des3 enc;

Des3 dec;

const byte key[] = { // some 24 byte key };

const byte iv[] = { // some 24 byte iv };

byte plain[24]; // an increment of 8, fill with data

byte cipher[24];

// encrypt

Des3_SetKey(&enc, key, iv, DES_ENCRYPTION);

Des3_CbcEncrypt(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt

Des3_SetKey(&dec, key, iv, DES_DECRYPTION);

Des3_CbcDecrypt(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

AES

CTaoCrypt also provides support for AES. Key sizes are 16 bytes (128 bits), 24 bytes
(192 bits), or 32 bytes (256 bits). CBC mode is supported for encrypt/decrypt. Please
include the header "aes.h" to use AES. AES has a block size of 16 bytes and the IV
should also be 16 bytes. The functions are exactly the same as DES and usage usually
goes:

Aes enc;

Aes dec;

const byte key[] = { // some 24 byte key };

const byte iv[] = { // some 16 byte iv };

byte plain[32]; // an increment of 16, fill with data

byte cipher[32];

// encrypt

AesSetKey(&enc, key, sizeof(key), iv, AES_ENCRYPTION);

AesCbcEncrypt(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt

AesSetKey(&dec, key, sizeof(key), iv, AES_DECRYPTION);

AesCbcDecrypt(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

IV. Stream Ciphers

ARC4

The most common stream cipher used on the internet is ARC4 and CTaoCrypt supports
it through the header "arc.h". Usage is simpler than block ciphers because there is no
block size and the key length can be any length. Use it like this:

Arc4 enc;

Arc4 dec;

const byte key[] = { // some key any length};

byte plain[27]; // no size restriction, fill with data

byte cipher[27];

// encrypt

Arc4SetKey(&enc, key, sizeof(key));

Arc4Process(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt

Arc4SetKey(&dec, key, sizeof(key));

Arc4Process(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

RABBIT

A newer stream cipher gaining popularity is RABBIT and you can use it with CTaoCrypt
by including the header "rabbit.h". RABBIT is very fast compared to ARC4 but has key
constraints of 16 bytes (128 bits) and an optional IV of 8 bytes (64 bits). Otherwise
usage is exactly like ARC4:

Rabbit enc;

Rabbit dec;

const byte key[] = { // some key 16 bytes};

const byte iv[] = { // some iv 8 bytes };

byte plain[27]; // no size restriction, fill with data

byte cipher[27];

// encrypt

RabbitSetKey(&enc, key, iv); // iv can be a NULL pointer

RabbitProcess(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt

RabbitSetKey(&dec, key, iv);

RabbitProcess(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

HC-128

Another new stream cipher in current use is HC-128 which is even faster than RABBIT.
To use it with CTaoCrypt please include the header "hc128.h". HC-128 also uses 16
bytes keys (128 bits) but uses 16 bytes vs (128 bits) unlike RABBIT.

HC128 enc;

HC128 dec;

const byte key[] = { // some key 16 bytes};

const byte iv[] = { // some iv 16 bytes };

byte plain[37]; // no size restriction, fill with data

byte cipher[37];

// encrypt

Hc128_SetKey(&enc, key, iv); // iv can be a NULL pointer

Hc128_Process(&enc, cipher, plain, sizeof(plain));

cipher now contains the cipher text from the plain text.

// decrypt

Hc128_SetKey(&dec, key, iv);

Hc128_Process(&dec, plain, cipher, sizeof(cipher));

plain now contains the original plaintext from the cipher text.

V. Public Key Cryptography

RSA

CTaoCrypt provides support for RSA through the header "rsa.h". There are two types
of RSA keys, public and private. A public key allows anyone to encrypt something that
only the holder of the private key can decrypt. It also allows the private key holder to
sign something and anyone with a public key can verify that only the private key holder
actually signed it. Usage is usually like the following:

RsaKey rsaPublicKey;

byte publicKeyBuffer[] = { // holds the raw data from the key, maybe

from a file like RsaPublicKey.der };

word32 idx = 0; // where to start reading into the

buffer

RsaPublicKeyDecode(publicKeyBuffer, &idx, &rsaPublicKey,

sizeof(publicKeyBuffer));

byte in[] = { // plain text to encrypt };

byte out[128];

RNG rng;

InitRng(&rng);

word32 outLen = RsaPublicEncrypt(in, sizeof(in), out, sizeof(out),

&rsaPublicKey, &rng);

Now ‘out’ holds the cipher text from the plain text ‘in’. RsaPublicEncrypt() will

return the length in bytes written to out or a negative number in case of an error.
RsaPublicEncrypt() needs an RNG (Random Number Generator) for the padding used
by the encryptor and it must be initialized before it can be used. To make sure that the
output buffer is large enough to pass you can first call RsaEncryptSize() which will
return the number of bytes that a successful call to RsaPublicEnrypt() will write.

In the event of an error, a negative return from RsaPublicEnrypt(), or
RsaPublicKeyDecode() for that matter, you can call CTaoCryptErrorString() to get a
string describing the error that occurred.

void CTaoCryptErrorString(int error, char* buffer);

Make sure that buffer is at least MAX_ERROR_SZ bytes (80).

Now to decrypt out:

RsaKey rsaPrivateKey;

byte privateKeyBuffer[] = { // hold the raw data from the key, maybe

from a file like RsaPrivateKey.der };

word32 idx = 0; // where to start reading into the

buffer

RsaPrivateKeyDecode(privateKeyBuffer, &idx, &rsaPrivateKey,

sizeof(privateKeyBuffer));

byte plain[128];

word32 plainSz = RsaPrivateDecrypt(out, outLen, plain,

 sizeof(plain), &rsaPrivateKey);

Now plain will hold plainSz bytes or an error code.

For complete examples of each type in CTaoCrypt please see the file ctaocrypt/test.c.

Chapter 11: SSL Tutorial

I. Introduction

The CyaSSL embedded SSL library can easily be integrated with your existing
application to provide enhanced communication security. Because CyaSSL is targeted
at embedded and RTOS environments it offers both a small footprint and fast speeds.
Minimum build sizes for CyaSSL range from 30-100kB depending on build options and
operating environments.

Although CyaSSL is an embedded SSL library, it's full feature set makes it very
functional in a desktop environment as well. CyaSSL was built for maximum portability
and is generally very easy to compile on new platforms. For a full list of features and
supported operating environments, see the product page: http://yassl.com/yaSSL/
Products_cyassl.html.

This tutorial will walk you through integrating SSL into a simple application. The CyaSSL
embedded SSL library will be used, along with a simple echoserver and echoclient. The
echoserver and echoclient examples have been taken from the popular book titled Unix
Network Programming, Volume 1, 3rd Edition by Richard Stevens, Bill Fenner, and
Andrew Rudoff. If you would like to reference the exact base examples used from this
book, they can be found in the figures listed below:

II. Source Code

The source code used in this tutorial can be downloaded from the following location. An
overview of the contents of this ZIP file is shown in the Initial Setup section, below.

 http://www.yassl.com/documentation/SSL_Tutorial.zip

III. Base Example Modifications

Because this tutorial is focused on the integration of SSL/TLS, the base examples are
kept as simple as possible. Several modifications were made to the book examples in
order to either increase simplicity or increase the range of platforms supported by the
examples.

Modifications to the Echo Server (tcpserv04.c)

http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FProducts_cyassl.html&sa=D&sntz=1&usg=AFQjCNGogXdil32zMjUG9l5Sn3QRVHodzg
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ

● Removed call to the Fork() function because fork() is not supported by Windows.

The result of this is an echoserver which only accepts one client simultaneously.
Along with this removal, Signal handling was removed

● Moved str_echo() function from str_echo.c file into tcpserv04.c file
● Added a printf statement to view the client address and the port we have

connected through:

 printf("Connection from %s, port %d\n",
 inet_ntop(AF_INET, &cliaddr.sin_addr, buff, sizeof(buff)),

 ntohs(cliaddr.sin_port));

● Added a call to setsockopt() after creating the listening socket to eliminate

the "Address already in use" bind error.

Modifications to the Echo Client (tcpcli01.c)

● Moved str_cli() function from str_cli.c file into tcpcli01.c file.

Modifications to unp.h header

● This header was simplified to contain only what is needed for this example.

Please note that in these examples, certain functions will be capitalized. For example
Fputs() and Writen(). The authors of this book have written custom wrapper functions
for normal functions in order to cleanly handle error checking. For a more thorough
explanation of this, please see Section 1.4 (page 11) in Unix Network Programming.

IV. Initial Setup

Before we begin, you will need to download the starting example code (echoserver
and echoclient) and install the CyaSSL embedded SSL library. As stated before, the
example code used in this tutorial can be downloaded here: http://www.yassl.com/
documentation/SSL_Tutorial.zip. The downloaded ZIP file has the following structure:

CyaSSL_SSL_Tutorial.pdf

/finished_src

 /echoclient

 (The completed echoclient code)

 /echoserver

 (The completed echoserver code)

http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fdocumentation%2FSSL_Tutorial.zip&sa=D&sntz=1&usg=AFQjCNFr3ZMBBBD4frXNFx7GnO7cKuSRJQ

 /include

 (Common header file [Modified from unp.h in the book])

 /lib

 (Common library functions)

/original_src

 /echoclient

 (The starting echoclient code)

 /echoserver

 (The starting echoserver code)

 /include

 (Common header file [Modified from unp.h in the book])

 /lib

 (Common library functions)

Next, you will need to download and install CyaSSL. Download the source code here:
http://yassl.com/yaSSL/Download.html. For a full list of build options available, see
the "Building CyaSSL" guide: http://yassl.com/yaSSL/Docs_Building_CyaSSL.html.
CyaSSL was written with portability in mind, and should generally be easy to build on
most systems. If you have difficulty building CyaSSL, do not hesitate to seek support
through our Forums (http://www.yassl.com/forums).

When building CyaSSL on Linux, *BSD, OS X, Solaris, or other *nix like systems, use
the autconf system. To build CyaSSL you only need to run two commands:

 ./configure
 make

To install CyaSSL, run:

 sudo make install

To test the build, run the testsuite program from the "testsuite" directory in the CyaSSL
download. The above installation will install CyaSSL into the /usr/local/cyassl directory.

Now that you have downloaded the example code and installed CyaSSL, we can begin
modifying the example code to add SSL functionality. We will first begin with modifying
the echo client and move on to the echo server.

V. Initial Compilation

To compile and run the example client and server code from ssl_tutorial.zip, you may
use the included Makefiles. Change directory to either the echoclient or echoserver

http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDownload.html&sa=D&sntz=1&usg=AFQjCNGoIVa34ZNQXIGi0tMBYmOvnHBmWA
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fyassl.com%2FyaSSL%2FDocs_Building_CyaSSL.html&sa=D&sntz=1&usg=AFQjCNGS5Pw8E0mcO6nzeoHpMrxVLrg37w
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw

directory and run:

 make

The gcc command which is being used in the Makefile is shown below. In order to build
the echo client without using the supplied Makefile, change directory to the "echoclient"
directory and replace tcpserv04.c in the following line with tcpcli01.c:

 gcc ../lib/*.c tcpserv04.c -I ../include

This will build the current example, creating either a "echoserver" or "echoclient"
application. To run the echo server, change directory to the "echoserver" directory and
run:

 ./echoserver

To run the echo client you must pass in the IP address of the server, which in this case
will be 127.0.0.1. Change directory to the "echoclient" directory and run:

 ./echoclient 127.0.0.1

VI. Libraries

We will be using the CyaSSL library for our SSL functionality. The compiled CyaSSL
library is called libcyassl. Unless otherwise configured, CyaSSL creates both shared
and static libraries under:

 /usr/local/cyassl/lib

Modifying our GCC command (using the echo server as an example), we now have the
following command. Here we include the CyaSSL include directory(/usr/local/cyassl/
include), link to the CyaSSL library, and tell the compiler where to find the CyaSSL
library using the -L option. Note that by using -lcyassl the compiler will automatically
choose the correct type of library (static or shared):

 gcc -Wall ../lib/*.c tcpserv04.c -I ../include -I /usr/local/

cyassl/include -L/usr/local/cyassl/lib -lm -lcyassl

VII. Headers

Now that we're done setting up our environment and build options, we can turn our
attention to the echo client example. The first thing we will need to do is include the

CyaSSL OpenSSL compatibility header. Open tcpcli01.c and add the following include
to the client:

 #include <openssl/ssl.h>

VIII. Startup/Shutdown

Before we can use CyaSSL, we need to initialize CyaSSL and the SSL_CTX. CyaSSL
is initialized by calling the InitCyaSSL() function.

The SSL_CTX (SSL Context), structure contains global values for multiple SSL
connections and certificate information. You can use one SSL_CTX no matter how
many SSL objects you end up creating. We need to load the CA certificate into the
SSL_CTX so that we can verify the server we will be connecting to.

Create a new SSL_CTX using the SSL_CTX_new() function. This function requires an
argument which defines which protocol we want to use. For protocols, we have several
options. CyaSSL currently supports SSLv3, TLSv1, TLSv1.1, TLSv1.2, and DTLS.
Each of these have a corresponding function that we could use as an argument to
SSL_CTX_new():

 SSLv3_client_method(); // SSL 3

 TLSv1_client_method(); // TLS 1

 TLSv1_1_client_method(); // TLS 1.1

 TLSv1_2_client_method(); // TLS 1.2

 DTLSv1_client_method(); // DTLS

To load the CA certificates into the SSL_CTX, we use the
SSL_CTX_load_verify_locations() function. This function requires three arguments:
an SSL_CTX pointer, a certificate file, and a path value. The path argument points
to a directory containing CA certificates in PEM format. When looking up certificates,
the given certificate file will be searched first before the path location. In this case,
we don't need to specify a certificate path - therefore, we use the value 0. The
SSL_CTX_load_verify_locations function returns SSL_SUCCESS on success and
SSL_FAILURE on failure:

 SSL_CTX_load_verify_locations(SSL_CTX* ctx, const char* file,

 const char* path)

Putting these three things together, we have the following. Here, we chose to use
TLSv1:

 InitCyaSSL(); // Initialize CyaSSL

 SSL_CTX* ctx;

 /* Create the SSL_CTX */

 if ((ctx = SSL_CTX_new(TLSv1_client_method())) == NULL){

 fprintf(stderr, "SSL_CTX_new error.\n");

 exit(EXIT_FAILURE);

 }

 /* Load CA certificates into SSL_CTX */

 if (SSL_CTX_load_verify_locations(ctx,"./ca-cert.pem",0) !=

 SSL_SUCCESS) {

 fprintf(stderr, "Error loading ./ca-cert.pem, please check

 the file.\n");

 exit(EXIT_FAILURE);

 }

The above code should be added to the beginning of tcpcli01.c after both the variable
definitions and the check that the user has started the client with an IP address. A
version of the completed code is also included in the ssl_tutorial.zip file.

Now that we have initialized CyaSSL and the SSL_CTX, we also need to make sure
we free the SSL_CTX object and CyaSSL when we are completely done using SSL
altogether. These two lines should be placed at the end of our echo client main()
function right before we call exit(0):

 SSL_CTX_free(ctx);

 FreeCyaSSL();

IX. SSL Object

We need to create an SSL object after each TCP Connect and associate the socket file
descriptor with the session. In our echo client example, we want to do this after our call
to Connect(), shown below:

 /* Connect to socket file descriptor */

 Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));

A new SSL object is created using the SSL_new() function. This function returns a
pointer to the SSL object if successful or NULL in the case of failure:

 /* Create SSL object */

 SSL* ssl;

 if((ssl = SSL_new(ctx)) == NULL) {

 fprintf(stderr, "SSL_new error.\n");

 exit(EXIT_FAILURE);

 }

 SSL_set_fd(ssl, sockfd);

X. Sending Data

We now have our foundations set up and initialized and need to start sending data
securely. The echo client example uses the functions Writen() and Readline() to send
and receive data between it and the echo server. We replace these calls with calls to
CyaSSL's SSL_write() and SSL_read() functions.

Take note that in the echo client example, the main() function hands off the sending
and receiving work to the str_cli() function. This is where replacements will be made.
First, we will need access to our SSL object in the str_cli() function, so we need to
add another argument and pass in our ssl variable. Because we will be using our SSL
object, we can remove the sockfd parameter in the str_cli() function. The new str_cli()
function signature:

 void

 str_cli(FILE *fp, SSL* ssl)

In our main() function, pass the new argument to str_cli() when it is called:

 str_cli(stdin, ssl);

Inside of the str_cli() function, we need to replace Writen() and Readline() and use
our SSL object instead of the original file descriptor(sockfd). The new str_cli() function
is shown below. Notice that we now need to check if our calls to SSL_write and
SSL_read were successful. The authors of the Unix Programming book had written
error checking into their Writen() function, which we must make up for when replacing
it. We add a new int variable, "n" to monitor the return value of SSL_read and before
printing out the contents of our buffer, recvline, we mark the end of our read data
with '\0':

 void

 str_cli(FILE *fp, SSL* ssl)

 {

 char sendline[MAXLINE], recvline[MAXLINE];

 int n = 0;

 while (Fgets(sendline, MAXLINE, fp) != NULL) {

 if(SSL_write(ssl, sendline, strlen(sendline)) !=

 strlen(sendline)){

 err_sys("SSL_write failed");

 }

 if ((n = SSL_read(ssl, recvline, MAXLINE)) <= 0)

 err_quit("SSL_read error");

 recvline[n] = '\0';

 Fputs(recvline, stdout);

 }

 }

The last thing we need to do is free our SSL object when we are completely done with
it. In the main() function, right before the line to free the SSL_CTX, we need to make a
call to SSL_free():

 str_cli(stdin, ssl);

 SSL_free(ssl); // Free SSL object

 SSL_CTX_free(ctx); // Free SSL_CTX object

 FreeCyaSSL(); // Free CyaSSL

XI. Signal Handling

There is always the possibility that a user will close the echo client by hitting "Ctrl+C". In
order for CyaSSL resources to be released, we need to catch that signal and handle the
program exit ourselves. There are two things which we need to do:

● Add a signal handler function (here, we added it before the str_cli() function):

 void sig_handler(const int sig)

 {

 printf("\nSIGINT handled.\n");

 FreeCyaSSL(); /* Free CyaSSL */

 exit(EXIT_SUCCESS);

 }

● Register this function as a signal handler using the signal() function. We added

this directly after variable declarations in the main() method:

 /* define a signal handler for when the user closes the

 program with Ctrl-C */

 signal(SIGINT, sig_handler);

That's it - we have enabled our echo client with TLSv1!! We included the CyaSSL
headers, initialized CyaSSL, created an SSL_CTX structure in which we chose what
protocol we wanted to use, created an SSL object to use for sending and receiving data,
replaced calls to Writen() and Readline() with SSL_write() and SSL_read(), freed up
SSL, SSL_CTX, and CyaSSL, and then made sure we handled the Ctrl+C signal.

The next section will deal with enabling TLSv1 in the echo server example.

XII. Echo Server

Enabling SSL/TLS in the echo server example is very similar to the steps above for the
echo client. Follow the steps above, except when the protocol version is chosen during
the creation of the SSL_CTX structure, you must use the server method instead. There
are several options which may be chosen for the protocol:

 SSLv3_server_methods();// SSLv3

 TLSv1_server_method(); // TLSv1

 TLSv1_1_server_method(); // TLSv1.1

 TLSv1_2_server_method(); // TLSv1.2

 SSLv23_server_method();// Allow clients to connect with

 SSLv3 or TLSv1+

 DTLSv1_server_method();// DTLS

The result should be similar to this:

 /* Create and initialize SSL_CTX structure */

 if ((ctx = SSL_CTX_new(TLSv1_server_method())) == NULL){

 fprintf(stderr, "SSL_CTX_new error.\n");

 exit(EXIT_FAILURE);

 }

When loading certificates into the SSL_CTX, you must also load the server certificate
and key file in addition to the CA certificate:

 if (SSL_CTX_use_certificate_file(ctx,"./server-cert.pem",

SSL_FILETYPE_PEM) != SSL_SUCCESS){

 fprintf(stderr, "Error loading ./server-cert.pem, please

check the file.\n");

 exit(EXIT_FAILURE);

 }

 if (SSL_CTX_use_PrivateKey_file(ctx,"./server-key.pem",

SSL_FILETYPE_PEM) != SSL_SUCCESS){

 fprintf(stderr, "Error loading ./server-key.pem, please check

the file.\n");

 exit(EXIT_FAILURE);

 }

The echo server makes a call to the str_echo() whereas the client made a call to
str_cli() to handle reading and writing. As for the client, we need to modify str_echo()
by replacing the sockfd parameter with a SSL* parameter to the function signature:

 void str_echo(SSL* ssl)

The calls to read() and Writen() need to be replaced with calls to the SSL_read() and
SSL_write() functions. The modified str_echo() function including error checking of
return values. Note that we have changed the type of the variable "n" from ssize_t to
int to accommodate for the change from read() to SSL_read():

 void

 str_echo(SSL* ssl)

 {

 int n;

 char buf[MAXLINE];

 again:

 while ((n = SSL_read(ssl, buf, MAXLINE)) > 0) {

 if(SSL_write(ssl, buf, n) != n) {

 err_sys("SSL_write failed");

 }

 }

 if(n < 0)

 printf("SSL_read error = %d\n", SSL_get_error(ssl,n));

 else if(n == 0)

 printf("The peer has closed the connection.\n");

 }

Like the echo client, we will need to add a signal handler for when the user closes the

echo server by using "Ctrl+C". The echo server is continually running in a loop. Because
of this, we need to provide a way to break that loop when the user presses "Ctrl+C". To
do this, the first thing we need to do is change our loop to a while loop which terminates
when an exit variable (cleanup) is set to true. First, define a new static int variable
called cleanup at the top of tcpserv04.c right after the #include statements:

 static int cleanup; // To handle shutdown

Modify the echo server loop by changing it from a for loop to a while loop:

 while(cleanup != 1)

 {

 // echo server code here

 }

For the echo server we need to disable the operating system from restarting calls which
were being executed before the signal was handled after our handler has finished. By
disabling these, the operating system will not restart calls to accept() after the signal has
been handled. If we didn't do this, we would have to wait for another client to connect
and disconnect before the echo server would clean up resources and exit.

To define our signal handler and turn of SA_RESTART, first define the act and oact
structures in the echo server main function:

 struct sigaction act, oact;

Insert the following code after variable declarations, before the call to InitCyaSSL() in
the main function:

 /* Define a signal handler for when the user closes the program

 with Ctrl-C. Also, turn off SA_RESTART so that the OS doesn't

 restart the call to accept()after the signal is handled. */

 act.sa_handler = sig_handler;

 sigemptyset(&act.sa_mask);

 act.sa_flags = 0;

 sigaction(SIGINT, &act, &oact);

The echo server’s sig_handler function is shown below:

 void sig_handler(const int sig)

 {

 printf("\nSIGINT handled.\n");

 cleanup = 1;

 return;

 }

Once again, the completed source code can be found in the SSL Tutorial ZIP file.

XIII. Certificates

For testing purposes, feel free to use the certificates provided by CyaSSL. These can
be found in the CyaSSL download, and specifically for this tutorial, they can be found in
the finished_src folder.

For production applications, you should obtain correct and legitimate certificates from
one of the certificate authorities.

XIV. Conclusion

This SSL programming tutorial walked you through the process of integrating the
CyaSSL embedded SSL library into a simple echo server and echo client application.
Although this example is fairly simple, the same principles may be applied to enabling
SSL your own application. The CyaSSL embedded SSL library provides all the features
you would need in a compact and efficient package that has been optimized for both
size and speed.

Being dual licensed under GPLv2 and standard commercial licensing, you are free
to download the CyaSSL source code directly from our website. Feel free to post to
our support forums (www.yassl.com/forums) with any questions or comments you
might have. If you would like more information about our products, please contact
info@yassl.com.

http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw
http://www.google.com/url?q=http%3A%2F%2Fwww.yassl.com%2Fforums&sa=D&sntz=1&usg=AFQjCNEJRQjSjrtLxJ1sz3cwenj_n22ihw

Chapter 12: Best Practices for Embedded Devices

I. Creating Private Keys

Embedding a private key into firmware allows anyone to extract the key and turns an
otherwise secure connection into something nothing more secure than TCP.

We have a few ideas about creating private keys for SSL enabled devices.

1. Each device acting as a server should have a unique private key, just like in the
non-embedded world.

2. If the key can't be placed onto the device before delivery, have it generated

during setup.

3. If the device lacks the power to generate it's own key during setup have the client
setting up the device generate the key and send it to the device.

4. If the client lacks the ability to generate a private key have the client retrieve a

unique private key over an SSL connection from the devices known website for
example.

CyaSSL can be used in all of these steps to help ensure an embedded device has
a secure unique private key. That will go a long ways towards securing the SSL
connection itself.

Chapter 13: OpenSSL Compatibility

I. Compatibility with OpenSSL

The CyaSSL and yaSSL embedded SSL libraries provide an OpenSSL compatibility
header, ssl.h, to ease the transition into using yaSSL or CyaSSL. Our test beds for
OpenSSL compatibility are stunnel and Lighttpd, which means that we build both of
them with CyaSSL as a way to test our OpenSSL compatibility API. Experimental
versions of both packages built with CyaSSL are available on our download page.

II. Differences Between CyaSSL and OpenSSL

There are several differences between CyaSSL and OpenSSL. Listed here are the
most prominent:

1. CyaSSL builds are 20-40 times smaller than OpenSSL. Hence it is much more
useful in embedded SSL implementations.

2. Standards support: CyaSSL supports TLS 1.1 and 1.2. OpenSSL does not

support TLS 1.1 or 1.2.

3. CyaSSL was built with securing streaming media in mind. OpenSSL was built
before streaming media was popular on the Internet. As such, CyaSSL supports
the latest streaming ciphers like Rabbit and HC-128 where OpenSSL does not.

4. License: CyaSSL is dual licensed under the GPLv2 and commercial license,

with a company behind the commercial license. OpenSSL does not have a clear
license.

5. We have tried to apply Occam’s razor as the guiding philosophy to our

implementation of SSL. As such, our API focuses on the most critical and
necessary functionality in order to simplify the problem. CyaSSL has 20 or
so function calls and an additional 230 for our OpenSSL compatibility layer.
OpenSSL has over 3,500.

6. Really old code versus relatively new code: CyaSSL was written starting in 2004.

OpenSSL started in 1995. Coding standards and requirements are a lot different
today. OpenSSL has a longer legacy to support and maintain.

7. The OpenSSL legacy code comes from supporting usage profiles and operating
systems that are no longer mainstream. The legacy code makes OpenSSL
easier to break and harder to fix.

8. OpenSSL was written as the SSL/TLS standards were being defined. OpenSSL’s

code went down a number of blind alleys. We had the luxury of writing our code
once the standards were well settled.

III. Supported OpenSSL Structs

SSL_METHOD holds SSL version information and is either a client or server method.
SSL_CTX holds context information including certificates.
SSL holds session information for a secure connection.

IV. Supported OpenSSL Functions

The three structures are usually initialized in the following way:

SSL_METHOD* method = SSLv3_client_method();

SSL_CTX* ctx = SSL_CTX_new(method);

SSL* ssl = SSL_new(ctx);

This establishes a client side SSL version 3 method, creates a context based on the
method, and initializes the SSL session with the context. A server side program is no
different except that the SSL_METHOD is created using SSLv3_server_method().

When an SSL connection is no longer needed the following calls free the structures
created during initialization.

SSL_CTX_free(ctx);

SSL_free(ssl);

SSL_CTX_free() has the additional responsibility of freeing the associated
SSL_METHOD. Failing to use the XXX_free() functions will result in a resource leak.
Using the system's free() instead of the SSL ones results in undefined behavior.

Once an application has a valid SSL pointer from SSL_new(), the SSL handshake
process can begin. From the client's view, SSL_connect() will attempt to establish a
secure connection.

SSL_set_fd(ssl, sockfd);

SSL_connect(ssl);

Before the SSL_connect() can be issued, the user must supply CyaSSL with a valid
socket file descriptor, sockfd in the example above. sockfd is typically the result of the
TCP function socket() which is later established using TCP connect(). The following
creates a valid client side socket descriptor for use with a local CyaSSL server on port
11111, error handling is omitted for simplicity.

int sockfd = socket(AF_INET, SOCK_STREAM, 0);

sockaddr_in servaddr;

memset(&servaddr, 0, sizeof(servaddr));

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(11111);

servaddr.sin_addr.s_addr = inet_addr("127.0.0.1");

connect(sockfd, (const sockaddr*)&servaddr, sizeof(servaddr));

Once a connection is established, the client may read and write to the server. Instead
of using the TCP functions send() and receive(), CyaSSL and yaSSL use the SSL
functions SSL_write() and SSL_read(). Here is a simple example from the client demo:

char msg[] = "hello yassl!";

int wrote = SSL_write(ssl, msg, sizeof(msg));

char reply[1024];

int read = SSL_read(ssl, reply, sizeof(reply));

reply[read] = 0;

printf("Server response: %s\n", reply);

The server connects in the same way except that is uses SSL_accept() instead of
SSL_connect(), analogous to the TCP API. See the server example for a complete
server demo program.

V. x509 Certificates

Both the server and client can provide CyaSSL with certificates in either PEM or DER.
Typical usage is like this:

SSL_CTX_use_certificate_file(ctx, "certs/cert.pem",

SSL_FILETYPE_PEM);

SSL_CTX_use_PrivateKey_file(ctx, "certs/key.der",

SSL_FILETYPE_ASN1);

A key file can also be presented to the Context in either format. SSL_FILETYPE_PEM

signifies the file is PEM formatted while SSL_FILETYPE_ASN1 declares the file to be
in DER format. To verify that the key file is appropriate for use with the certificate the
following function can be used:

 SSL_CTX_check_private_key(ctx);

Chapter 14: Consulting

We offer both on and off site consulting - providing feature additions, porting, a
Competitive Upgrade Program, and design consulting.

I. Feature Additions and Porting

We can add additional features that you may need which are not currently offered in our
products on a contract or co-development basis. We also offer porting services on our
products to new host languages or new operating environments.

II. Competitive Upgrade Program

We will help you move from an outdated or expensive SSL library to CyaSSL with low
cost and minimal disturbance to your code base.

Program Outline:

1. You need to currently be using a commercial competitor to CyaSSL.
2. You will receive up to one week of on-site consulting to switch out your old SSL

library for CyaSSL. Travel expenses are not included.
3. Normally, up to one week is the right amount of time for us to make the

replacement in your code and do initial testing. Additional consulting on a
replacement is available as needed.

4. You will receive the standard CyaSSL royalty free license to ship with your
product.

5. The price is $10,000.

The purpose of this program is to enable users who are currently spending too much on
their embedded SSL implementation to move to CyaSSL with ease. If you are interested
in learning more, then please contact us at info@yassl.com.

III. Design Consulting

If your application or framework needs to be secured with SSL/TLS but you are
uncertain about how the optimal design of a secured system would be structured, we
can help!

We offer design consulting for building SSL/TLS security into devices using CyaSSL.

mailto:info@yassl.com
mailto:info@yassl.com
mailto:info@yassl.com
mailto:info@yassl.com
mailto:info@yassl.com

Our consultants can provide you with the following services:

1. Assessment: An evaluation of your current SSL/TLS implementation. We can give
you advice on your current setup and how we think you could improve upon this by
using CyaSSL.

2. Design: Looking at your system requirements and parameters we'll work closely with
you to make recommendations on how to implement CyaSSL into your application such
that it provides you with optimal security.

If you would like to learn more about design consulting for building SSL into your
application or device, please contact info@yassl.com for more information.

mailto:info@yassl.com
mailto:info@yassl.com
mailto:info@yassl.com
mailto:info@yassl.com
mailto:info@yassl.com

Appendix A: FLOSS Exception

The Sawtooth Consulting Ltd. Exception for Free/Libre and Open Source Software-only
Applications Using yaSSL Libraries (the "FLOSS Exception").

Version 0.2, August 31, 2006

I. Exception Intent

We want specified “Free/Libre and Open Source Software” ("FLOSS") applications to
be able to use specified GPL-licensed yaSSL libraries (the "Program") despite the fact
that not all FLOSS licenses are compatible with version 2 of the GNU General Public
License (the "GPL").

II. Legal Terms and Conditions

As a special exception to the terms and conditions of version 2.0 of the GPL:

You are free to distribute a Derivative Work that is formed entirely from the Program and
one or more works (each, a "FLOSS Work") licensed under one or more of the licenses
listed below in section 1, as long as:

1. You obey the GPL in all respects for the Program and the Derivative Work,
except for identifiable sections of the Derivative Work which are not derived
from the Program, and which can reasonably be considered independent and
separate works in themselves,

1. All identifiable sections of the Derivative Work which are not derived from the

Program, and which can reasonably be considered independent and separate
works in themselves,

a. are distributed subject to one of the FLOSS licenses listed below, and
b. the object code or executable form of those sections are accompanied

by the complete corresponding machine-readable source code for those
sections on the same medium and under the same FLOSS license as the
corresponding object code or executable forms of those sections, and

1. any works which are aggregated with the Program or with a Derivative Work on
a volume of a storage or distribution medium in accordance with the GPL, can
reasonably be considered independent and separate works in themselves which
are not derivatives of either the Program, a Derivative Work or a FLOSS Work.

If the above conditions are not met, then the Program may only be copied, modified,
distributed or used under the terms and conditions of the GPL or another valid licensing
option from Sawtooth Consulting Ltd.

i. FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

Common Development and Distribution License (CDDL) 1.0

Common Public License 1.0

GNU Library or "Lesser" General Public License (LGPL) 2.0/2.1

Jabber Open Source License 1.0

MIT License (As listed in file MIT-License.txt) -

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

PHP License 3.0

Python license (CNRI Python License) -

Python Software Foundation License 2.1.1

Sleepycat License "1999"

University of Illinois/NCSA Open Source License -

W3C License "2001"

X11 License "2001"

Zlib/libpng License -

Zope Public License 2.0

Due to the many variants of some of the above licenses, we require that any
version follow the 2003 version of the Free Software Foundation's Free Software
Definition (http://www.gnu.org/philosophy/free-sw.html) or version 1.9 of the Open
Source Definition by the Open Source Initiative (http://www.opensource.org/docs/
definition.php).

ii. Definitions

1. Terms used, but not defined, herein shall have the meaning provided in the GPL.
2. Derivative Work means a derivative work under copyright law.

iii. Applicability

This FLOSS Exception applies to all Programs that contain a notice placed by Sawtooth
Consulting Ltd. saying that the Program may be distributed under the terms of this
FLOSS Exception. If you create or distribute a work which is a Derivative Work of both
the Program and any other work licensed under the GPL, then this FLOSS Exception
is not available for that work; thus, you must remove the FLOSS Exception notice
from that work and comply with the GPL in all respects, including by retaining all GPL
notices. You may choose to redistribute a copy of the Program exclusively under
the terms of the GPL by removing the FLOSS Exception notice from that copy of the
Program, provided that the copy has never been modified by you or any third party.

http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.gnu.org%2Fphilosophy%2Ffree-sw.html&sa=D&sntz=1&usg=AFQjCNHjzUYxyTGiVXd2GHhN96xLY1s71w
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA
http://www.google.com/url?q=http%3A%2F%2Fwww.opensource.org%2Fdocs%2Fdefinition.php&sa=D&sntz=1&usg=AFQjCNGVUHYbAXOU5qvKcaUCMKXhg1osCA

