wolfssl/wolfcrypt/src/random.c

2767 lines
74 KiB
C

/* random.c
*
* Copyright (C) 2006-2021 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*
DESCRIPTION
This library contains implementation for the random number generator.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
/* on HPUX 11 you may need to install /dev/random see
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I
*/
#if defined(HAVE_FIPS) && \
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
#define FIPS_NO_WRAPPERS
#ifdef USE_WINDOWS_API
#pragma code_seg(".fipsA$c")
#pragma const_seg(".fipsB$c")
#endif
#endif
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/cpuid.h>
/* If building for old FIPS. */
#if defined(HAVE_FIPS) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2))
int wc_GenerateSeed(OS_Seed* os, byte* seed, word32 sz)
{
return GenerateSeed(os, seed, sz);
}
int wc_InitRng_ex(WC_RNG* rng, void* heap, int devId)
{
(void)heap;
(void)devId;
return InitRng_fips(rng);
}
int wc_InitRng(WC_RNG* rng)
{
return InitRng_fips(rng);
}
int wc_RNG_GenerateBlock(WC_RNG* rng, byte* b, word32 sz)
{
return RNG_GenerateBlock_fips(rng, b, sz);
}
int wc_RNG_GenerateByte(WC_RNG* rng, byte* b)
{
return RNG_GenerateByte(rng, b);
}
#ifdef HAVE_HASHDRBG
int wc_FreeRng(WC_RNG* rng)
{
return FreeRng_fips(rng);
}
int wc_RNG_HealthTest(int reseed, const byte* seedA, word32 seedASz,
const byte* seedB, word32 seedBSz,
byte* output, word32 outputSz)
{
return RNG_HealthTest_fips(reseed, seedA, seedASz,
seedB, seedBSz, output, outputSz);
}
#endif /* HAVE_HASHDRBG */
#else /* else build without fips, or for new fips */
#ifndef WC_NO_RNG /* if not FIPS and RNG is disabled then do not compile */
#include <wolfssl/wolfcrypt/sha256.h>
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#if defined(WOLFSSL_SGX)
#include <sgx_trts.h>
#elif defined(USE_WINDOWS_API)
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x0400
#endif
#include <windows.h>
#include <wincrypt.h>
#elif defined(HAVE_WNR)
#include <wnr.h>
#include <wolfssl/wolfcrypt/logging.h>
wolfSSL_Mutex wnr_mutex; /* global netRandom mutex */
int wnr_timeout = 0; /* entropy timeout, milliseconds */
int wnr_mutex_init = 0; /* flag for mutex init */
wnr_context* wnr_ctx; /* global netRandom context */
#elif defined(FREESCALE_KSDK_2_0_TRNG)
#include "fsl_trng.h"
#elif defined(FREESCALE_KSDK_2_0_RNGA)
#include "fsl_rnga.h"
#elif defined(WOLFSSL_WICED)
#include "wiced_crypto.h"
#elif defined(WOLFSSL_NETBURNER)
#include <predef.h>
#include <basictypes.h>
#include <random.h>
#elif defined(NO_DEV_RANDOM)
#elif defined(CUSTOM_RAND_GENERATE)
#elif defined(CUSTOM_RAND_GENERATE_BLOCK)
#elif defined(CUSTOM_RAND_GENERATE_SEED)
#elif defined(WOLFSSL_GENSEED_FORTEST)
#elif defined(WOLFSSL_MDK_ARM)
#elif defined(WOLFSSL_IAR_ARM)
#elif defined(WOLFSSL_ROWLEY_ARM)
#elif defined(WOLFSSL_EMBOS)
#elif defined(WOLFSSL_DEOS)
#elif defined(MICRIUM)
#elif defined(WOLFSSL_NUCLEUS)
#elif defined(WOLFSSL_PB)
#elif defined(WOLFSSL_ZEPHYR)
#elif defined(WOLFSSL_TELIT_M2MB)
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_TRNG)
#else
/* include headers that may be needed to get good seed */
#include <fcntl.h>
#ifndef EBSNET
#include <unistd.h>
#endif
#endif
#if defined(WOLFSSL_SILABS_SE_ACCEL)
#include <wolfssl/wolfcrypt/port/silabs/silabs_random.h>
#endif
#if defined(WOLFSSL_IOTSAFE) && defined(HAVE_IOTSAFE_HWRNG)
#include <wolfssl/wolfcrypt/port/iotsafe/iotsafe.h>
#endif
#if defined(HAVE_INTEL_RDRAND) || defined(HAVE_INTEL_RDSEED)
static word32 intel_flags = 0;
static void wc_InitRng_IntelRD(void)
{
intel_flags = cpuid_get_flags();
}
#if defined(HAVE_INTEL_RDSEED) && !defined(WOLFSSL_LINUXKM)
static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz);
#endif
#ifdef HAVE_INTEL_RDRAND
static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz);
#endif
#ifdef USE_WINDOWS_API
#define USE_INTEL_INTRINSICS
#elif !defined __GNUC__ || defined __clang__ || __GNUC__ > 4
#define USE_INTEL_INTRINSICS
#else
#undef USE_INTEL_INTRINSICS
#endif
#ifdef USE_INTEL_INTRINSICS
#include <immintrin.h>
/* Before clang 7 or GCC 9, immintrin.h did not define _rdseed64_step() */
#ifndef HAVE_INTEL_RDSEED
#elif defined __clang__ && __clang_major__ > 6
#elif !defined __GNUC__
#elif __GNUC__ > 8
#else
#ifndef __clang__
#pragma GCC push_options
#pragma GCC target("rdseed")
#else
#define __RDSEED__
#endif
#include <x86intrin.h>
#ifndef __clang__
#pragma GCC pop_options
#endif
#endif
#endif /* USE_WINDOWS_API */
#endif
/* Start NIST DRBG code */
#ifdef HAVE_HASHDRBG
#define OUTPUT_BLOCK_LEN (WC_SHA256_DIGEST_SIZE)
#define MAX_REQUEST_LEN (0x10000)
#define RESEED_INTERVAL WC_RESEED_INTERVAL
/* For FIPS builds, the user should not be adjusting the values. */
#if defined(HAVE_FIPS) && \
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
#if defined(RNG_SECURITY_STRENGTH) \
|| defined(ENTROPY_SCALE_FACTOR) \
|| defined(SEED_BLOCK_SZ)
#error "Do not change the RNG parameters for FIPS builds."
#endif
#endif
/* The security strength for the RNG is the target number of bits of
* entropy you are looking for in a seed. */
#ifndef RNG_SECURITY_STRENGTH
#if defined(HAVE_FIPS) && \
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
/* SHA-256 requires a minimum of 256-bits of entropy. The goal
* of 1024 will provide 4 times that. */
#define RNG_SECURITY_STRENGTH (1024)
#else
/* If not using FIPS or using old FIPS, set the number down a bit.
* More is better, but more is also slower. */
#define RNG_SECURITY_STRENGTH (256)
#endif
#endif
#ifndef ENTROPY_SCALE_FACTOR
/* The entropy scale factor should be the whole number inverse of the
* minimum bits of entropy per bit of NDRNG output. */
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
/* The value of 2 applies to Intel's RDSEED which provides about
* 0.5 bits minimum of entropy per bit. */
#define ENTROPY_SCALE_FACTOR 2
#else
/* Setting the default to 1. */
#define ENTROPY_SCALE_FACTOR 1
#endif
#endif
#ifndef SEED_BLOCK_SZ
/* The seed block size, is the size of the output of the underlying NDRNG.
* This value is used for testing the output of the NDRNG. */
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
/* RDSEED outputs in blocks of 64-bits. */
#define SEED_BLOCK_SZ sizeof(word64)
#else
/* Setting the default to 4. */
#define SEED_BLOCK_SZ 4
#endif
#endif
#define SEED_SZ (RNG_SECURITY_STRENGTH*ENTROPY_SCALE_FACTOR/8)
/* The maximum seed size will be the seed size plus a seed block for the
* test, and an additional half of the seed size. This additional half
* is in case the user does not supply a nonce. A nonce will be obtained
* from the NDRNG. */
#define MAX_SEED_SZ (SEED_SZ + SEED_SZ/2 + SEED_BLOCK_SZ)
#ifdef WC_RNG_SEED_CB
static wc_RngSeed_Cb seedCb = NULL;
int wc_SetSeed_Cb(wc_RngSeed_Cb cb)
{
seedCb = cb;
return 0;
}
#endif
/* Internal return codes */
#define DRBG_SUCCESS 0
#define DRBG_FAILURE 1
#define DRBG_NEED_RESEED 2
#define DRBG_CONT_FAILURE 3
#define DRBG_NO_SEED_CB 4
/* RNG health states */
#define DRBG_NOT_INIT 0
#define DRBG_OK 1
#define DRBG_FAILED 2
#define DRBG_CONT_FAILED 3
#define RNG_HEALTH_TEST_CHECK_SIZE (WC_SHA256_DIGEST_SIZE * 4)
/* Verify max gen block len */
#if RNG_MAX_BLOCK_LEN > MAX_REQUEST_LEN
#error RNG_MAX_BLOCK_LEN is larger than NIST DBRG max request length
#endif
enum {
drbgInitC = 0,
drbgReseed = 1,
drbgGenerateW = 2,
drbgGenerateH = 3,
drbgInitV = 4
};
typedef struct DRBG_internal DRBG_internal;
static int wc_RNG_HealthTestLocal(int reseed);
/* Hash Derivation Function */
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_df(DRBG_internal* drbg, byte* out, word32 outSz, byte type,
const byte* inA, word32 inASz,
const byte* inB, word32 inBSz)
{
int ret = DRBG_FAILURE;
byte ctr;
int i;
int len;
word32 bits = (outSz * 8); /* reverse byte order */
#ifdef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256* sha = &drbg->sha256;
#else
wc_Sha256 sha[1];
#endif
#ifdef WC_ASYNC_ENABLE_SHA256
DECLARE_VAR(digest, byte, WC_SHA256_DIGEST_SIZE, drbg->heap);
if (digest == NULL)
return MEMORY_E;
#else
byte digest[WC_SHA256_DIGEST_SIZE];
#endif
(void)drbg;
#ifdef WC_ASYNC_ENABLE_SHA256
if (digest == NULL)
return DRBG_FAILURE;
#endif
#ifdef LITTLE_ENDIAN_ORDER
bits = ByteReverseWord32(bits);
#endif
len = (outSz / OUTPUT_BLOCK_LEN)
+ ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
ctr = 1;
for (i = 0; i < len; i++) {
#ifndef WOLFSSL_SMALL_STACK_CACHE
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
#else
ret = wc_InitSha256(sha);
#endif
if (ret != 0)
break;
#endif
ret = wc_Sha256Update(sha, &ctr, sizeof(ctr));
if (ret == 0) {
ctr++;
ret = wc_Sha256Update(sha, (byte*)&bits, sizeof(bits));
}
if (ret == 0) {
/* churning V is the only string that doesn't have the type added */
if (type != drbgInitV)
ret = wc_Sha256Update(sha, &type, sizeof(type));
}
if (ret == 0)
ret = wc_Sha256Update(sha, inA, inASz);
if (ret == 0) {
if (inB != NULL && inBSz > 0)
ret = wc_Sha256Update(sha, inB, inBSz);
}
if (ret == 0)
ret = wc_Sha256Final(sha, digest);
#ifndef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256Free(sha);
#endif
if (ret == 0) {
if (outSz > OUTPUT_BLOCK_LEN) {
XMEMCPY(out, digest, OUTPUT_BLOCK_LEN);
outSz -= OUTPUT_BLOCK_LEN;
out += OUTPUT_BLOCK_LEN;
}
else {
XMEMCPY(out, digest, outSz);
}
}
}
ForceZero(digest, WC_SHA256_DIGEST_SIZE);
#ifdef WC_ASYNC_ENABLE_SHA256
FREE_VAR(digest, drbg->heap);
#endif
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_DRBG_Reseed(DRBG_internal* drbg, const byte* seed, word32 seedSz)
{
byte newV[DRBG_SEED_LEN];
XMEMSET(newV, 0, DRBG_SEED_LEN);
if (Hash_df(drbg, newV, sizeof(newV), drbgReseed,
drbg->V, sizeof(drbg->V), seed, seedSz) != DRBG_SUCCESS) {
return DRBG_FAILURE;
}
XMEMCPY(drbg->V, newV, sizeof(drbg->V));
ForceZero(newV, sizeof(newV));
if (Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
sizeof(drbg->V), NULL, 0) != DRBG_SUCCESS) {
return DRBG_FAILURE;
}
drbg->reseedCtr = 1;
drbg->lastBlock = 0;
drbg->matchCount = 0;
return DRBG_SUCCESS;
}
/* Returns: DRBG_SUCCESS and DRBG_FAILURE or BAD_FUNC_ARG on fail */
int wc_RNG_DRBG_Reseed(WC_RNG* rng, const byte* seed, word32 seedSz)
{
if (rng == NULL || seed == NULL) {
return BAD_FUNC_ARG;
}
return Hash_DRBG_Reseed((DRBG_internal *)rng->drbg, seed, seedSz);
}
static WC_INLINE void array_add_one(byte* data, word32 dataSz)
{
int i;
for (i = dataSz - 1; i >= 0; i--)
{
data[i]++;
if (data[i] != 0) break;
}
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_gen(DRBG_internal* drbg, byte* out, word32 outSz, const byte* V)
{
int ret = DRBG_FAILURE;
byte data[DRBG_SEED_LEN];
int i;
int len;
word32 checkBlock;
#ifdef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256* sha = &drbg->sha256;
#else
wc_Sha256 sha[1];
#endif
#ifdef WC_ASYNC_ENABLE_SHA256
DECLARE_VAR(digest, byte, WC_SHA256_DIGEST_SIZE, drbg->heap);
if (digest == NULL)
return MEMORY_E;
#else
byte digest[WC_SHA256_DIGEST_SIZE];
#endif
/* Special case: outSz is 0 and out is NULL. wc_Generate a block to save for
* the continuous test. */
if (outSz == 0) outSz = 1;
len = (outSz / OUTPUT_BLOCK_LEN) + ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
XMEMCPY(data, V, sizeof(data));
for (i = 0; i < len; i++) {
#ifndef WOLFSSL_SMALL_STACK_CACHE
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
#else
ret = wc_InitSha256(sha);
#endif
if (ret == 0)
#endif
ret = wc_Sha256Update(sha, data, sizeof(data));
if (ret == 0)
ret = wc_Sha256Final(sha, digest);
#ifndef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256Free(sha);
#endif
if (ret == 0) {
XMEMCPY(&checkBlock, digest, sizeof(word32));
if (drbg->reseedCtr > 1 && checkBlock == drbg->lastBlock) {
if (drbg->matchCount == 1) {
return DRBG_CONT_FAILURE;
}
else {
if (i == (len-1)) {
len++;
}
drbg->matchCount = 1;
}
}
else {
drbg->matchCount = 0;
drbg->lastBlock = checkBlock;
}
if (out != NULL && outSz != 0) {
if (outSz >= OUTPUT_BLOCK_LEN) {
XMEMCPY(out, digest, OUTPUT_BLOCK_LEN);
outSz -= OUTPUT_BLOCK_LEN;
out += OUTPUT_BLOCK_LEN;
array_add_one(data, DRBG_SEED_LEN);
}
else {
XMEMCPY(out, digest, outSz);
outSz = 0;
}
}
}
else {
/* wc_Sha256Update or wc_Sha256Final returned error */
break;
}
}
ForceZero(data, sizeof(data));
#ifdef WC_ASYNC_ENABLE_SHA256
FREE_VAR(digest, drbg->heap);
#endif
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
}
static WC_INLINE void array_add(byte* d, word32 dLen, const byte* s, word32 sLen)
{
word16 carry = 0;
if (dLen > 0 && sLen > 0 && dLen >= sLen) {
int sIdx, dIdx;
dIdx = dLen - 1;
for (sIdx = sLen - 1; sIdx >= 0; sIdx--) {
carry += (word16)d[dIdx] + (word16)s[sIdx];
d[dIdx] = (byte)carry;
carry >>= 8;
dIdx--;
}
for (; carry != 0 && dIdx >= 0; dIdx--) {
carry += (word16)d[dIdx];
d[dIdx] = (byte)carry;
carry >>= 8;
}
}
}
/* Returns: DRBG_SUCCESS, DRBG_NEED_RESEED, or DRBG_FAILURE */
static int Hash_DRBG_Generate(DRBG_internal* drbg, byte* out, word32 outSz)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256* sha = &drbg->sha256;
#else
wc_Sha256 sha[1];
#endif
byte type;
word32 reseedCtr;
if (drbg->reseedCtr == RESEED_INTERVAL) {
return DRBG_NEED_RESEED;
} else {
#ifdef WC_ASYNC_ENABLE_SHA256
DECLARE_VAR(digest, byte, WC_SHA256_DIGEST_SIZE, drbg->heap);
if (digest == NULL)
return MEMORY_E;
#else
byte digest[WC_SHA256_DIGEST_SIZE];
#endif
type = drbgGenerateH;
reseedCtr = drbg->reseedCtr;
ret = Hash_gen(drbg, out, outSz, drbg->V);
if (ret == DRBG_SUCCESS) {
#ifndef WOLFSSL_SMALL_STACK_CACHE
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
#else
ret = wc_InitSha256(sha);
#endif
if (ret == 0)
#endif
ret = wc_Sha256Update(sha, &type, sizeof(type));
if (ret == 0)
ret = wc_Sha256Update(sha, drbg->V, sizeof(drbg->V));
if (ret == 0)
ret = wc_Sha256Final(sha, digest);
#ifndef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256Free(sha);
#endif
if (ret == 0) {
array_add(drbg->V, sizeof(drbg->V), digest, WC_SHA256_DIGEST_SIZE);
array_add(drbg->V, sizeof(drbg->V), drbg->C, sizeof(drbg->C));
#ifdef LITTLE_ENDIAN_ORDER
reseedCtr = ByteReverseWord32(reseedCtr);
#endif
array_add(drbg->V, sizeof(drbg->V),
(byte*)&reseedCtr, sizeof(reseedCtr));
ret = DRBG_SUCCESS;
}
drbg->reseedCtr++;
}
ForceZero(digest, WC_SHA256_DIGEST_SIZE);
#ifdef WC_ASYNC_ENABLE_SHA256
FREE_VAR(digest, drbg->heap);
#endif
}
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_DRBG_Instantiate(DRBG_internal* drbg, const byte* seed, word32 seedSz,
const byte* nonce, word32 nonceSz,
void* heap, int devId)
{
int ret = DRBG_FAILURE;
XMEMSET(drbg, 0, sizeof(DRBG_internal));
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
drbg->heap = heap;
drbg->devId = devId;
#else
(void)heap;
(void)devId;
#endif
#ifdef WOLFSSL_SMALL_STACK_CACHE
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
ret = wc_InitSha256_ex(&drbg->sha256, drbg->heap, drbg->devId);
#else
ret = wc_InitSha256(&drbg->sha256);
#endif
if (ret != 0)
return ret;
#endif
if (Hash_df(drbg, drbg->V, sizeof(drbg->V), drbgInitV, seed, seedSz,
nonce, nonceSz) == DRBG_SUCCESS &&
Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
sizeof(drbg->V), NULL, 0) == DRBG_SUCCESS) {
drbg->reseedCtr = 1;
drbg->lastBlock = 0;
drbg->matchCount = 0;
ret = DRBG_SUCCESS;
}
return ret;
}
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
static int Hash_DRBG_Uninstantiate(DRBG_internal* drbg)
{
word32 i;
int compareSum = 0;
byte* compareDrbg = (byte*)drbg;
#ifdef WOLFSSL_SMALL_STACK_CACHE
wc_Sha256Free(&drbg->sha256);
#endif
ForceZero(drbg, sizeof(DRBG_internal));
for (i = 0; i < sizeof(DRBG_internal); i++)
compareSum |= compareDrbg[i] ^ 0;
return (compareSum == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
}
int wc_RNG_TestSeed(const byte* seed, word32 seedSz)
{
int ret = 0;
/* Check the seed for duplicate words. */
word32 seedIdx = 0;
word32 scratchSz = min(SEED_BLOCK_SZ, seedSz - SEED_BLOCK_SZ);
while (seedIdx < seedSz - SEED_BLOCK_SZ) {
if (ConstantCompare(seed + seedIdx,
seed + seedIdx + scratchSz,
scratchSz) == 0) {
ret = DRBG_CONT_FAILURE;
}
seedIdx += SEED_BLOCK_SZ;
scratchSz = min(SEED_BLOCK_SZ, (seedSz - seedIdx));
}
return ret;
}
#endif /* HAVE_HASHDRBG */
/* End NIST DRBG Code */
static int _InitRng(WC_RNG* rng, byte* nonce, word32 nonceSz,
void* heap, int devId)
{
int ret = 0;
#ifdef HAVE_HASHDRBG
word32 seedSz = SEED_SZ + SEED_BLOCK_SZ;
#endif
(void)nonce;
(void)nonceSz;
if (rng == NULL)
return BAD_FUNC_ARG;
if (nonce == NULL && nonceSz != 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_HEAP_TEST
rng->heap = (void*)WOLFSSL_HEAP_TEST;
(void)heap;
#else
rng->heap = heap;
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
rng->devId = devId;
#if defined(WOLF_CRYPTO_CB)
rng->seed.devId = devId;
#endif
#else
(void)devId;
#endif
#ifdef HAVE_HASHDRBG
/* init the DBRG to known values */
rng->drbg = NULL;
rng->status = DRBG_NOT_INIT;
#endif
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
/* init the intel RD seed and/or rand */
wc_InitRng_IntelRD();
#endif
/* configure async RNG source if available */
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfAsync_DevCtxInit(&rng->asyncDev, WOLFSSL_ASYNC_MARKER_RNG,
rng->heap, rng->devId);
if (ret != 0)
return ret;
#endif
#ifdef HAVE_INTEL_RDRAND
/* if CPU supports RDRAND, use it directly and by-pass DRBG init */
if (IS_INTEL_RDRAND(intel_flags))
return 0;
#endif
#ifdef CUSTOM_RAND_GENERATE_BLOCK
ret = 0; /* success */
#else
#ifdef HAVE_HASHDRBG
if (nonceSz == 0)
seedSz = MAX_SEED_SZ;
if (wc_RNG_HealthTestLocal(0) == 0) {
#ifdef WC_ASYNC_ENABLE_SHA256
DECLARE_VAR(seed, byte, MAX_SEED_SZ, rng->heap);
if (seed == NULL)
return MEMORY_E;
#else
byte seed[MAX_SEED_SZ];
#endif
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
rng->drbg =
(struct DRBG*)XMALLOC(sizeof(DRBG_internal), rng->heap,
DYNAMIC_TYPE_RNG);
if (rng->drbg == NULL) {
ret = MEMORY_E;
rng->status = DRBG_FAILED;
}
#else
rng->drbg = (struct DRBG*)&rng->drbg_data;
#endif
if (ret == 0) {
#ifdef WC_RNG_SEED_CB
if (seedCb == NULL) {
ret = DRBG_NO_SEED_CB;
}
else {
ret = seedCb(&rng->seed, seed, seedSz);
if (ret != 0) {
ret = DRBG_FAILURE;
}
}
#else
ret = wc_GenerateSeed(&rng->seed, seed, seedSz);
#endif
if (ret == 0)
ret = wc_RNG_TestSeed(seed, seedSz);
else {
ret = DRBG_FAILURE;
rng->status = DRBG_FAILED;
}
if (ret == DRBG_SUCCESS)
ret = Hash_DRBG_Instantiate((DRBG_internal *)rng->drbg,
seed + SEED_BLOCK_SZ, seedSz - SEED_BLOCK_SZ,
nonce, nonceSz, rng->heap, devId);
if (ret != DRBG_SUCCESS) {
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
XFREE(rng->drbg, rng->heap, DYNAMIC_TYPE_RNG);
#endif
rng->drbg = NULL;
}
}
ForceZero(seed, seedSz);
#ifdef WC_ASYNC_ENABLE_SHA256
FREE_VAR(seed, rng->heap);
#endif
}
else
ret = DRBG_CONT_FAILURE;
if (ret == DRBG_SUCCESS) {
rng->status = DRBG_OK;
ret = 0;
}
else if (ret == DRBG_CONT_FAILURE) {
rng->status = DRBG_CONT_FAILED;
ret = DRBG_CONT_FIPS_E;
}
else if (ret == DRBG_FAILURE) {
rng->status = DRBG_FAILED;
ret = RNG_FAILURE_E;
}
else {
rng->status = DRBG_FAILED;
}
#endif /* HAVE_HASHDRBG */
#endif /* CUSTOM_RAND_GENERATE_BLOCK */
return ret;
}
WOLFSSL_ABI
WC_RNG* wc_rng_new(byte* nonce, word32 nonceSz, void* heap)
{
WC_RNG* rng;
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), heap, DYNAMIC_TYPE_RNG);
if (rng) {
int error = _InitRng(rng, nonce, nonceSz, heap, INVALID_DEVID) != 0;
if (error) {
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
rng = NULL;
}
}
return rng;
}
WOLFSSL_ABI
void wc_rng_free(WC_RNG* rng)
{
if (rng) {
void* heap = rng->heap;
wc_FreeRng(rng);
ForceZero(rng, sizeof(WC_RNG));
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
(void)heap;
}
}
int wc_InitRng(WC_RNG* rng)
{
return _InitRng(rng, NULL, 0, NULL, INVALID_DEVID);
}
int wc_InitRng_ex(WC_RNG* rng, void* heap, int devId)
{
return _InitRng(rng, NULL, 0, heap, devId);
}
int wc_InitRngNonce(WC_RNG* rng, byte* nonce, word32 nonceSz)
{
return _InitRng(rng, nonce, nonceSz, NULL, INVALID_DEVID);
}
int wc_InitRngNonce_ex(WC_RNG* rng, byte* nonce, word32 nonceSz,
void* heap, int devId)
{
return _InitRng(rng, nonce, nonceSz, heap, devId);
}
/* place a generated block in output */
WOLFSSL_ABI
int wc_RNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz)
{
int ret;
if (rng == NULL || output == NULL)
return BAD_FUNC_ARG;
if (sz == 0)
return 0;
#ifdef WOLF_CRYPTO_CB
if (rng->devId != INVALID_DEVID) {
ret = wc_CryptoCb_RandomBlock(rng, output, sz);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
}
#endif
#ifdef HAVE_INTEL_RDRAND
if (IS_INTEL_RDRAND(intel_flags))
return wc_GenerateRand_IntelRD(NULL, output, sz);
#endif
#if defined(WOLFSSL_SILABS_SE_ACCEL) && defined(WOLFSSL_SILABS_TRNG)
return silabs_GenerateRand(output, sz);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT)
if (rng->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RNG) {
/* these are blocking */
#ifdef HAVE_CAVIUM
return NitroxRngGenerateBlock(rng, output, sz);
#elif defined(HAVE_INTEL_QA) && defined(QAT_ENABLE_RNG)
return IntelQaDrbg(&rng->asyncDev, output, sz);
#else
/* simulator not supported */
#endif
}
#endif
#ifdef CUSTOM_RAND_GENERATE_BLOCK
XMEMSET(output, 0, sz);
ret = CUSTOM_RAND_GENERATE_BLOCK(output, sz);
#else
#ifdef HAVE_HASHDRBG
if (sz > RNG_MAX_BLOCK_LEN)
return BAD_FUNC_ARG;
if (rng->status != DRBG_OK)
return RNG_FAILURE_E;
ret = Hash_DRBG_Generate((DRBG_internal *)rng->drbg, output, sz);
if (ret == DRBG_NEED_RESEED) {
if (wc_RNG_HealthTestLocal(1) == 0) {
byte newSeed[SEED_SZ + SEED_BLOCK_SZ];
ret = wc_GenerateSeed(&rng->seed, newSeed,
SEED_SZ + SEED_BLOCK_SZ);
if (ret != 0)
ret = DRBG_FAILURE;
else
ret = wc_RNG_TestSeed(newSeed, SEED_SZ + SEED_BLOCK_SZ);
if (ret == DRBG_SUCCESS)
ret = Hash_DRBG_Reseed((DRBG_internal *)rng->drbg, newSeed + SEED_BLOCK_SZ,
SEED_SZ);
if (ret == DRBG_SUCCESS)
ret = Hash_DRBG_Generate((DRBG_internal *)rng->drbg, output, sz);
ForceZero(newSeed, sizeof(newSeed));
}
else
ret = DRBG_CONT_FAILURE;
}
if (ret == DRBG_SUCCESS) {
ret = 0;
}
else if (ret == DRBG_CONT_FAILURE) {
ret = DRBG_CONT_FIPS_E;
rng->status = DRBG_CONT_FAILED;
}
else {
ret = RNG_FAILURE_E;
rng->status = DRBG_FAILED;
}
#else
/* if we get here then there is an RNG configuration error */
ret = RNG_FAILURE_E;
#endif /* HAVE_HASHDRBG */
#endif /* CUSTOM_RAND_GENERATE_BLOCK */
return ret;
}
int wc_RNG_GenerateByte(WC_RNG* rng, byte* b)
{
return wc_RNG_GenerateBlock(rng, b, 1);
}
int wc_FreeRng(WC_RNG* rng)
{
int ret = 0;
if (rng == NULL)
return BAD_FUNC_ARG;
#if defined(WOLFSSL_ASYNC_CRYPT)
wolfAsync_DevCtxFree(&rng->asyncDev, WOLFSSL_ASYNC_MARKER_RNG);
#endif
#ifdef HAVE_HASHDRBG
if (rng->drbg != NULL) {
if (Hash_DRBG_Uninstantiate((DRBG_internal *)rng->drbg) != DRBG_SUCCESS)
ret = RNG_FAILURE_E;
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
XFREE(rng->drbg, rng->heap, DYNAMIC_TYPE_RNG);
#endif
rng->drbg = NULL;
}
rng->status = DRBG_NOT_INIT;
#endif /* HAVE_HASHDRBG */
return ret;
}
#ifdef HAVE_HASHDRBG
int wc_RNG_HealthTest(int reseed, const byte* seedA, word32 seedASz,
const byte* seedB, word32 seedBSz,
byte* output, word32 outputSz)
{
return wc_RNG_HealthTest_ex(reseed, NULL, 0,
seedA, seedASz, seedB, seedBSz,
output, outputSz,
NULL, INVALID_DEVID);
}
int wc_RNG_HealthTest_ex(int reseed, const byte* nonce, word32 nonceSz,
const byte* seedA, word32 seedASz,
const byte* seedB, word32 seedBSz,
byte* output, word32 outputSz,
void* heap, int devId)
{
int ret = -1;
DRBG_internal* drbg;
#ifndef WOLFSSL_SMALL_STACK
DRBG_internal drbg_var;
#endif
if (seedA == NULL || output == NULL) {
return BAD_FUNC_ARG;
}
if (reseed != 0 && seedB == NULL) {
return BAD_FUNC_ARG;
}
if (outputSz != RNG_HEALTH_TEST_CHECK_SIZE) {
return ret;
}
#ifdef WOLFSSL_SMALL_STACK
drbg = (DRBG_internal*)XMALLOC(sizeof(DRBG_internal), NULL, DYNAMIC_TYPE_RNG);
if (drbg == NULL) {
return MEMORY_E;
}
#else
drbg = &drbg_var;
#endif
if (Hash_DRBG_Instantiate(drbg, seedA, seedASz, nonce, nonceSz,
heap, devId) != 0) {
goto exit_rng_ht;
}
if (reseed) {
if (Hash_DRBG_Reseed(drbg, seedB, seedBSz) != 0) {
goto exit_rng_ht;
}
}
/* This call to generate is prescribed by the NIST DRBGVS
* procedure. The results are thrown away. The known
* answer test checks the second block of DRBG out of
* the generator to ensure the internal state is updated
* as expected. */
if (Hash_DRBG_Generate(drbg, output, outputSz) != 0) {
goto exit_rng_ht;
}
if (Hash_DRBG_Generate(drbg, output, outputSz) != 0) {
goto exit_rng_ht;
}
/* Mark success */
ret = 0;
exit_rng_ht:
/* This is safe to call even if Hash_DRBG_Instantiate fails */
if (Hash_DRBG_Uninstantiate(drbg) != 0) {
ret = -1;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(drbg, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
const FLASH_QUALIFIER byte seedA_data[] = {
0x63, 0x36, 0x33, 0x77, 0xe4, 0x1e, 0x86, 0x46, 0x8d, 0xeb, 0x0a, 0xb4,
0xa8, 0xed, 0x68, 0x3f, 0x6a, 0x13, 0x4e, 0x47, 0xe0, 0x14, 0xc7, 0x00,
0x45, 0x4e, 0x81, 0xe9, 0x53, 0x58, 0xa5, 0x69, 0x80, 0x8a, 0xa3, 0x8f,
0x2a, 0x72, 0xa6, 0x23, 0x59, 0x91, 0x5a, 0x9f, 0x8a, 0x04, 0xca, 0x68
};
const FLASH_QUALIFIER byte reseedSeedA_data[] = {
0xe6, 0x2b, 0x8a, 0x8e, 0xe8, 0xf1, 0x41, 0xb6, 0x98, 0x05, 0x66, 0xe3,
0xbf, 0xe3, 0xc0, 0x49, 0x03, 0xda, 0xd4, 0xac, 0x2c, 0xdf, 0x9f, 0x22,
0x80, 0x01, 0x0a, 0x67, 0x39, 0xbc, 0x83, 0xd3
};
const FLASH_QUALIFIER byte outputA_data[] = {
0x04, 0xee, 0xc6, 0x3b, 0xb2, 0x31, 0xdf, 0x2c, 0x63, 0x0a, 0x1a, 0xfb,
0xe7, 0x24, 0x94, 0x9d, 0x00, 0x5a, 0x58, 0x78, 0x51, 0xe1, 0xaa, 0x79,
0x5e, 0x47, 0x73, 0x47, 0xc8, 0xb0, 0x56, 0x62, 0x1c, 0x18, 0xbd, 0xdc,
0xdd, 0x8d, 0x99, 0xfc, 0x5f, 0xc2, 0xb9, 0x20, 0x53, 0xd8, 0xcf, 0xac,
0xfb, 0x0b, 0xb8, 0x83, 0x12, 0x05, 0xfa, 0xd1, 0xdd, 0xd6, 0xc0, 0x71,
0x31, 0x8a, 0x60, 0x18, 0xf0, 0x3b, 0x73, 0xf5, 0xed, 0xe4, 0xd4, 0xd0,
0x71, 0xf9, 0xde, 0x03, 0xfd, 0x7a, 0xea, 0x10, 0x5d, 0x92, 0x99, 0xb8,
0xaf, 0x99, 0xaa, 0x07, 0x5b, 0xdb, 0x4d, 0xb9, 0xaa, 0x28, 0xc1, 0x8d,
0x17, 0x4b, 0x56, 0xee, 0x2a, 0x01, 0x4d, 0x09, 0x88, 0x96, 0xff, 0x22,
0x82, 0xc9, 0x55, 0xa8, 0x19, 0x69, 0xe0, 0x69, 0xfa, 0x8c, 0xe0, 0x07,
0xa1, 0x80, 0x18, 0x3a, 0x07, 0xdf, 0xae, 0x17
};
const FLASH_QUALIFIER byte seedB_data[] = {
0xa6, 0x5a, 0xd0, 0xf3, 0x45, 0xdb, 0x4e, 0x0e, 0xff, 0xe8, 0x75, 0xc3,
0xa2, 0xe7, 0x1f, 0x42, 0xc7, 0x12, 0x9d, 0x62, 0x0f, 0xf5, 0xc1, 0x19,
0xa9, 0xef, 0x55, 0xf0, 0x51, 0x85, 0xe0, 0xfb, /* nonce next */
0x85, 0x81, 0xf9, 0x31, 0x75, 0x17, 0x27, 0x6e, 0x06, 0xe9, 0x60, 0x7d,
0xdb, 0xcb, 0xcc, 0x2e
};
const FLASH_QUALIFIER byte outputB_data[] = {
0xd3, 0xe1, 0x60, 0xc3, 0x5b, 0x99, 0xf3, 0x40, 0xb2, 0x62, 0x82, 0x64,
0xd1, 0x75, 0x10, 0x60, 0xe0, 0x04, 0x5d, 0xa3, 0x83, 0xff, 0x57, 0xa5,
0x7d, 0x73, 0xa6, 0x73, 0xd2, 0xb8, 0xd8, 0x0d, 0xaa, 0xf6, 0xa6, 0xc3,
0x5a, 0x91, 0xbb, 0x45, 0x79, 0xd7, 0x3f, 0xd0, 0xc8, 0xfe, 0xd1, 0x11,
0xb0, 0x39, 0x13, 0x06, 0x82, 0x8a, 0xdf, 0xed, 0x52, 0x8f, 0x01, 0x81,
0x21, 0xb3, 0xfe, 0xbd, 0xc3, 0x43, 0xe7, 0x97, 0xb8, 0x7d, 0xbb, 0x63,
0xdb, 0x13, 0x33, 0xde, 0xd9, 0xd1, 0xec, 0xe1, 0x77, 0xcf, 0xa6, 0xb7,
0x1f, 0xe8, 0xab, 0x1d, 0xa4, 0x66, 0x24, 0xed, 0x64, 0x15, 0xe5, 0x1c,
0xcd, 0xe2, 0xc7, 0xca, 0x86, 0xe2, 0x83, 0x99, 0x0e, 0xea, 0xeb, 0x91,
0x12, 0x04, 0x15, 0x52, 0x8b, 0x22, 0x95, 0x91, 0x02, 0x81, 0xb0, 0x2d,
0xd4, 0x31, 0xf4, 0xc9, 0xf7, 0x04, 0x27, 0xdf
};
static int wc_RNG_HealthTestLocal(int reseed)
{
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
byte* check;
#else
byte check[RNG_HEALTH_TEST_CHECK_SIZE];
#endif
#ifdef WOLFSSL_SMALL_STACK
check = (byte*)XMALLOC(RNG_HEALTH_TEST_CHECK_SIZE, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (check == NULL) {
return MEMORY_E;
}
#endif
if (reseed) {
#ifdef WOLFSSL_USE_FLASHMEM
byte* seedA = (byte*)XMALLOC(sizeof(seedA_data), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
byte* reseedSeedA = (byte*)XMALLOC(sizeof(reseedSeedA_data), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
byte* outputA = (byte*)XMALLOC(sizeof(outputA_data), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (!seedA || !reseedSeedA || !outputA) {
XFREE(seedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(reseedSeedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(outputA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
ret = MEMORY_E;
}
else {
XMEMCPY_P(seedA, seedA_data, sizeof(seedA_data));
XMEMCPY_P(reseedSeedA, reseedSeedA_data, sizeof(reseedSeedA_data));
XMEMCPY_P(outputA, outputA_data, sizeof(outputA_data));
#else
const byte* seedA = seedA_data;
const byte* reseedSeedA = reseedSeedA_data;
const byte* outputA = outputA_data;
#endif
ret = wc_RNG_HealthTest(1, seedA, sizeof(seedA_data),
reseedSeedA, sizeof(reseedSeedA_data),
check, RNG_HEALTH_TEST_CHECK_SIZE);
if (ret == 0) {
if (ConstantCompare(check, outputA,
RNG_HEALTH_TEST_CHECK_SIZE) != 0)
ret = -1;
}
#ifdef WOLFSSL_USE_FLASHMEM
XFREE(seedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(reseedSeedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(outputA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
}
else {
#ifdef WOLFSSL_USE_FLASHMEM
byte* seedB = (byte*)XMALLOC(sizeof(seedB_data), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
byte* outputB = (byte*)XMALLOC(sizeof(outputB_data), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (!seedB || !outputB) {
XFREE(seedB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(outputB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
ret = MEMORY_E;
}
else {
XMEMCPY_P(seedB, seedB_data, sizeof(seedB_data));
XMEMCPY_P(outputB, outputB_data, sizeof(outputB_data));
#else
const byte* seedB = seedB_data;
const byte* outputB = outputB_data;
#endif
ret = wc_RNG_HealthTest(0, seedB, sizeof(seedB_data),
NULL, 0,
check, RNG_HEALTH_TEST_CHECK_SIZE);
if (ret == 0) {
if (ConstantCompare(check, outputB,
RNG_HEALTH_TEST_CHECK_SIZE) != 0)
ret = -1;
}
/* The previous test cases use a large seed instead of a seed and nonce.
* seedB is actually from a test case with a seed and nonce, and
* just concatenates them. The pivot point between seed and nonce is
* byte 32, feed them into the health test separately. */
if (ret == 0) {
ret = wc_RNG_HealthTest_ex(0,
seedB + 32, sizeof(seedB_data) - 32,
seedB, 32,
NULL, 0,
check, RNG_HEALTH_TEST_CHECK_SIZE,
NULL, INVALID_DEVID);
if (ret == 0) {
if (ConstantCompare(check, outputB, sizeof(outputB_data)) != 0)
ret = -1;
}
}
#ifdef WOLFSSL_USE_FLASHMEM
XFREE(seedB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(outputB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(check, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif /* HAVE_HASHDRBG */
#ifdef HAVE_WNR
/*
* Init global Whitewood netRandom context
* Returns 0 on success, negative on error
*/
int wc_InitNetRandom(const char* configFile, wnr_hmac_key hmac_cb, int timeout)
{
if (configFile == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (wnr_mutex_init > 0) {
WOLFSSL_MSG("netRandom context already created, skipping");
return 0;
}
if (wc_InitMutex(&wnr_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex wnr_mutex");
return BAD_MUTEX_E;
}
wnr_mutex_init = 1;
if (wc_LockMutex(&wnr_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
return BAD_MUTEX_E;
}
/* store entropy timeout */
wnr_timeout = timeout;
/* create global wnr_context struct */
if (wnr_create(&wnr_ctx) != WNR_ERROR_NONE) {
WOLFSSL_MSG("Error creating global netRandom context");
return RNG_FAILURE_E;
}
/* load config file */
if (wnr_config_loadf(wnr_ctx, (char*)configFile) != WNR_ERROR_NONE) {
WOLFSSL_MSG("Error loading config file into netRandom context");
wnr_destroy(wnr_ctx);
wnr_ctx = NULL;
return RNG_FAILURE_E;
}
/* create/init polling mechanism */
if (wnr_poll_create() != WNR_ERROR_NONE) {
printf("ERROR: wnr_poll_create() failed\n");
WOLFSSL_MSG("Error initializing netRandom polling mechanism");
wnr_destroy(wnr_ctx);
wnr_ctx = NULL;
return RNG_FAILURE_E;
}
/* validate config, set HMAC callback (optional) */
if (wnr_setup(wnr_ctx, hmac_cb) != WNR_ERROR_NONE) {
WOLFSSL_MSG("Error setting up netRandom context");
wnr_destroy(wnr_ctx);
wnr_ctx = NULL;
wnr_poll_destroy();
return RNG_FAILURE_E;
}
wc_UnLockMutex(&wnr_mutex);
return 0;
}
/*
* Free global Whitewood netRandom context
* Returns 0 on success, negative on error
*/
int wc_FreeNetRandom(void)
{
if (wnr_mutex_init > 0) {
if (wc_LockMutex(&wnr_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
return BAD_MUTEX_E;
}
if (wnr_ctx != NULL) {
wnr_destroy(wnr_ctx);
wnr_ctx = NULL;
}
wnr_poll_destroy();
wc_UnLockMutex(&wnr_mutex);
wc_FreeMutex(&wnr_mutex);
wnr_mutex_init = 0;
}
return 0;
}
#endif /* HAVE_WNR */
#if defined(HAVE_INTEL_RDRAND) || defined(HAVE_INTEL_RDSEED)
#ifdef WOLFSSL_ASYNC_CRYPT
/* need more retries if multiple cores */
#define INTELRD_RETRY (32 * 8)
#else
#define INTELRD_RETRY 32
#endif
#ifdef HAVE_INTEL_RDSEED
#ifndef USE_INTEL_INTRINSICS
/* return 0 on success */
static WC_INLINE int IntelRDseed64(word64* seed)
{
unsigned char ok;
__asm__ volatile("rdseed %0; setc %1":"=r"(*seed), "=qm"(ok));
return (ok) ? 0 : -1;
}
#else /* USE_INTEL_INTRINSICS */
/* The compiler Visual Studio uses does not allow inline assembly.
* It does allow for Intel intrinsic functions. */
/* return 0 on success */
# ifdef __GNUC__
__attribute__((target("rdseed")))
# endif
static WC_INLINE int IntelRDseed64(word64* seed)
{
int ok;
ok = _rdseed64_step((unsigned long long*) seed);
return (ok) ? 0 : -1;
}
#endif /* USE_INTEL_INTRINSICS */
/* return 0 on success */
static WC_INLINE int IntelRDseed64_r(word64* rnd)
{
int i;
for (i = 0; i < INTELRD_RETRY; i++) {
if (IntelRDseed64(rnd) == 0)
return 0;
}
return -1;
}
#ifndef WOLFSSL_LINUXKM
/* return 0 on success */
static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz)
{
int ret;
word64 rndTmp;
(void)os;
if (!IS_INTEL_RDSEED(intel_flags))
return -1;
for (; (sz / sizeof(word64)) > 0; sz -= sizeof(word64),
output += sizeof(word64)) {
ret = IntelRDseed64_r((word64*)output);
if (ret != 0)
return ret;
}
if (sz == 0)
return 0;
/* handle unaligned remainder */
ret = IntelRDseed64_r(&rndTmp);
if (ret != 0)
return ret;
XMEMCPY(output, &rndTmp, sz);
ForceZero(&rndTmp, sizeof(rndTmp));
return 0;
}
#endif
#endif /* HAVE_INTEL_RDSEED */
#ifdef HAVE_INTEL_RDRAND
#ifndef USE_INTEL_INTRINSICS
/* return 0 on success */
static WC_INLINE int IntelRDrand64(word64 *rnd)
{
unsigned char ok;
__asm__ volatile("rdrand %0; setc %1":"=r"(*rnd), "=qm"(ok));
return (ok) ? 0 : -1;
}
#else /* USE_INTEL_INTRINSICS */
/* The compiler Visual Studio uses does not allow inline assembly.
* It does allow for Intel intrinsic functions. */
/* return 0 on success */
# ifdef __GNUC__
__attribute__((target("rdrnd")))
# endif
static WC_INLINE int IntelRDrand64(word64 *rnd)
{
int ok;
ok = _rdrand64_step((unsigned long long*) rnd);
return (ok) ? 0 : -1;
}
#endif /* USE_INTEL_INTRINSICS */
/* return 0 on success */
static WC_INLINE int IntelRDrand64_r(word64 *rnd)
{
int i;
for (i = 0; i < INTELRD_RETRY; i++) {
if (IntelRDrand64(rnd) == 0)
return 0;
}
return -1;
}
/* return 0 on success */
static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz)
{
int ret;
word64 rndTmp;
(void)os;
if (!IS_INTEL_RDRAND(intel_flags))
return -1;
for (; (sz / sizeof(word64)) > 0; sz -= sizeof(word64),
output += sizeof(word64)) {
ret = IntelRDrand64_r((word64 *)output);
if (ret != 0)
return ret;
}
if (sz == 0)
return 0;
/* handle unaligned remainder */
ret = IntelRDrand64_r(&rndTmp);
if (ret != 0)
return ret;
XMEMCPY(output, &rndTmp, sz);
return 0;
}
#endif /* HAVE_INTEL_RDRAND */
#endif /* HAVE_INTEL_RDRAND || HAVE_INTEL_RDSEED */
/* Begin wc_GenerateSeed Implementations */
#if defined(CUSTOM_RAND_GENERATE_SEED)
/* Implement your own random generation function
* Return 0 to indicate success
* int rand_gen_seed(byte* output, word32 sz);
* #define CUSTOM_RAND_GENERATE_SEED rand_gen_seed */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
(void)os; /* Suppress unused arg warning */
return CUSTOM_RAND_GENERATE_SEED(output, sz);
}
#elif defined(CUSTOM_RAND_GENERATE_SEED_OS)
/* Implement your own random generation function,
* which includes OS_Seed.
* Return 0 to indicate success
* int rand_gen_seed(OS_Seed* os, byte* output, word32 sz);
* #define CUSTOM_RAND_GENERATE_SEED_OS rand_gen_seed */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
return CUSTOM_RAND_GENERATE_SEED_OS(os, output, sz);
}
#elif defined(CUSTOM_RAND_GENERATE)
/* Implement your own random generation function
* word32 rand_gen(void);
* #define CUSTOM_RAND_GENERATE rand_gen */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i = 0;
(void)os;
while (i < sz)
{
/* If not aligned or there is odd/remainder */
if( (i + sizeof(CUSTOM_RAND_TYPE)) > sz ||
((wc_ptr_t)&output[i] % sizeof(CUSTOM_RAND_TYPE)) != 0
) {
/* Single byte at a time */
output[i++] = (byte)CUSTOM_RAND_GENERATE();
}
else {
/* Use native 8, 16, 32 or 64 copy instruction */
*((CUSTOM_RAND_TYPE*)&output[i]) = CUSTOM_RAND_GENERATE();
i += sizeof(CUSTOM_RAND_TYPE);
}
}
return 0;
}
#elif defined(WOLFSSL_SGX)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret = !SGX_SUCCESS;
int i, read_max = 10;
for (i = 0; i < read_max && ret != SGX_SUCCESS; i++) {
ret = sgx_read_rand(output, sz);
}
(void)os;
return (ret == SGX_SUCCESS) ? 0 : 1;
}
#elif defined(USE_WINDOWS_API)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
#ifdef WOLF_CRYPTO_CB
int ret;
if (os != NULL && os->devId != INVALID_DEVID) {
ret = wc_CryptoCb_RandomSeed(os, output, sz);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
}
#endif
#ifdef HAVE_INTEL_RDSEED
if (IS_INTEL_RDSEED(intel_flags)) {
if (!wc_GenerateSeed_IntelRD(NULL, output, sz)) {
/* success, we're done */
return 0;
}
#ifdef FORCE_FAILURE_RDSEED
/* don't fall back to CryptoAPI */
return READ_RAN_E;
#endif
}
#endif /* HAVE_INTEL_RDSEED */
if(!CryptAcquireContext(&os->handle, 0, 0, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT))
return WINCRYPT_E;
if (!CryptGenRandom(os->handle, sz, output))
return CRYPTGEN_E;
CryptReleaseContext(os->handle, 0);
return 0;
}
#elif defined(HAVE_RTP_SYS) || defined(EBSNET)
#include "rtprand.h" /* rtp_rand () */
#include "rtptime.h" /* rtp_get_system_msec() */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
rtp_srand(rtp_get_system_msec());
for (i = 0; i < sz; i++ ) {
output[i] = rtp_rand() % 256;
}
return 0;
}
#elif (defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC_RNG)) && \
!defined(WOLFSSL_PIC32MZ_RNG)
/* enable ATECC RNG unless using PIC32MZ one instead */
#include <wolfssl/wolfcrypt/port/atmel/atmel.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret = 0;
(void)os;
if (output == NULL) {
return BUFFER_E;
}
ret = atmel_get_random_number(sz, output);
return ret;
}
#elif defined(MICROCHIP_PIC32)
#ifdef MICROCHIP_MPLAB_HARMONY
#ifdef MICROCHIP_MPLAB_HARMONY_3
#include "system/time/sys_time.h"
#define PIC32_SEED_COUNT SYS_TIME_CounterGet
#else
#define PIC32_SEED_COUNT _CP0_GET_COUNT
#endif
#else
#if !defined(WOLFSSL_MICROCHIP_PIC32MZ)
#include <peripheral/timer.h>
#endif
extern word32 ReadCoreTimer(void);
#define PIC32_SEED_COUNT ReadCoreTimer
#endif
#ifdef WOLFSSL_PIC32MZ_RNG
#include "xc.h"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
byte rnd[8];
word32 *rnd32 = (word32 *)rnd;
word32 size = sz;
byte* op = output;
#if ((__PIC32_FEATURE_SET0 == 'E') && (__PIC32_FEATURE_SET1 == 'C'))
RNGNUMGEN1 = _CP0_GET_COUNT();
RNGPOLY1 = _CP0_GET_COUNT();
RNGPOLY2 = _CP0_GET_COUNT();
RNGNUMGEN2 = _CP0_GET_COUNT();
#else
/* All others can be seeded from the TRNG */
RNGCONbits.TRNGMODE = 1;
RNGCONbits.TRNGEN = 1;
while (RNGCNT < 64);
RNGCONbits.LOAD = 1;
while (RNGCONbits.LOAD == 1);
while (RNGCNT < 64);
RNGPOLY2 = RNGSEED2;
RNGPOLY1 = RNGSEED1;
#endif
RNGCONbits.PLEN = 0x40;
RNGCONbits.PRNGEN = 1;
for (i=0; i<5; i++) { /* wait for RNGNUMGEN ready */
volatile int x, y;
x = RNGNUMGEN1;
y = RNGNUMGEN2;
(void)x;
(void)y;
}
do {
rnd32[0] = RNGNUMGEN1;
rnd32[1] = RNGNUMGEN2;
for(i=0; i<8; i++, op++) {
*op = rnd[i];
size --;
if(size==0)break;
}
} while(size);
return 0;
}
#else /* WOLFSSL_PIC32MZ_RNG */
/* uses the core timer, in nanoseconds to seed srand */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(PIC32_SEED_COUNT() * 25);
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ( (i % 8) == 7)
srand(PIC32_SEED_COUNT() * 25);
}
return 0;
}
#endif /* WOLFSSL_PIC32MZ_RNG */
#elif defined(FREESCALE_K70_RNGA) || defined(FREESCALE_RNGA)
/*
* wc_Generates a RNG seed using the Random Number Generator Accelerator
* on the Kinetis K70. Documentation located in Chapter 37 of
* K70 Sub-Family Reference Manual (see Note 3 in the README for link).
*/
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
/* turn on RNGA module */
#if defined(SIM_SCGC3_RNGA_MASK)
SIM_SCGC3 |= SIM_SCGC3_RNGA_MASK;
#endif
#if defined(SIM_SCGC6_RNGA_MASK)
/* additionally needed for at least K64F */
SIM_SCGC6 |= SIM_SCGC6_RNGA_MASK;
#endif
/* set SLP bit to 0 - "RNGA is not in sleep mode" */
RNG_CR &= ~RNG_CR_SLP_MASK;
/* set HA bit to 1 - "security violations masked" */
RNG_CR |= RNG_CR_HA_MASK;
/* set GO bit to 1 - "output register loaded with data" */
RNG_CR |= RNG_CR_GO_MASK;
for (i = 0; i < sz; i++) {
/* wait for RNG FIFO to be full */
while((RNG_SR & RNG_SR_OREG_LVL(0xF)) == 0) {}
/* get value */
output[i] = RNG_OR;
}
return 0;
}
#elif defined(FREESCALE_K53_RNGB) || defined(FREESCALE_RNGB)
/*
* wc_Generates a RNG seed using the Random Number Generator (RNGB)
* on the Kinetis K53. Documentation located in Chapter 33 of
* K53 Sub-Family Reference Manual (see note in the README for link).
*/
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
/* turn on RNGB module */
SIM_SCGC3 |= SIM_SCGC3_RNGB_MASK;
/* reset RNGB */
RNG_CMD |= RNG_CMD_SR_MASK;
/* FIFO generate interrupt, return all zeros on underflow,
* set auto reseed */
RNG_CR |= (RNG_CR_FUFMOD_MASK | RNG_CR_AR_MASK);
/* gen seed, clear interrupts, clear errors */
RNG_CMD |= (RNG_CMD_GS_MASK | RNG_CMD_CI_MASK | RNG_CMD_CE_MASK);
/* wait for seeding to complete */
while ((RNG_SR & RNG_SR_SDN_MASK) == 0) {}
for (i = 0; i < sz; i++) {
/* wait for a word to be available from FIFO */
while((RNG_SR & RNG_SR_FIFO_LVL_MASK) == 0) {}
/* get value */
output[i] = RNG_OUT;
}
return 0;
}
#elif defined(FREESCALE_KSDK_2_0_TRNG)
#ifndef TRNG0
#define TRNG0 TRNG
#endif
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
status_t status;
status = TRNG_GetRandomData(TRNG0, output, sz);
(void)os;
if (status == kStatus_Success)
{
return(0);
}
return RAN_BLOCK_E;
}
#elif defined(FREESCALE_KSDK_2_0_RNGA)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
status_t status;
status = RNGA_GetRandomData(RNG, output, sz);
(void)os;
if (status == kStatus_Success)
{
return(0);
}
return RAN_BLOCK_E;
}
#elif defined(FREESCALE_RNGA)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
status_t status;
status = RNGA_GetRandomData(RNG, output, sz);
(void)os;
if (status == kStatus_Success)
{
return(0);
}
return RAN_BLOCK_E;
}
#elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) || \
defined(FREESCALE_KSDK_BM) || defined(FREESCALE_FREE_RTOS)
/*
* Fallback to USE_TEST_GENSEED if a FREESCALE platform did not match any
* of the TRNG/RNGA/RNGB support
*/
#define USE_TEST_GENSEED
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
(void)os;
return silabs_GenerateRand(output, sz);
}
#elif defined(STM32_RNG)
/* Generate a RNG seed using the hardware random number generator
* on the STM32F2/F4/F7/L4. */
#ifdef WOLFSSL_STM32_CUBEMX
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret;
RNG_HandleTypeDef hrng;
word32 i = 0;
(void)os;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* enable RNG clock source */
__HAL_RCC_RNG_CLK_ENABLE();
/* enable RNG peripheral */
XMEMSET(&hrng, 0, sizeof(hrng));
hrng.Instance = RNG;
HAL_RNG_Init(&hrng);
while (i < sz) {
/* If not aligned or there is odd/remainder */
if( (i + sizeof(word32)) > sz ||
((wc_ptr_t)&output[i] % sizeof(word32)) != 0
) {
/* Single byte at a time */
uint32_t tmpRng = 0;
if (HAL_RNG_GenerateRandomNumber(&hrng, &tmpRng) != HAL_OK) {
wolfSSL_CryptHwMutexUnLock();
return RAN_BLOCK_E;
}
output[i++] = (byte)tmpRng;
}
else {
/* Use native 32 instruction */
if (HAL_RNG_GenerateRandomNumber(&hrng, (uint32_t*)&output[i]) != HAL_OK) {
wolfSSL_CryptHwMutexUnLock();
return RAN_BLOCK_E;
}
i += sizeof(word32);
}
}
wolfSSL_CryptHwMutexUnLock();
return 0;
}
#elif defined(WOLFSSL_STM32F427_RNG) || defined(WOLFSSL_STM32_RNG_NOLIB)
/* Generate a RNG seed using the hardware RNG on the STM32F427
* directly, following steps outlined in STM32F4 Reference
* Manual (Chapter 24) for STM32F4xx family. */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret;
word32 i;
(void)os;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* enable RNG peripheral clock */
RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN;
/* enable RNG interrupt, set IE bit in RNG->CR register */
RNG->CR |= RNG_CR_IE;
/* enable RNG, set RNGEN bit in RNG->CR. Activates RNG,
* RNG_LFSR, and error detector */
RNG->CR |= RNG_CR_RNGEN;
/* verify no errors, make sure SEIS and CEIS bits are 0
* in RNG->SR register */
if (RNG->SR & (RNG_SR_SECS | RNG_SR_CECS)) {
wolfSSL_CryptHwMutexUnLock();
return RNG_FAILURE_E;
}
for (i = 0; i < sz; i++) {
/* wait until RNG number is ready */
while ((RNG->SR & RNG_SR_DRDY) == 0) { }
/* get value */
output[i] = RNG->DR;
}
wolfSSL_CryptHwMutexUnLock();
return 0;
}
#else
/* Generate a RNG seed using the STM32 Standard Peripheral Library */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret;
word32 i;
(void)os;
ret = wolfSSL_CryptHwMutexLock();
if (ret != 0) {
return ret;
}
/* enable RNG clock source */
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
/* reset RNG */
RNG_DeInit();
/* enable RNG peripheral */
RNG_Cmd(ENABLE);
/* verify no errors with RNG_CLK or Seed */
if (RNG_GetFlagStatus(RNG_FLAG_SECS | RNG_FLAG_CECS) != RESET) {
wolfSSL_CryptHwMutexUnLock();
return RNG_FAILURE_E;
}
for (i = 0; i < sz; i++) {
/* wait until RNG number is ready */
while (RNG_GetFlagStatus(RNG_FLAG_DRDY) == RESET) { }
/* get value */
output[i] = RNG_GetRandomNumber();
}
wolfSSL_CryptHwMutexUnLock();
return 0;
}
#endif /* WOLFSSL_STM32_CUBEMX */
#elif defined(WOLFSSL_TIRTOS)
#include <xdc/runtime/Timestamp.h>
#include <stdlib.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(xdc_runtime_Timestamp_get32());
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ((i % 8) == 7) {
srand(xdc_runtime_Timestamp_get32());
}
}
return 0;
}
#elif defined(WOLFSSL_PB)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
for (i = 0; i < sz; i++)
output[i] = UTL_Rand();
(void)os;
return 0;
}
#elif defined(WOLFSSL_NUCLEUS)
#include "nucleus.h"
#include "kernel/plus_common.h"
#warning "potential for not enough entropy, currently being used for testing"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(NU_Get_Time_Stamp());
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ((i % 8) == 7) {
srand(NU_Get_Time_Stamp());
}
}
return 0;
}
#elif defined(WOLFSSL_DEOS) && !defined(CUSTOM_RAND_GENERATE)
#include "stdlib.h"
#warning "potential for not enough entropy, currently being used for testing Deos"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
int seed = XTIME(0);
(void)os;
for (i = 0; i < sz; i++ ) {
output[i] = rand_r(&seed) % 256;
if ((i % 8) == 7) {
seed = XTIME(0);
rand_r(&seed);
}
}
return 0;
}
#elif defined(WOLFSSL_VXWORKS)
#include <randomNumGen.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) {
STATUS status;
#ifdef VXWORKS_SIM
/* cannot generate true entropy with VxWorks simulator */
#warning "not enough entropy, simulator for testing only"
int i = 0;
for (i = 0; i < 1000; i++) {
randomAddTimeStamp();
}
#endif
status = randBytes (output, sz);
if (status == ERROR) {
return RNG_FAILURE_E;
}
return 0;
}
#elif defined(WOLFSSL_NRF51) || defined(WOLFSSL_NRF5x)
#include "app_error.h"
#include "nrf_drv_rng.h"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int remaining = sz, length, pos = 0;
word32 err_code;
byte available;
static byte initialized = 0;
(void)os;
/* Make sure RNG is running */
if (!initialized) {
err_code = nrf_drv_rng_init(NULL);
if (err_code != NRF_SUCCESS && err_code != NRF_ERROR_INVALID_STATE
#ifdef NRF_ERROR_MODULE_ALREADY_INITIALIZED
&& err_code != NRF_ERROR_MODULE_ALREADY_INITIALIZED
#endif
) {
return -1;
}
initialized = 1;
}
while (remaining > 0) {
available = 0;
nrf_drv_rng_bytes_available(&available); /* void func */
length = (remaining < available) ? remaining : available;
if (length > 0) {
err_code = nrf_drv_rng_rand(&output[pos], length);
if (err_code != NRF_SUCCESS) {
break;
}
remaining -= length;
pos += length;
}
}
return (err_code == NRF_SUCCESS) ? 0 : -1;
}
#elif defined(HAVE_WNR)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
if (os == NULL || output == NULL || wnr_ctx == NULL ||
wnr_timeout < 0) {
return BAD_FUNC_ARG;
}
if (wnr_mutex_init == 0) {
WOLFSSL_MSG("netRandom context must be created before use");
return RNG_FAILURE_E;
}
if (wc_LockMutex(&wnr_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
return BAD_MUTEX_E;
}
if (wnr_get_entropy(wnr_ctx, wnr_timeout, output, sz, sz) !=
WNR_ERROR_NONE)
return RNG_FAILURE_E;
wc_UnLockMutex(&wnr_mutex);
return 0;
}
#elif defined(INTIME_RTOS)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
uint32_t randval;
word32 len;
if (output == NULL) {
return BUFFER_E;
}
#ifdef INTIMEVER
/* If INTIMEVER exists then it is INTIME RTOS v6 or later */
#define INTIME_RAND_FUNC arc4random
len = 4;
#else
/* v5 and older */
#define INTIME_RAND_FUNC rand
srand(time(0));
len = 2; /* don't use all 31 returned bits */
#endif
while (sz > 0) {
if (sz < len)
len = sz;
randval = INTIME_RAND_FUNC();
XMEMCPY(output, &randval, len);
output += len;
sz -= len;
}
(void)os;
return 0;
}
#elif defined(WOLFSSL_WICED)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret;
(void)os;
if (output == NULL || UINT16_MAX < sz) {
return BUFFER_E;
}
if ((ret = wiced_crypto_get_random((void*) output, sz) )
!= WICED_SUCCESS) {
return ret;
}
return ret;
}
#elif defined(WOLFSSL_NETBURNER)
#warning using NetBurner pseudo random GetRandomByte for seed
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
(void)os;
if (output == NULL) {
return BUFFER_E;
}
for (i = 0; i < sz; i++) {
output[i] = GetRandomByte();
/* check if was a valid random number */
if (!RandomValid())
return RNG_FAILURE_E;
}
return 0;
}
#elif defined(IDIRECT_DEV_RANDOM)
extern int getRandom( int sz, unsigned char *output );
int GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int num_bytes_returned = 0;
num_bytes_returned = getRandom( (int) sz, (unsigned char *) output );
return 0;
}
#elif (defined(WOLFSSL_IMX6_CAAM) || defined(WOLFSSL_IMX6_CAAM_RNG))
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
unsigned int args[4] = {0};
CAAM_BUFFER buf[1];
int ret = 0;
int times = 1000, i; /* 1000 is an arbitrary number chosen */
word32 idx = 0;
(void)os;
if (output == NULL) {
return BUFFER_E;
}
/* Check Waiting to make sure entropy is ready */
for (i = 0; i < times; i++) {
buf[0].BufferType = DataBuffer | LastBuffer;
buf[0].TheAddress = (CAAM_ADDRESS)(output + idx);
buf[0].Length = ((sz - idx) < WC_CAAM_MAX_ENTROPY)?
sz - idx : WC_CAAM_MAX_ENTROPY;
args[0] = buf[0].Length;
ret = wc_caamAddAndWait(buf, 1, args, CAAM_ENTROPY);
if (ret == 0) {
idx += buf[0].Length;
if (idx == sz)
break;
}
/* driver could be waiting for entropy */
if (ret != RAN_BLOCK_E && ret != 0) {
return ret;
}
usleep(100);
}
if (i == times && ret != 0) {
return RNG_FAILURE_E;
}
else { /* Success case */
ret = 0;
}
return ret;
}
#elif defined(WOLFSSL_APACHE_MYNEWT)
#include <stdlib.h>
#include "os/os_time.h"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(os_time_get());
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ((i % 8) == 7) {
srand(os_time_get());
}
}
return 0;
}
#elif defined(WOLFSSL_ESPIDF)
#if defined(WOLFSSL_ESPWROOM32) || defined(WOLFSSL_ESPWROOM32SE)
#include <esp_system.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 rand;
while (sz > 0) {
word32 len = sizeof(rand);
if (sz < len)
len = sz;
/* Get one random 32-bit word from hw RNG */
rand = esp_random( );
XMEMCPY(output, &rand, len);
output += len;
sz -= len;
}
return 0;
}
#endif /* end WOLFSSL_ESPWROOM32 */
#elif defined(WOLFSSL_LINUXKM)
#include <linux/random.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
(void)os;
get_random_bytes(output, sz);
return 0;
}
#elif defined(WOLFSSL_RENESAS_TSIP)
#if defined(WOLFSSL_RENESA_TSIP_IAREWRX)
#include "r_bsp/mcu/all/r_rx_compiler.h"
#endif
#include "r_bsp/platform.h"
#include "r_tsip_rx_if.h"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret;
word32 buffer[4];
while (sz > 0) {
word32 len = sizeof(buffer);
if (sz < len) {
len = sz;
}
/* return 4 words random number*/
ret = R_TSIP_GenerateRandomNumber(buffer);
if(ret == TSIP_SUCCESS) {
XMEMCPY(output, &buffer, len);
output += len;
sz -= len;
} else
return ret;
}
return ret;
}
#elif defined(WOLFSSL_RENESAS_SCEPROTECT)
#include "r_sce.h"
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret;
word32 buffer[4];
while (sz > 0) {
word32 len = sizeof(buffer);
if (sz < len) {
len = sz;
}
/* return 4 words random number*/
ret = R_SCE_RandomNumberGenerate(buffer);
if(ret == FSP_SUCCESS) {
XMEMCPY(output, &buffer, len);
output += len;
sz -= len;
} else
return ret;
}
return ret;
}
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_TRNG)
#include "hal_data.h"
#ifndef WOLFSSL_SCE_TRNG_HANDLE
#define WOLFSSL_SCE_TRNG_HANDLE g_sce_trng
#endif
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 ret;
word32 blocks;
word32 len = sz;
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->open(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
WOLFSSL_SCE_TRNG_HANDLE.p_cfg);
if (ret != SSP_SUCCESS && ret != SSP_ERR_CRYPTO_ALREADY_OPEN) {
/* error opening TRNG driver */
return -1;
}
blocks = sz / sizeof(word32);
if (blocks > 0) {
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->read(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
(word32*)output, blocks);
if (ret != SSP_SUCCESS) {
return -1;
}
}
len = len - (blocks * sizeof(word32));
if (len > 0) {
word32 tmp;
if (len > sizeof(word32)) {
return -1;
}
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->read(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
(word32*)tmp, 1);
if (ret != SSP_SUCCESS) {
return -1;
}
XMEMCPY(output + (blocks * sizeof(word32)), (byte*)&tmp, len);
}
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->close(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl);
if (ret != SSP_SUCCESS) {
/* error opening TRNG driver */
return -1;
}
return 0;
}
#elif defined(CUSTOM_RAND_GENERATE_BLOCK)
/* #define CUSTOM_RAND_GENERATE_BLOCK myRngFunc
* extern int myRngFunc(byte* output, word32 sz);
*/
#elif defined(WOLFSSL_SAFERTOS) || defined(WOLFSSL_LEANPSK) || \
defined(WOLFSSL_IAR_ARM) || defined(WOLFSSL_MDK_ARM) || \
defined(WOLFSSL_uITRON4) || defined(WOLFSSL_uTKERNEL2) || \
defined(WOLFSSL_LPC43xx) || defined(NO_STM32_RNG) || \
defined(MBED) || defined(WOLFSSL_EMBOS) || \
defined(WOLFSSL_GENSEED_FORTEST) || defined(WOLFSSL_CHIBIOS) || \
defined(WOLFSSL_CONTIKI) || defined(WOLFSSL_AZSPHERE)
/* these platforms do not have a default random seed and
you'll need to implement your own wc_GenerateSeed or define via
CUSTOM_RAND_GENERATE_BLOCK */
#define USE_TEST_GENSEED
#elif defined(WOLFSSL_ZEPHYR)
#include <random/rand32.h>
#ifndef _POSIX_C_SOURCE
#include <posix/time.h>
#else
#include <sys/time.h>
#endif
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
sys_rand_get(output, sz);
return 0;
}
#elif defined(WOLFSSL_TELIT_M2MB)
#include "stdlib.h"
static long get_timestamp(void) {
long myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd >= 0) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = timeval.msec;
m2mb_rtc_close(fd);
}
return myTime;
}
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int i;
srand(get_timestamp());
for (i = 0; i < sz; i++ ) {
output[i] = rand() % 256;
if ((i % 8) == 7) {
srand(get_timestamp());
}
}
return 0;
}
#elif defined(WOLFSSL_SE050)
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz){
int ret = 0;
(void)os;
if (output == NULL) {
return BUFFER_E;
}
ret = wolfSSL_CryptHwMutexLock();
if (ret == 0) {
ret = se050_get_random_number(sz, output);
wolfSSL_CryptHwMutexUnLock();
}
return ret;
}
#elif defined(DOLPHIN_EMULATOR)
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
(void)os;
srand(time(NULL));
for (i = 0; i < sz; i++)
output[i] = (byte)rand();
return 0;
}
#elif defined(NO_DEV_RANDOM)
#error "you need to write an os specific wc_GenerateSeed() here"
/*
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
return 0;
}
*/
#else
/* may block */
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
int ret = 0;
if (os == NULL) {
return BAD_FUNC_ARG;
}
#ifdef WOLF_CRYPTO_CB
if (os->devId != INVALID_DEVID) {
ret = wc_CryptoCb_RandomSeed(os, output, sz);
if (ret != CRYPTOCB_UNAVAILABLE)
return ret;
/* fall-through when unavailable */
ret = 0; /* reset error code */
}
#endif
#ifdef HAVE_INTEL_RDSEED
if (IS_INTEL_RDSEED(intel_flags)) {
ret = wc_GenerateSeed_IntelRD(NULL, output, sz);
if (ret == 0) {
/* success, we're done */
return ret;
}
#ifdef FORCE_FAILURE_RDSEED
/* don't fallback to /dev/urandom */
return ret;
#else
/* reset error and fallback to using /dev/urandom */
ret = 0;
#endif
}
#endif /* HAVE_INTEL_RDSEED */
#ifndef NO_DEV_URANDOM /* way to disable use of /dev/urandom */
os->fd = open("/dev/urandom", O_RDONLY);
if (os->fd == -1)
#endif
{
/* may still have /dev/random */
os->fd = open("/dev/random", O_RDONLY);
if (os->fd == -1)
return OPEN_RAN_E;
}
while (sz) {
int len = (int)read(os->fd, output, sz);
if (len == -1) {
ret = READ_RAN_E;
break;
}
sz -= len;
output += len;
if (sz) {
#if defined(BLOCKING) || defined(WC_RNG_BLOCKING)
sleep(0); /* context switch */
#else
ret = RAN_BLOCK_E;
break;
#endif
}
}
close(os->fd);
return ret;
}
#endif
#ifdef USE_TEST_GENSEED
#ifndef _MSC_VER
#warning "write a real random seed!!!!, just for testing now"
#else
#pragma message("Warning: write a real random seed!!!!, just for testing now")
#endif
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
{
word32 i;
for (i = 0; i < sz; i++ )
output[i] = i;
(void)os;
return 0;
}
#endif
/* End wc_GenerateSeed */
#endif /* WC_NO_RNG */
#endif /* HAVE_FIPS */