mirror of https://github.com/wolfSSL/wolfssl.git
2767 lines
74 KiB
C
2767 lines
74 KiB
C
/* random.c
|
|
*
|
|
* Copyright (C) 2006-2021 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
/*
|
|
|
|
DESCRIPTION
|
|
This library contains implementation for the random number generator.
|
|
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/settings.h>
|
|
#include <wolfssl/wolfcrypt/error-crypt.h>
|
|
|
|
/* on HPUX 11 you may need to install /dev/random see
|
|
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I
|
|
|
|
*/
|
|
|
|
#if defined(HAVE_FIPS) && \
|
|
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
|
|
|
|
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
|
|
#define FIPS_NO_WRAPPERS
|
|
|
|
#ifdef USE_WINDOWS_API
|
|
#pragma code_seg(".fipsA$c")
|
|
#pragma const_seg(".fipsB$c")
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#include <wolfssl/wolfcrypt/random.h>
|
|
#include <wolfssl/wolfcrypt/cpuid.h>
|
|
|
|
|
|
/* If building for old FIPS. */
|
|
#if defined(HAVE_FIPS) && \
|
|
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2))
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* seed, word32 sz)
|
|
{
|
|
return GenerateSeed(os, seed, sz);
|
|
}
|
|
|
|
int wc_InitRng_ex(WC_RNG* rng, void* heap, int devId)
|
|
{
|
|
(void)heap;
|
|
(void)devId;
|
|
return InitRng_fips(rng);
|
|
}
|
|
|
|
int wc_InitRng(WC_RNG* rng)
|
|
{
|
|
return InitRng_fips(rng);
|
|
}
|
|
|
|
|
|
int wc_RNG_GenerateBlock(WC_RNG* rng, byte* b, word32 sz)
|
|
{
|
|
return RNG_GenerateBlock_fips(rng, b, sz);
|
|
}
|
|
|
|
|
|
int wc_RNG_GenerateByte(WC_RNG* rng, byte* b)
|
|
{
|
|
return RNG_GenerateByte(rng, b);
|
|
}
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
|
|
int wc_FreeRng(WC_RNG* rng)
|
|
{
|
|
return FreeRng_fips(rng);
|
|
}
|
|
|
|
int wc_RNG_HealthTest(int reseed, const byte* seedA, word32 seedASz,
|
|
const byte* seedB, word32 seedBSz,
|
|
byte* output, word32 outputSz)
|
|
{
|
|
return RNG_HealthTest_fips(reseed, seedA, seedASz,
|
|
seedB, seedBSz, output, outputSz);
|
|
}
|
|
#endif /* HAVE_HASHDRBG */
|
|
|
|
#else /* else build without fips, or for new fips */
|
|
|
|
#ifndef WC_NO_RNG /* if not FIPS and RNG is disabled then do not compile */
|
|
|
|
#include <wolfssl/wolfcrypt/sha256.h>
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
#include <wolfssl/wolfcrypt/cryptocb.h>
|
|
#endif
|
|
|
|
#ifdef NO_INLINE
|
|
#include <wolfssl/wolfcrypt/misc.h>
|
|
#else
|
|
#define WOLFSSL_MISC_INCLUDED
|
|
#include <wolfcrypt/src/misc.c>
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SGX)
|
|
#include <sgx_trts.h>
|
|
#elif defined(USE_WINDOWS_API)
|
|
#ifndef _WIN32_WINNT
|
|
#define _WIN32_WINNT 0x0400
|
|
#endif
|
|
#include <windows.h>
|
|
#include <wincrypt.h>
|
|
#elif defined(HAVE_WNR)
|
|
#include <wnr.h>
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
wolfSSL_Mutex wnr_mutex; /* global netRandom mutex */
|
|
int wnr_timeout = 0; /* entropy timeout, milliseconds */
|
|
int wnr_mutex_init = 0; /* flag for mutex init */
|
|
wnr_context* wnr_ctx; /* global netRandom context */
|
|
#elif defined(FREESCALE_KSDK_2_0_TRNG)
|
|
#include "fsl_trng.h"
|
|
#elif defined(FREESCALE_KSDK_2_0_RNGA)
|
|
#include "fsl_rnga.h"
|
|
#elif defined(WOLFSSL_WICED)
|
|
#include "wiced_crypto.h"
|
|
#elif defined(WOLFSSL_NETBURNER)
|
|
#include <predef.h>
|
|
#include <basictypes.h>
|
|
#include <random.h>
|
|
#elif defined(NO_DEV_RANDOM)
|
|
#elif defined(CUSTOM_RAND_GENERATE)
|
|
#elif defined(CUSTOM_RAND_GENERATE_BLOCK)
|
|
#elif defined(CUSTOM_RAND_GENERATE_SEED)
|
|
#elif defined(WOLFSSL_GENSEED_FORTEST)
|
|
#elif defined(WOLFSSL_MDK_ARM)
|
|
#elif defined(WOLFSSL_IAR_ARM)
|
|
#elif defined(WOLFSSL_ROWLEY_ARM)
|
|
#elif defined(WOLFSSL_EMBOS)
|
|
#elif defined(WOLFSSL_DEOS)
|
|
#elif defined(MICRIUM)
|
|
#elif defined(WOLFSSL_NUCLEUS)
|
|
#elif defined(WOLFSSL_PB)
|
|
#elif defined(WOLFSSL_ZEPHYR)
|
|
#elif defined(WOLFSSL_TELIT_M2MB)
|
|
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_TRNG)
|
|
#else
|
|
/* include headers that may be needed to get good seed */
|
|
#include <fcntl.h>
|
|
#ifndef EBSNET
|
|
#include <unistd.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SILABS_SE_ACCEL)
|
|
#include <wolfssl/wolfcrypt/port/silabs/silabs_random.h>
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_IOTSAFE) && defined(HAVE_IOTSAFE_HWRNG)
|
|
#include <wolfssl/wolfcrypt/port/iotsafe/iotsafe.h>
|
|
#endif
|
|
|
|
#if defined(HAVE_INTEL_RDRAND) || defined(HAVE_INTEL_RDSEED)
|
|
static word32 intel_flags = 0;
|
|
static void wc_InitRng_IntelRD(void)
|
|
{
|
|
intel_flags = cpuid_get_flags();
|
|
}
|
|
#if defined(HAVE_INTEL_RDSEED) && !defined(WOLFSSL_LINUXKM)
|
|
static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz);
|
|
#endif
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz);
|
|
#endif
|
|
|
|
#ifdef USE_WINDOWS_API
|
|
#define USE_INTEL_INTRINSICS
|
|
#elif !defined __GNUC__ || defined __clang__ || __GNUC__ > 4
|
|
#define USE_INTEL_INTRINSICS
|
|
#else
|
|
#undef USE_INTEL_INTRINSICS
|
|
#endif
|
|
|
|
#ifdef USE_INTEL_INTRINSICS
|
|
#include <immintrin.h>
|
|
/* Before clang 7 or GCC 9, immintrin.h did not define _rdseed64_step() */
|
|
#ifndef HAVE_INTEL_RDSEED
|
|
#elif defined __clang__ && __clang_major__ > 6
|
|
#elif !defined __GNUC__
|
|
#elif __GNUC__ > 8
|
|
#else
|
|
#ifndef __clang__
|
|
#pragma GCC push_options
|
|
#pragma GCC target("rdseed")
|
|
#else
|
|
#define __RDSEED__
|
|
#endif
|
|
#include <x86intrin.h>
|
|
#ifndef __clang__
|
|
#pragma GCC pop_options
|
|
#endif
|
|
#endif
|
|
#endif /* USE_WINDOWS_API */
|
|
#endif
|
|
|
|
/* Start NIST DRBG code */
|
|
#ifdef HAVE_HASHDRBG
|
|
|
|
#define OUTPUT_BLOCK_LEN (WC_SHA256_DIGEST_SIZE)
|
|
#define MAX_REQUEST_LEN (0x10000)
|
|
#define RESEED_INTERVAL WC_RESEED_INTERVAL
|
|
|
|
|
|
/* For FIPS builds, the user should not be adjusting the values. */
|
|
#if defined(HAVE_FIPS) && \
|
|
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
|
|
#if defined(RNG_SECURITY_STRENGTH) \
|
|
|| defined(ENTROPY_SCALE_FACTOR) \
|
|
|| defined(SEED_BLOCK_SZ)
|
|
|
|
#error "Do not change the RNG parameters for FIPS builds."
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* The security strength for the RNG is the target number of bits of
|
|
* entropy you are looking for in a seed. */
|
|
#ifndef RNG_SECURITY_STRENGTH
|
|
#if defined(HAVE_FIPS) && \
|
|
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
|
|
/* SHA-256 requires a minimum of 256-bits of entropy. The goal
|
|
* of 1024 will provide 4 times that. */
|
|
#define RNG_SECURITY_STRENGTH (1024)
|
|
#else
|
|
/* If not using FIPS or using old FIPS, set the number down a bit.
|
|
* More is better, but more is also slower. */
|
|
#define RNG_SECURITY_STRENGTH (256)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef ENTROPY_SCALE_FACTOR
|
|
/* The entropy scale factor should be the whole number inverse of the
|
|
* minimum bits of entropy per bit of NDRNG output. */
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
|
|
/* The value of 2 applies to Intel's RDSEED which provides about
|
|
* 0.5 bits minimum of entropy per bit. */
|
|
#define ENTROPY_SCALE_FACTOR 2
|
|
#else
|
|
/* Setting the default to 1. */
|
|
#define ENTROPY_SCALE_FACTOR 1
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef SEED_BLOCK_SZ
|
|
/* The seed block size, is the size of the output of the underlying NDRNG.
|
|
* This value is used for testing the output of the NDRNG. */
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
|
|
/* RDSEED outputs in blocks of 64-bits. */
|
|
#define SEED_BLOCK_SZ sizeof(word64)
|
|
#else
|
|
/* Setting the default to 4. */
|
|
#define SEED_BLOCK_SZ 4
|
|
#endif
|
|
#endif
|
|
|
|
#define SEED_SZ (RNG_SECURITY_STRENGTH*ENTROPY_SCALE_FACTOR/8)
|
|
|
|
/* The maximum seed size will be the seed size plus a seed block for the
|
|
* test, and an additional half of the seed size. This additional half
|
|
* is in case the user does not supply a nonce. A nonce will be obtained
|
|
* from the NDRNG. */
|
|
#define MAX_SEED_SZ (SEED_SZ + SEED_SZ/2 + SEED_BLOCK_SZ)
|
|
|
|
|
|
#ifdef WC_RNG_SEED_CB
|
|
|
|
static wc_RngSeed_Cb seedCb = NULL;
|
|
|
|
int wc_SetSeed_Cb(wc_RngSeed_Cb cb)
|
|
{
|
|
seedCb = cb;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/* Internal return codes */
|
|
#define DRBG_SUCCESS 0
|
|
#define DRBG_FAILURE 1
|
|
#define DRBG_NEED_RESEED 2
|
|
#define DRBG_CONT_FAILURE 3
|
|
#define DRBG_NO_SEED_CB 4
|
|
|
|
/* RNG health states */
|
|
#define DRBG_NOT_INIT 0
|
|
#define DRBG_OK 1
|
|
#define DRBG_FAILED 2
|
|
#define DRBG_CONT_FAILED 3
|
|
|
|
#define RNG_HEALTH_TEST_CHECK_SIZE (WC_SHA256_DIGEST_SIZE * 4)
|
|
|
|
/* Verify max gen block len */
|
|
#if RNG_MAX_BLOCK_LEN > MAX_REQUEST_LEN
|
|
#error RNG_MAX_BLOCK_LEN is larger than NIST DBRG max request length
|
|
#endif
|
|
|
|
enum {
|
|
drbgInitC = 0,
|
|
drbgReseed = 1,
|
|
drbgGenerateW = 2,
|
|
drbgGenerateH = 3,
|
|
drbgInitV = 4
|
|
};
|
|
|
|
typedef struct DRBG_internal DRBG_internal;
|
|
|
|
static int wc_RNG_HealthTestLocal(int reseed);
|
|
|
|
/* Hash Derivation Function */
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_df(DRBG_internal* drbg, byte* out, word32 outSz, byte type,
|
|
const byte* inA, word32 inASz,
|
|
const byte* inB, word32 inBSz)
|
|
{
|
|
int ret = DRBG_FAILURE;
|
|
byte ctr;
|
|
int i;
|
|
int len;
|
|
word32 bits = (outSz * 8); /* reverse byte order */
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256* sha = &drbg->sha256;
|
|
#else
|
|
wc_Sha256 sha[1];
|
|
#endif
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
DECLARE_VAR(digest, byte, WC_SHA256_DIGEST_SIZE, drbg->heap);
|
|
if (digest == NULL)
|
|
return MEMORY_E;
|
|
#else
|
|
byte digest[WC_SHA256_DIGEST_SIZE];
|
|
#endif
|
|
|
|
(void)drbg;
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
if (digest == NULL)
|
|
return DRBG_FAILURE;
|
|
#endif
|
|
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
bits = ByteReverseWord32(bits);
|
|
#endif
|
|
len = (outSz / OUTPUT_BLOCK_LEN)
|
|
+ ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
|
|
|
|
ctr = 1;
|
|
for (i = 0; i < len; i++) {
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(sha);
|
|
#endif
|
|
if (ret != 0)
|
|
break;
|
|
#endif
|
|
ret = wc_Sha256Update(sha, &ctr, sizeof(ctr));
|
|
if (ret == 0) {
|
|
ctr++;
|
|
ret = wc_Sha256Update(sha, (byte*)&bits, sizeof(bits));
|
|
}
|
|
|
|
if (ret == 0) {
|
|
/* churning V is the only string that doesn't have the type added */
|
|
if (type != drbgInitV)
|
|
ret = wc_Sha256Update(sha, &type, sizeof(type));
|
|
}
|
|
if (ret == 0)
|
|
ret = wc_Sha256Update(sha, inA, inASz);
|
|
if (ret == 0) {
|
|
if (inB != NULL && inBSz > 0)
|
|
ret = wc_Sha256Update(sha, inB, inBSz);
|
|
}
|
|
if (ret == 0)
|
|
ret = wc_Sha256Final(sha, digest);
|
|
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(sha);
|
|
#endif
|
|
if (ret == 0) {
|
|
if (outSz > OUTPUT_BLOCK_LEN) {
|
|
XMEMCPY(out, digest, OUTPUT_BLOCK_LEN);
|
|
outSz -= OUTPUT_BLOCK_LEN;
|
|
out += OUTPUT_BLOCK_LEN;
|
|
}
|
|
else {
|
|
XMEMCPY(out, digest, outSz);
|
|
}
|
|
}
|
|
}
|
|
|
|
ForceZero(digest, WC_SHA256_DIGEST_SIZE);
|
|
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
FREE_VAR(digest, drbg->heap);
|
|
#endif
|
|
|
|
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_DRBG_Reseed(DRBG_internal* drbg, const byte* seed, word32 seedSz)
|
|
{
|
|
byte newV[DRBG_SEED_LEN];
|
|
|
|
XMEMSET(newV, 0, DRBG_SEED_LEN);
|
|
|
|
if (Hash_df(drbg, newV, sizeof(newV), drbgReseed,
|
|
drbg->V, sizeof(drbg->V), seed, seedSz) != DRBG_SUCCESS) {
|
|
return DRBG_FAILURE;
|
|
}
|
|
|
|
XMEMCPY(drbg->V, newV, sizeof(drbg->V));
|
|
ForceZero(newV, sizeof(newV));
|
|
|
|
if (Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
|
|
sizeof(drbg->V), NULL, 0) != DRBG_SUCCESS) {
|
|
return DRBG_FAILURE;
|
|
}
|
|
|
|
drbg->reseedCtr = 1;
|
|
drbg->lastBlock = 0;
|
|
drbg->matchCount = 0;
|
|
return DRBG_SUCCESS;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS and DRBG_FAILURE or BAD_FUNC_ARG on fail */
|
|
int wc_RNG_DRBG_Reseed(WC_RNG* rng, const byte* seed, word32 seedSz)
|
|
{
|
|
if (rng == NULL || seed == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
return Hash_DRBG_Reseed((DRBG_internal *)rng->drbg, seed, seedSz);
|
|
}
|
|
|
|
static WC_INLINE void array_add_one(byte* data, word32 dataSz)
|
|
{
|
|
int i;
|
|
|
|
for (i = dataSz - 1; i >= 0; i--)
|
|
{
|
|
data[i]++;
|
|
if (data[i] != 0) break;
|
|
}
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_gen(DRBG_internal* drbg, byte* out, word32 outSz, const byte* V)
|
|
{
|
|
int ret = DRBG_FAILURE;
|
|
byte data[DRBG_SEED_LEN];
|
|
int i;
|
|
int len;
|
|
word32 checkBlock;
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256* sha = &drbg->sha256;
|
|
#else
|
|
wc_Sha256 sha[1];
|
|
#endif
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
DECLARE_VAR(digest, byte, WC_SHA256_DIGEST_SIZE, drbg->heap);
|
|
if (digest == NULL)
|
|
return MEMORY_E;
|
|
#else
|
|
byte digest[WC_SHA256_DIGEST_SIZE];
|
|
#endif
|
|
|
|
/* Special case: outSz is 0 and out is NULL. wc_Generate a block to save for
|
|
* the continuous test. */
|
|
|
|
if (outSz == 0) outSz = 1;
|
|
|
|
len = (outSz / OUTPUT_BLOCK_LEN) + ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
|
|
|
|
XMEMCPY(data, V, sizeof(data));
|
|
for (i = 0; i < len; i++) {
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(sha);
|
|
#endif
|
|
if (ret == 0)
|
|
#endif
|
|
ret = wc_Sha256Update(sha, data, sizeof(data));
|
|
if (ret == 0)
|
|
ret = wc_Sha256Final(sha, digest);
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(sha);
|
|
#endif
|
|
|
|
if (ret == 0) {
|
|
XMEMCPY(&checkBlock, digest, sizeof(word32));
|
|
if (drbg->reseedCtr > 1 && checkBlock == drbg->lastBlock) {
|
|
if (drbg->matchCount == 1) {
|
|
return DRBG_CONT_FAILURE;
|
|
}
|
|
else {
|
|
if (i == (len-1)) {
|
|
len++;
|
|
}
|
|
drbg->matchCount = 1;
|
|
}
|
|
}
|
|
else {
|
|
drbg->matchCount = 0;
|
|
drbg->lastBlock = checkBlock;
|
|
}
|
|
|
|
if (out != NULL && outSz != 0) {
|
|
if (outSz >= OUTPUT_BLOCK_LEN) {
|
|
XMEMCPY(out, digest, OUTPUT_BLOCK_LEN);
|
|
outSz -= OUTPUT_BLOCK_LEN;
|
|
out += OUTPUT_BLOCK_LEN;
|
|
array_add_one(data, DRBG_SEED_LEN);
|
|
}
|
|
else {
|
|
XMEMCPY(out, digest, outSz);
|
|
outSz = 0;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* wc_Sha256Update or wc_Sha256Final returned error */
|
|
break;
|
|
}
|
|
}
|
|
ForceZero(data, sizeof(data));
|
|
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
FREE_VAR(digest, drbg->heap);
|
|
#endif
|
|
|
|
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
static WC_INLINE void array_add(byte* d, word32 dLen, const byte* s, word32 sLen)
|
|
{
|
|
word16 carry = 0;
|
|
|
|
if (dLen > 0 && sLen > 0 && dLen >= sLen) {
|
|
int sIdx, dIdx;
|
|
|
|
dIdx = dLen - 1;
|
|
for (sIdx = sLen - 1; sIdx >= 0; sIdx--) {
|
|
carry += (word16)d[dIdx] + (word16)s[sIdx];
|
|
d[dIdx] = (byte)carry;
|
|
carry >>= 8;
|
|
dIdx--;
|
|
}
|
|
|
|
for (; carry != 0 && dIdx >= 0; dIdx--) {
|
|
carry += (word16)d[dIdx];
|
|
d[dIdx] = (byte)carry;
|
|
carry >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS, DRBG_NEED_RESEED, or DRBG_FAILURE */
|
|
static int Hash_DRBG_Generate(DRBG_internal* drbg, byte* out, word32 outSz)
|
|
{
|
|
int ret;
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256* sha = &drbg->sha256;
|
|
#else
|
|
wc_Sha256 sha[1];
|
|
#endif
|
|
byte type;
|
|
word32 reseedCtr;
|
|
|
|
if (drbg->reseedCtr == RESEED_INTERVAL) {
|
|
return DRBG_NEED_RESEED;
|
|
} else {
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
DECLARE_VAR(digest, byte, WC_SHA256_DIGEST_SIZE, drbg->heap);
|
|
if (digest == NULL)
|
|
return MEMORY_E;
|
|
#else
|
|
byte digest[WC_SHA256_DIGEST_SIZE];
|
|
#endif
|
|
type = drbgGenerateH;
|
|
reseedCtr = drbg->reseedCtr;
|
|
|
|
ret = Hash_gen(drbg, out, outSz, drbg->V);
|
|
if (ret == DRBG_SUCCESS) {
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(sha);
|
|
#endif
|
|
if (ret == 0)
|
|
#endif
|
|
ret = wc_Sha256Update(sha, &type, sizeof(type));
|
|
if (ret == 0)
|
|
ret = wc_Sha256Update(sha, drbg->V, sizeof(drbg->V));
|
|
if (ret == 0)
|
|
ret = wc_Sha256Final(sha, digest);
|
|
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(sha);
|
|
#endif
|
|
|
|
if (ret == 0) {
|
|
array_add(drbg->V, sizeof(drbg->V), digest, WC_SHA256_DIGEST_SIZE);
|
|
array_add(drbg->V, sizeof(drbg->V), drbg->C, sizeof(drbg->C));
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
reseedCtr = ByteReverseWord32(reseedCtr);
|
|
#endif
|
|
array_add(drbg->V, sizeof(drbg->V),
|
|
(byte*)&reseedCtr, sizeof(reseedCtr));
|
|
ret = DRBG_SUCCESS;
|
|
}
|
|
drbg->reseedCtr++;
|
|
}
|
|
ForceZero(digest, WC_SHA256_DIGEST_SIZE);
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
FREE_VAR(digest, drbg->heap);
|
|
#endif
|
|
}
|
|
|
|
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_DRBG_Instantiate(DRBG_internal* drbg, const byte* seed, word32 seedSz,
|
|
const byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret = DRBG_FAILURE;
|
|
|
|
XMEMSET(drbg, 0, sizeof(DRBG_internal));
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
drbg->heap = heap;
|
|
drbg->devId = devId;
|
|
#else
|
|
(void)heap;
|
|
(void)devId;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(&drbg->sha256, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(&drbg->sha256);
|
|
#endif
|
|
if (ret != 0)
|
|
return ret;
|
|
#endif
|
|
|
|
if (Hash_df(drbg, drbg->V, sizeof(drbg->V), drbgInitV, seed, seedSz,
|
|
nonce, nonceSz) == DRBG_SUCCESS &&
|
|
Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
|
|
sizeof(drbg->V), NULL, 0) == DRBG_SUCCESS) {
|
|
|
|
drbg->reseedCtr = 1;
|
|
drbg->lastBlock = 0;
|
|
drbg->matchCount = 0;
|
|
ret = DRBG_SUCCESS;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_DRBG_Uninstantiate(DRBG_internal* drbg)
|
|
{
|
|
word32 i;
|
|
int compareSum = 0;
|
|
byte* compareDrbg = (byte*)drbg;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(&drbg->sha256);
|
|
#endif
|
|
|
|
ForceZero(drbg, sizeof(DRBG_internal));
|
|
|
|
for (i = 0; i < sizeof(DRBG_internal); i++)
|
|
compareSum |= compareDrbg[i] ^ 0;
|
|
|
|
return (compareSum == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
|
|
int wc_RNG_TestSeed(const byte* seed, word32 seedSz)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Check the seed for duplicate words. */
|
|
word32 seedIdx = 0;
|
|
word32 scratchSz = min(SEED_BLOCK_SZ, seedSz - SEED_BLOCK_SZ);
|
|
|
|
while (seedIdx < seedSz - SEED_BLOCK_SZ) {
|
|
if (ConstantCompare(seed + seedIdx,
|
|
seed + seedIdx + scratchSz,
|
|
scratchSz) == 0) {
|
|
|
|
ret = DRBG_CONT_FAILURE;
|
|
}
|
|
seedIdx += SEED_BLOCK_SZ;
|
|
scratchSz = min(SEED_BLOCK_SZ, (seedSz - seedIdx));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* HAVE_HASHDRBG */
|
|
/* End NIST DRBG Code */
|
|
|
|
|
|
static int _InitRng(WC_RNG* rng, byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret = 0;
|
|
#ifdef HAVE_HASHDRBG
|
|
word32 seedSz = SEED_SZ + SEED_BLOCK_SZ;
|
|
#endif
|
|
|
|
(void)nonce;
|
|
(void)nonceSz;
|
|
|
|
if (rng == NULL)
|
|
return BAD_FUNC_ARG;
|
|
if (nonce == NULL && nonceSz != 0)
|
|
return BAD_FUNC_ARG;
|
|
|
|
#ifdef WOLFSSL_HEAP_TEST
|
|
rng->heap = (void*)WOLFSSL_HEAP_TEST;
|
|
(void)heap;
|
|
#else
|
|
rng->heap = heap;
|
|
#endif
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
rng->devId = devId;
|
|
#if defined(WOLF_CRYPTO_CB)
|
|
rng->seed.devId = devId;
|
|
#endif
|
|
#else
|
|
(void)devId;
|
|
#endif
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
/* init the DBRG to known values */
|
|
rng->drbg = NULL;
|
|
rng->status = DRBG_NOT_INIT;
|
|
#endif
|
|
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
|
|
/* init the intel RD seed and/or rand */
|
|
wc_InitRng_IntelRD();
|
|
#endif
|
|
|
|
/* configure async RNG source if available */
|
|
#ifdef WOLFSSL_ASYNC_CRYPT
|
|
ret = wolfAsync_DevCtxInit(&rng->asyncDev, WOLFSSL_ASYNC_MARKER_RNG,
|
|
rng->heap, rng->devId);
|
|
if (ret != 0)
|
|
return ret;
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
/* if CPU supports RDRAND, use it directly and by-pass DRBG init */
|
|
if (IS_INTEL_RDRAND(intel_flags))
|
|
return 0;
|
|
#endif
|
|
|
|
#ifdef CUSTOM_RAND_GENERATE_BLOCK
|
|
ret = 0; /* success */
|
|
#else
|
|
#ifdef HAVE_HASHDRBG
|
|
if (nonceSz == 0)
|
|
seedSz = MAX_SEED_SZ;
|
|
|
|
if (wc_RNG_HealthTestLocal(0) == 0) {
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
DECLARE_VAR(seed, byte, MAX_SEED_SZ, rng->heap);
|
|
if (seed == NULL)
|
|
return MEMORY_E;
|
|
#else
|
|
byte seed[MAX_SEED_SZ];
|
|
#endif
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
rng->drbg =
|
|
(struct DRBG*)XMALLOC(sizeof(DRBG_internal), rng->heap,
|
|
DYNAMIC_TYPE_RNG);
|
|
if (rng->drbg == NULL) {
|
|
ret = MEMORY_E;
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
#else
|
|
rng->drbg = (struct DRBG*)&rng->drbg_data;
|
|
#endif
|
|
if (ret == 0) {
|
|
#ifdef WC_RNG_SEED_CB
|
|
if (seedCb == NULL) {
|
|
ret = DRBG_NO_SEED_CB;
|
|
}
|
|
else {
|
|
ret = seedCb(&rng->seed, seed, seedSz);
|
|
if (ret != 0) {
|
|
ret = DRBG_FAILURE;
|
|
}
|
|
}
|
|
#else
|
|
ret = wc_GenerateSeed(&rng->seed, seed, seedSz);
|
|
#endif
|
|
if (ret == 0)
|
|
ret = wc_RNG_TestSeed(seed, seedSz);
|
|
else {
|
|
ret = DRBG_FAILURE;
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = Hash_DRBG_Instantiate((DRBG_internal *)rng->drbg,
|
|
seed + SEED_BLOCK_SZ, seedSz - SEED_BLOCK_SZ,
|
|
nonce, nonceSz, rng->heap, devId);
|
|
|
|
if (ret != DRBG_SUCCESS) {
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
XFREE(rng->drbg, rng->heap, DYNAMIC_TYPE_RNG);
|
|
#endif
|
|
rng->drbg = NULL;
|
|
}
|
|
}
|
|
|
|
ForceZero(seed, seedSz);
|
|
#ifdef WC_ASYNC_ENABLE_SHA256
|
|
FREE_VAR(seed, rng->heap);
|
|
#endif
|
|
}
|
|
else
|
|
ret = DRBG_CONT_FAILURE;
|
|
|
|
if (ret == DRBG_SUCCESS) {
|
|
rng->status = DRBG_OK;
|
|
ret = 0;
|
|
}
|
|
else if (ret == DRBG_CONT_FAILURE) {
|
|
rng->status = DRBG_CONT_FAILED;
|
|
ret = DRBG_CONT_FIPS_E;
|
|
}
|
|
else if (ret == DRBG_FAILURE) {
|
|
rng->status = DRBG_FAILED;
|
|
ret = RNG_FAILURE_E;
|
|
}
|
|
else {
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
#endif /* HAVE_HASHDRBG */
|
|
#endif /* CUSTOM_RAND_GENERATE_BLOCK */
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
WOLFSSL_ABI
|
|
WC_RNG* wc_rng_new(byte* nonce, word32 nonceSz, void* heap)
|
|
{
|
|
WC_RNG* rng;
|
|
|
|
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), heap, DYNAMIC_TYPE_RNG);
|
|
if (rng) {
|
|
int error = _InitRng(rng, nonce, nonceSz, heap, INVALID_DEVID) != 0;
|
|
if (error) {
|
|
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
|
|
rng = NULL;
|
|
}
|
|
}
|
|
|
|
return rng;
|
|
}
|
|
|
|
|
|
WOLFSSL_ABI
|
|
void wc_rng_free(WC_RNG* rng)
|
|
{
|
|
if (rng) {
|
|
void* heap = rng->heap;
|
|
|
|
wc_FreeRng(rng);
|
|
ForceZero(rng, sizeof(WC_RNG));
|
|
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
|
|
(void)heap;
|
|
}
|
|
}
|
|
|
|
|
|
int wc_InitRng(WC_RNG* rng)
|
|
{
|
|
return _InitRng(rng, NULL, 0, NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
int wc_InitRng_ex(WC_RNG* rng, void* heap, int devId)
|
|
{
|
|
return _InitRng(rng, NULL, 0, heap, devId);
|
|
}
|
|
|
|
|
|
int wc_InitRngNonce(WC_RNG* rng, byte* nonce, word32 nonceSz)
|
|
{
|
|
return _InitRng(rng, nonce, nonceSz, NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
int wc_InitRngNonce_ex(WC_RNG* rng, byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
return _InitRng(rng, nonce, nonceSz, heap, devId);
|
|
}
|
|
|
|
|
|
/* place a generated block in output */
|
|
WOLFSSL_ABI
|
|
int wc_RNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
|
|
if (rng == NULL || output == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (rng->devId != INVALID_DEVID) {
|
|
ret = wc_CryptoCb_RandomBlock(rng, output, sz);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
if (IS_INTEL_RDRAND(intel_flags))
|
|
return wc_GenerateRand_IntelRD(NULL, output, sz);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SILABS_SE_ACCEL) && defined(WOLFSSL_SILABS_TRNG)
|
|
return silabs_GenerateRand(output, sz);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT)
|
|
if (rng->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RNG) {
|
|
/* these are blocking */
|
|
#ifdef HAVE_CAVIUM
|
|
return NitroxRngGenerateBlock(rng, output, sz);
|
|
#elif defined(HAVE_INTEL_QA) && defined(QAT_ENABLE_RNG)
|
|
return IntelQaDrbg(&rng->asyncDev, output, sz);
|
|
#else
|
|
/* simulator not supported */
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef CUSTOM_RAND_GENERATE_BLOCK
|
|
XMEMSET(output, 0, sz);
|
|
ret = CUSTOM_RAND_GENERATE_BLOCK(output, sz);
|
|
#else
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
if (sz > RNG_MAX_BLOCK_LEN)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (rng->status != DRBG_OK)
|
|
return RNG_FAILURE_E;
|
|
|
|
ret = Hash_DRBG_Generate((DRBG_internal *)rng->drbg, output, sz);
|
|
if (ret == DRBG_NEED_RESEED) {
|
|
if (wc_RNG_HealthTestLocal(1) == 0) {
|
|
byte newSeed[SEED_SZ + SEED_BLOCK_SZ];
|
|
|
|
ret = wc_GenerateSeed(&rng->seed, newSeed,
|
|
SEED_SZ + SEED_BLOCK_SZ);
|
|
if (ret != 0)
|
|
ret = DRBG_FAILURE;
|
|
else
|
|
ret = wc_RNG_TestSeed(newSeed, SEED_SZ + SEED_BLOCK_SZ);
|
|
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = Hash_DRBG_Reseed((DRBG_internal *)rng->drbg, newSeed + SEED_BLOCK_SZ,
|
|
SEED_SZ);
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = Hash_DRBG_Generate((DRBG_internal *)rng->drbg, output, sz);
|
|
|
|
ForceZero(newSeed, sizeof(newSeed));
|
|
}
|
|
else
|
|
ret = DRBG_CONT_FAILURE;
|
|
}
|
|
|
|
if (ret == DRBG_SUCCESS) {
|
|
ret = 0;
|
|
}
|
|
else if (ret == DRBG_CONT_FAILURE) {
|
|
ret = DRBG_CONT_FIPS_E;
|
|
rng->status = DRBG_CONT_FAILED;
|
|
}
|
|
else {
|
|
ret = RNG_FAILURE_E;
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
#else
|
|
|
|
/* if we get here then there is an RNG configuration error */
|
|
ret = RNG_FAILURE_E;
|
|
|
|
#endif /* HAVE_HASHDRBG */
|
|
#endif /* CUSTOM_RAND_GENERATE_BLOCK */
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int wc_RNG_GenerateByte(WC_RNG* rng, byte* b)
|
|
{
|
|
return wc_RNG_GenerateBlock(rng, b, 1);
|
|
}
|
|
|
|
|
|
int wc_FreeRng(WC_RNG* rng)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (rng == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT)
|
|
wolfAsync_DevCtxFree(&rng->asyncDev, WOLFSSL_ASYNC_MARKER_RNG);
|
|
#endif
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
if (rng->drbg != NULL) {
|
|
if (Hash_DRBG_Uninstantiate((DRBG_internal *)rng->drbg) != DRBG_SUCCESS)
|
|
ret = RNG_FAILURE_E;
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
XFREE(rng->drbg, rng->heap, DYNAMIC_TYPE_RNG);
|
|
#endif
|
|
rng->drbg = NULL;
|
|
}
|
|
|
|
rng->status = DRBG_NOT_INIT;
|
|
#endif /* HAVE_HASHDRBG */
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
int wc_RNG_HealthTest(int reseed, const byte* seedA, word32 seedASz,
|
|
const byte* seedB, word32 seedBSz,
|
|
byte* output, word32 outputSz)
|
|
{
|
|
return wc_RNG_HealthTest_ex(reseed, NULL, 0,
|
|
seedA, seedASz, seedB, seedBSz,
|
|
output, outputSz,
|
|
NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
int wc_RNG_HealthTest_ex(int reseed, const byte* nonce, word32 nonceSz,
|
|
const byte* seedA, word32 seedASz,
|
|
const byte* seedB, word32 seedBSz,
|
|
byte* output, word32 outputSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret = -1;
|
|
DRBG_internal* drbg;
|
|
#ifndef WOLFSSL_SMALL_STACK
|
|
DRBG_internal drbg_var;
|
|
#endif
|
|
|
|
if (seedA == NULL || output == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (reseed != 0 && seedB == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (outputSz != RNG_HEALTH_TEST_CHECK_SIZE) {
|
|
return ret;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
drbg = (DRBG_internal*)XMALLOC(sizeof(DRBG_internal), NULL, DYNAMIC_TYPE_RNG);
|
|
if (drbg == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#else
|
|
drbg = &drbg_var;
|
|
#endif
|
|
|
|
if (Hash_DRBG_Instantiate(drbg, seedA, seedASz, nonce, nonceSz,
|
|
heap, devId) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
|
|
if (reseed) {
|
|
if (Hash_DRBG_Reseed(drbg, seedB, seedBSz) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
}
|
|
|
|
/* This call to generate is prescribed by the NIST DRBGVS
|
|
* procedure. The results are thrown away. The known
|
|
* answer test checks the second block of DRBG out of
|
|
* the generator to ensure the internal state is updated
|
|
* as expected. */
|
|
if (Hash_DRBG_Generate(drbg, output, outputSz) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
|
|
if (Hash_DRBG_Generate(drbg, output, outputSz) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
|
|
/* Mark success */
|
|
ret = 0;
|
|
|
|
exit_rng_ht:
|
|
|
|
/* This is safe to call even if Hash_DRBG_Instantiate fails */
|
|
if (Hash_DRBG_Uninstantiate(drbg) != 0) {
|
|
ret = -1;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(drbg, NULL, DYNAMIC_TYPE_RNG);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
const FLASH_QUALIFIER byte seedA_data[] = {
|
|
0x63, 0x36, 0x33, 0x77, 0xe4, 0x1e, 0x86, 0x46, 0x8d, 0xeb, 0x0a, 0xb4,
|
|
0xa8, 0xed, 0x68, 0x3f, 0x6a, 0x13, 0x4e, 0x47, 0xe0, 0x14, 0xc7, 0x00,
|
|
0x45, 0x4e, 0x81, 0xe9, 0x53, 0x58, 0xa5, 0x69, 0x80, 0x8a, 0xa3, 0x8f,
|
|
0x2a, 0x72, 0xa6, 0x23, 0x59, 0x91, 0x5a, 0x9f, 0x8a, 0x04, 0xca, 0x68
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte reseedSeedA_data[] = {
|
|
0xe6, 0x2b, 0x8a, 0x8e, 0xe8, 0xf1, 0x41, 0xb6, 0x98, 0x05, 0x66, 0xe3,
|
|
0xbf, 0xe3, 0xc0, 0x49, 0x03, 0xda, 0xd4, 0xac, 0x2c, 0xdf, 0x9f, 0x22,
|
|
0x80, 0x01, 0x0a, 0x67, 0x39, 0xbc, 0x83, 0xd3
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte outputA_data[] = {
|
|
0x04, 0xee, 0xc6, 0x3b, 0xb2, 0x31, 0xdf, 0x2c, 0x63, 0x0a, 0x1a, 0xfb,
|
|
0xe7, 0x24, 0x94, 0x9d, 0x00, 0x5a, 0x58, 0x78, 0x51, 0xe1, 0xaa, 0x79,
|
|
0x5e, 0x47, 0x73, 0x47, 0xc8, 0xb0, 0x56, 0x62, 0x1c, 0x18, 0xbd, 0xdc,
|
|
0xdd, 0x8d, 0x99, 0xfc, 0x5f, 0xc2, 0xb9, 0x20, 0x53, 0xd8, 0xcf, 0xac,
|
|
0xfb, 0x0b, 0xb8, 0x83, 0x12, 0x05, 0xfa, 0xd1, 0xdd, 0xd6, 0xc0, 0x71,
|
|
0x31, 0x8a, 0x60, 0x18, 0xf0, 0x3b, 0x73, 0xf5, 0xed, 0xe4, 0xd4, 0xd0,
|
|
0x71, 0xf9, 0xde, 0x03, 0xfd, 0x7a, 0xea, 0x10, 0x5d, 0x92, 0x99, 0xb8,
|
|
0xaf, 0x99, 0xaa, 0x07, 0x5b, 0xdb, 0x4d, 0xb9, 0xaa, 0x28, 0xc1, 0x8d,
|
|
0x17, 0x4b, 0x56, 0xee, 0x2a, 0x01, 0x4d, 0x09, 0x88, 0x96, 0xff, 0x22,
|
|
0x82, 0xc9, 0x55, 0xa8, 0x19, 0x69, 0xe0, 0x69, 0xfa, 0x8c, 0xe0, 0x07,
|
|
0xa1, 0x80, 0x18, 0x3a, 0x07, 0xdf, 0xae, 0x17
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte seedB_data[] = {
|
|
0xa6, 0x5a, 0xd0, 0xf3, 0x45, 0xdb, 0x4e, 0x0e, 0xff, 0xe8, 0x75, 0xc3,
|
|
0xa2, 0xe7, 0x1f, 0x42, 0xc7, 0x12, 0x9d, 0x62, 0x0f, 0xf5, 0xc1, 0x19,
|
|
0xa9, 0xef, 0x55, 0xf0, 0x51, 0x85, 0xe0, 0xfb, /* nonce next */
|
|
0x85, 0x81, 0xf9, 0x31, 0x75, 0x17, 0x27, 0x6e, 0x06, 0xe9, 0x60, 0x7d,
|
|
0xdb, 0xcb, 0xcc, 0x2e
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte outputB_data[] = {
|
|
0xd3, 0xe1, 0x60, 0xc3, 0x5b, 0x99, 0xf3, 0x40, 0xb2, 0x62, 0x82, 0x64,
|
|
0xd1, 0x75, 0x10, 0x60, 0xe0, 0x04, 0x5d, 0xa3, 0x83, 0xff, 0x57, 0xa5,
|
|
0x7d, 0x73, 0xa6, 0x73, 0xd2, 0xb8, 0xd8, 0x0d, 0xaa, 0xf6, 0xa6, 0xc3,
|
|
0x5a, 0x91, 0xbb, 0x45, 0x79, 0xd7, 0x3f, 0xd0, 0xc8, 0xfe, 0xd1, 0x11,
|
|
0xb0, 0x39, 0x13, 0x06, 0x82, 0x8a, 0xdf, 0xed, 0x52, 0x8f, 0x01, 0x81,
|
|
0x21, 0xb3, 0xfe, 0xbd, 0xc3, 0x43, 0xe7, 0x97, 0xb8, 0x7d, 0xbb, 0x63,
|
|
0xdb, 0x13, 0x33, 0xde, 0xd9, 0xd1, 0xec, 0xe1, 0x77, 0xcf, 0xa6, 0xb7,
|
|
0x1f, 0xe8, 0xab, 0x1d, 0xa4, 0x66, 0x24, 0xed, 0x64, 0x15, 0xe5, 0x1c,
|
|
0xcd, 0xe2, 0xc7, 0xca, 0x86, 0xe2, 0x83, 0x99, 0x0e, 0xea, 0xeb, 0x91,
|
|
0x12, 0x04, 0x15, 0x52, 0x8b, 0x22, 0x95, 0x91, 0x02, 0x81, 0xb0, 0x2d,
|
|
0xd4, 0x31, 0xf4, 0xc9, 0xf7, 0x04, 0x27, 0xdf
|
|
};
|
|
|
|
|
|
static int wc_RNG_HealthTestLocal(int reseed)
|
|
{
|
|
int ret = 0;
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
byte* check;
|
|
#else
|
|
byte check[RNG_HEALTH_TEST_CHECK_SIZE];
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
check = (byte*)XMALLOC(RNG_HEALTH_TEST_CHECK_SIZE, NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
if (check == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
if (reseed) {
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
byte* seedA = (byte*)XMALLOC(sizeof(seedA_data), NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
byte* reseedSeedA = (byte*)XMALLOC(sizeof(reseedSeedA_data), NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
byte* outputA = (byte*)XMALLOC(sizeof(outputA_data), NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
|
|
if (!seedA || !reseedSeedA || !outputA) {
|
|
XFREE(seedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(reseedSeedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
ret = MEMORY_E;
|
|
}
|
|
else {
|
|
XMEMCPY_P(seedA, seedA_data, sizeof(seedA_data));
|
|
XMEMCPY_P(reseedSeedA, reseedSeedA_data, sizeof(reseedSeedA_data));
|
|
XMEMCPY_P(outputA, outputA_data, sizeof(outputA_data));
|
|
#else
|
|
const byte* seedA = seedA_data;
|
|
const byte* reseedSeedA = reseedSeedA_data;
|
|
const byte* outputA = outputA_data;
|
|
#endif
|
|
ret = wc_RNG_HealthTest(1, seedA, sizeof(seedA_data),
|
|
reseedSeedA, sizeof(reseedSeedA_data),
|
|
check, RNG_HEALTH_TEST_CHECK_SIZE);
|
|
if (ret == 0) {
|
|
if (ConstantCompare(check, outputA,
|
|
RNG_HEALTH_TEST_CHECK_SIZE) != 0)
|
|
ret = -1;
|
|
}
|
|
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
XFREE(seedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(reseedSeedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
byte* seedB = (byte*)XMALLOC(sizeof(seedB_data), NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
byte* outputB = (byte*)XMALLOC(sizeof(outputB_data), NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
|
|
if (!seedB || !outputB) {
|
|
XFREE(seedB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
ret = MEMORY_E;
|
|
}
|
|
else {
|
|
XMEMCPY_P(seedB, seedB_data, sizeof(seedB_data));
|
|
XMEMCPY_P(outputB, outputB_data, sizeof(outputB_data));
|
|
#else
|
|
const byte* seedB = seedB_data;
|
|
const byte* outputB = outputB_data;
|
|
#endif
|
|
ret = wc_RNG_HealthTest(0, seedB, sizeof(seedB_data),
|
|
NULL, 0,
|
|
check, RNG_HEALTH_TEST_CHECK_SIZE);
|
|
if (ret == 0) {
|
|
if (ConstantCompare(check, outputB,
|
|
RNG_HEALTH_TEST_CHECK_SIZE) != 0)
|
|
ret = -1;
|
|
}
|
|
|
|
/* The previous test cases use a large seed instead of a seed and nonce.
|
|
* seedB is actually from a test case with a seed and nonce, and
|
|
* just concatenates them. The pivot point between seed and nonce is
|
|
* byte 32, feed them into the health test separately. */
|
|
if (ret == 0) {
|
|
ret = wc_RNG_HealthTest_ex(0,
|
|
seedB + 32, sizeof(seedB_data) - 32,
|
|
seedB, 32,
|
|
NULL, 0,
|
|
check, RNG_HEALTH_TEST_CHECK_SIZE,
|
|
NULL, INVALID_DEVID);
|
|
if (ret == 0) {
|
|
if (ConstantCompare(check, outputB, sizeof(outputB_data)) != 0)
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
XFREE(seedB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputB, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(check, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* HAVE_HASHDRBG */
|
|
|
|
|
|
#ifdef HAVE_WNR
|
|
|
|
/*
|
|
* Init global Whitewood netRandom context
|
|
* Returns 0 on success, negative on error
|
|
*/
|
|
int wc_InitNetRandom(const char* configFile, wnr_hmac_key hmac_cb, int timeout)
|
|
{
|
|
if (configFile == NULL || timeout < 0)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (wnr_mutex_init > 0) {
|
|
WOLFSSL_MSG("netRandom context already created, skipping");
|
|
return 0;
|
|
}
|
|
|
|
if (wc_InitMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Init Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
wnr_mutex_init = 1;
|
|
|
|
if (wc_LockMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
/* store entropy timeout */
|
|
wnr_timeout = timeout;
|
|
|
|
/* create global wnr_context struct */
|
|
if (wnr_create(&wnr_ctx) != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error creating global netRandom context");
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
/* load config file */
|
|
if (wnr_config_loadf(wnr_ctx, (char*)configFile) != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error loading config file into netRandom context");
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
/* create/init polling mechanism */
|
|
if (wnr_poll_create() != WNR_ERROR_NONE) {
|
|
printf("ERROR: wnr_poll_create() failed\n");
|
|
WOLFSSL_MSG("Error initializing netRandom polling mechanism");
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
/* validate config, set HMAC callback (optional) */
|
|
if (wnr_setup(wnr_ctx, hmac_cb) != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error setting up netRandom context");
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
wnr_poll_destroy();
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
wc_UnLockMutex(&wnr_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free global Whitewood netRandom context
|
|
* Returns 0 on success, negative on error
|
|
*/
|
|
int wc_FreeNetRandom(void)
|
|
{
|
|
if (wnr_mutex_init > 0) {
|
|
|
|
if (wc_LockMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
if (wnr_ctx != NULL) {
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
}
|
|
wnr_poll_destroy();
|
|
|
|
wc_UnLockMutex(&wnr_mutex);
|
|
|
|
wc_FreeMutex(&wnr_mutex);
|
|
wnr_mutex_init = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_WNR */
|
|
|
|
|
|
#if defined(HAVE_INTEL_RDRAND) || defined(HAVE_INTEL_RDSEED)
|
|
|
|
#ifdef WOLFSSL_ASYNC_CRYPT
|
|
/* need more retries if multiple cores */
|
|
#define INTELRD_RETRY (32 * 8)
|
|
#else
|
|
#define INTELRD_RETRY 32
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDSEED
|
|
|
|
#ifndef USE_INTEL_INTRINSICS
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDseed64(word64* seed)
|
|
{
|
|
unsigned char ok;
|
|
|
|
__asm__ volatile("rdseed %0; setc %1":"=r"(*seed), "=qm"(ok));
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#else /* USE_INTEL_INTRINSICS */
|
|
/* The compiler Visual Studio uses does not allow inline assembly.
|
|
* It does allow for Intel intrinsic functions. */
|
|
|
|
/* return 0 on success */
|
|
# ifdef __GNUC__
|
|
__attribute__((target("rdseed")))
|
|
# endif
|
|
static WC_INLINE int IntelRDseed64(word64* seed)
|
|
{
|
|
int ok;
|
|
|
|
ok = _rdseed64_step((unsigned long long*) seed);
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#endif /* USE_INTEL_INTRINSICS */
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDseed64_r(word64* rnd)
|
|
{
|
|
int i;
|
|
for (i = 0; i < INTELRD_RETRY; i++) {
|
|
if (IntelRDseed64(rnd) == 0)
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#ifndef WOLFSSL_LINUXKM
|
|
/* return 0 on success */
|
|
static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word64 rndTmp;
|
|
|
|
(void)os;
|
|
|
|
if (!IS_INTEL_RDSEED(intel_flags))
|
|
return -1;
|
|
|
|
for (; (sz / sizeof(word64)) > 0; sz -= sizeof(word64),
|
|
output += sizeof(word64)) {
|
|
ret = IntelRDseed64_r((word64*)output);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
/* handle unaligned remainder */
|
|
ret = IntelRDseed64_r(&rndTmp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
XMEMCPY(output, &rndTmp, sz);
|
|
ForceZero(&rndTmp, sizeof(rndTmp));
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#endif /* HAVE_INTEL_RDSEED */
|
|
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
|
|
#ifndef USE_INTEL_INTRINSICS
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDrand64(word64 *rnd)
|
|
{
|
|
unsigned char ok;
|
|
|
|
__asm__ volatile("rdrand %0; setc %1":"=r"(*rnd), "=qm"(ok));
|
|
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#else /* USE_INTEL_INTRINSICS */
|
|
/* The compiler Visual Studio uses does not allow inline assembly.
|
|
* It does allow for Intel intrinsic functions. */
|
|
|
|
/* return 0 on success */
|
|
# ifdef __GNUC__
|
|
__attribute__((target("rdrnd")))
|
|
# endif
|
|
static WC_INLINE int IntelRDrand64(word64 *rnd)
|
|
{
|
|
int ok;
|
|
|
|
ok = _rdrand64_step((unsigned long long*) rnd);
|
|
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#endif /* USE_INTEL_INTRINSICS */
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDrand64_r(word64 *rnd)
|
|
{
|
|
int i;
|
|
for (i = 0; i < INTELRD_RETRY; i++) {
|
|
if (IntelRDrand64(rnd) == 0)
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* return 0 on success */
|
|
static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word64 rndTmp;
|
|
|
|
(void)os;
|
|
|
|
if (!IS_INTEL_RDRAND(intel_flags))
|
|
return -1;
|
|
|
|
for (; (sz / sizeof(word64)) > 0; sz -= sizeof(word64),
|
|
output += sizeof(word64)) {
|
|
ret = IntelRDrand64_r((word64 *)output);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
/* handle unaligned remainder */
|
|
ret = IntelRDrand64_r(&rndTmp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
XMEMCPY(output, &rndTmp, sz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_INTEL_RDRAND */
|
|
#endif /* HAVE_INTEL_RDRAND || HAVE_INTEL_RDSEED */
|
|
|
|
|
|
/* Begin wc_GenerateSeed Implementations */
|
|
#if defined(CUSTOM_RAND_GENERATE_SEED)
|
|
|
|
/* Implement your own random generation function
|
|
* Return 0 to indicate success
|
|
* int rand_gen_seed(byte* output, word32 sz);
|
|
* #define CUSTOM_RAND_GENERATE_SEED rand_gen_seed */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os; /* Suppress unused arg warning */
|
|
return CUSTOM_RAND_GENERATE_SEED(output, sz);
|
|
}
|
|
|
|
#elif defined(CUSTOM_RAND_GENERATE_SEED_OS)
|
|
|
|
/* Implement your own random generation function,
|
|
* which includes OS_Seed.
|
|
* Return 0 to indicate success
|
|
* int rand_gen_seed(OS_Seed* os, byte* output, word32 sz);
|
|
* #define CUSTOM_RAND_GENERATE_SEED_OS rand_gen_seed */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
return CUSTOM_RAND_GENERATE_SEED_OS(os, output, sz);
|
|
}
|
|
|
|
#elif defined(CUSTOM_RAND_GENERATE)
|
|
|
|
/* Implement your own random generation function
|
|
* word32 rand_gen(void);
|
|
* #define CUSTOM_RAND_GENERATE rand_gen */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i = 0;
|
|
|
|
(void)os;
|
|
|
|
while (i < sz)
|
|
{
|
|
/* If not aligned or there is odd/remainder */
|
|
if( (i + sizeof(CUSTOM_RAND_TYPE)) > sz ||
|
|
((wc_ptr_t)&output[i] % sizeof(CUSTOM_RAND_TYPE)) != 0
|
|
) {
|
|
/* Single byte at a time */
|
|
output[i++] = (byte)CUSTOM_RAND_GENERATE();
|
|
}
|
|
else {
|
|
/* Use native 8, 16, 32 or 64 copy instruction */
|
|
*((CUSTOM_RAND_TYPE*)&output[i]) = CUSTOM_RAND_GENERATE();
|
|
i += sizeof(CUSTOM_RAND_TYPE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_SGX)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = !SGX_SUCCESS;
|
|
int i, read_max = 10;
|
|
|
|
for (i = 0; i < read_max && ret != SGX_SUCCESS; i++) {
|
|
ret = sgx_read_rand(output, sz);
|
|
}
|
|
|
|
(void)os;
|
|
return (ret == SGX_SUCCESS) ? 0 : 1;
|
|
}
|
|
|
|
#elif defined(USE_WINDOWS_API)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
#ifdef WOLF_CRYPTO_CB
|
|
int ret;
|
|
|
|
if (os != NULL && os->devId != INVALID_DEVID) {
|
|
ret = wc_CryptoCb_RandomSeed(os, output, sz);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDSEED
|
|
if (IS_INTEL_RDSEED(intel_flags)) {
|
|
if (!wc_GenerateSeed_IntelRD(NULL, output, sz)) {
|
|
/* success, we're done */
|
|
return 0;
|
|
}
|
|
#ifdef FORCE_FAILURE_RDSEED
|
|
/* don't fall back to CryptoAPI */
|
|
return READ_RAN_E;
|
|
#endif
|
|
}
|
|
#endif /* HAVE_INTEL_RDSEED */
|
|
|
|
if(!CryptAcquireContext(&os->handle, 0, 0, PROV_RSA_FULL,
|
|
CRYPT_VERIFYCONTEXT))
|
|
return WINCRYPT_E;
|
|
|
|
if (!CryptGenRandom(os->handle, sz, output))
|
|
return CRYPTGEN_E;
|
|
|
|
CryptReleaseContext(os->handle, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#elif defined(HAVE_RTP_SYS) || defined(EBSNET)
|
|
|
|
#include "rtprand.h" /* rtp_rand () */
|
|
#include "rtptime.h" /* rtp_get_system_msec() */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
|
|
rtp_srand(rtp_get_system_msec());
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rtp_rand() % 256;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif (defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC_RNG)) && \
|
|
!defined(WOLFSSL_PIC32MZ_RNG)
|
|
/* enable ATECC RNG unless using PIC32MZ one instead */
|
|
#include <wolfssl/wolfcrypt/port/atmel/atmel.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = 0;
|
|
|
|
(void)os;
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
ret = atmel_get_random_number(sz, output);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(MICROCHIP_PIC32)
|
|
|
|
#ifdef MICROCHIP_MPLAB_HARMONY
|
|
#ifdef MICROCHIP_MPLAB_HARMONY_3
|
|
#include "system/time/sys_time.h"
|
|
#define PIC32_SEED_COUNT SYS_TIME_CounterGet
|
|
#else
|
|
#define PIC32_SEED_COUNT _CP0_GET_COUNT
|
|
#endif
|
|
#else
|
|
#if !defined(WOLFSSL_MICROCHIP_PIC32MZ)
|
|
#include <peripheral/timer.h>
|
|
#endif
|
|
extern word32 ReadCoreTimer(void);
|
|
#define PIC32_SEED_COUNT ReadCoreTimer
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_PIC32MZ_RNG
|
|
#include "xc.h"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
byte rnd[8];
|
|
word32 *rnd32 = (word32 *)rnd;
|
|
word32 size = sz;
|
|
byte* op = output;
|
|
|
|
#if ((__PIC32_FEATURE_SET0 == 'E') && (__PIC32_FEATURE_SET1 == 'C'))
|
|
RNGNUMGEN1 = _CP0_GET_COUNT();
|
|
RNGPOLY1 = _CP0_GET_COUNT();
|
|
RNGPOLY2 = _CP0_GET_COUNT();
|
|
RNGNUMGEN2 = _CP0_GET_COUNT();
|
|
#else
|
|
/* All others can be seeded from the TRNG */
|
|
RNGCONbits.TRNGMODE = 1;
|
|
RNGCONbits.TRNGEN = 1;
|
|
while (RNGCNT < 64);
|
|
RNGCONbits.LOAD = 1;
|
|
while (RNGCONbits.LOAD == 1);
|
|
while (RNGCNT < 64);
|
|
RNGPOLY2 = RNGSEED2;
|
|
RNGPOLY1 = RNGSEED1;
|
|
#endif
|
|
|
|
RNGCONbits.PLEN = 0x40;
|
|
RNGCONbits.PRNGEN = 1;
|
|
for (i=0; i<5; i++) { /* wait for RNGNUMGEN ready */
|
|
volatile int x, y;
|
|
x = RNGNUMGEN1;
|
|
y = RNGNUMGEN2;
|
|
(void)x;
|
|
(void)y;
|
|
}
|
|
do {
|
|
rnd32[0] = RNGNUMGEN1;
|
|
rnd32[1] = RNGNUMGEN2;
|
|
|
|
for(i=0; i<8; i++, op++) {
|
|
*op = rnd[i];
|
|
size --;
|
|
if(size==0)break;
|
|
}
|
|
} while(size);
|
|
return 0;
|
|
}
|
|
#else /* WOLFSSL_PIC32MZ_RNG */
|
|
/* uses the core timer, in nanoseconds to seed srand */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(PIC32_SEED_COUNT() * 25);
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ( (i % 8) == 7)
|
|
srand(PIC32_SEED_COUNT() * 25);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* WOLFSSL_PIC32MZ_RNG */
|
|
|
|
#elif defined(FREESCALE_K70_RNGA) || defined(FREESCALE_RNGA)
|
|
/*
|
|
* wc_Generates a RNG seed using the Random Number Generator Accelerator
|
|
* on the Kinetis K70. Documentation located in Chapter 37 of
|
|
* K70 Sub-Family Reference Manual (see Note 3 in the README for link).
|
|
*/
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
|
|
/* turn on RNGA module */
|
|
#if defined(SIM_SCGC3_RNGA_MASK)
|
|
SIM_SCGC3 |= SIM_SCGC3_RNGA_MASK;
|
|
#endif
|
|
#if defined(SIM_SCGC6_RNGA_MASK)
|
|
/* additionally needed for at least K64F */
|
|
SIM_SCGC6 |= SIM_SCGC6_RNGA_MASK;
|
|
#endif
|
|
|
|
/* set SLP bit to 0 - "RNGA is not in sleep mode" */
|
|
RNG_CR &= ~RNG_CR_SLP_MASK;
|
|
|
|
/* set HA bit to 1 - "security violations masked" */
|
|
RNG_CR |= RNG_CR_HA_MASK;
|
|
|
|
/* set GO bit to 1 - "output register loaded with data" */
|
|
RNG_CR |= RNG_CR_GO_MASK;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
|
|
/* wait for RNG FIFO to be full */
|
|
while((RNG_SR & RNG_SR_OREG_LVL(0xF)) == 0) {}
|
|
|
|
/* get value */
|
|
output[i] = RNG_OR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(FREESCALE_K53_RNGB) || defined(FREESCALE_RNGB)
|
|
/*
|
|
* wc_Generates a RNG seed using the Random Number Generator (RNGB)
|
|
* on the Kinetis K53. Documentation located in Chapter 33 of
|
|
* K53 Sub-Family Reference Manual (see note in the README for link).
|
|
*/
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
|
|
/* turn on RNGB module */
|
|
SIM_SCGC3 |= SIM_SCGC3_RNGB_MASK;
|
|
|
|
/* reset RNGB */
|
|
RNG_CMD |= RNG_CMD_SR_MASK;
|
|
|
|
/* FIFO generate interrupt, return all zeros on underflow,
|
|
* set auto reseed */
|
|
RNG_CR |= (RNG_CR_FUFMOD_MASK | RNG_CR_AR_MASK);
|
|
|
|
/* gen seed, clear interrupts, clear errors */
|
|
RNG_CMD |= (RNG_CMD_GS_MASK | RNG_CMD_CI_MASK | RNG_CMD_CE_MASK);
|
|
|
|
/* wait for seeding to complete */
|
|
while ((RNG_SR & RNG_SR_SDN_MASK) == 0) {}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
|
|
/* wait for a word to be available from FIFO */
|
|
while((RNG_SR & RNG_SR_FIFO_LVL_MASK) == 0) {}
|
|
|
|
/* get value */
|
|
output[i] = RNG_OUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(FREESCALE_KSDK_2_0_TRNG)
|
|
#ifndef TRNG0
|
|
#define TRNG0 TRNG
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
status_t status;
|
|
status = TRNG_GetRandomData(TRNG0, output, sz);
|
|
(void)os;
|
|
if (status == kStatus_Success)
|
|
{
|
|
return(0);
|
|
}
|
|
return RAN_BLOCK_E;
|
|
}
|
|
|
|
#elif defined(FREESCALE_KSDK_2_0_RNGA)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
status_t status;
|
|
status = RNGA_GetRandomData(RNG, output, sz);
|
|
(void)os;
|
|
if (status == kStatus_Success)
|
|
{
|
|
return(0);
|
|
}
|
|
return RAN_BLOCK_E;
|
|
}
|
|
|
|
|
|
#elif defined(FREESCALE_RNGA)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
status_t status;
|
|
status = RNGA_GetRandomData(RNG, output, sz);
|
|
(void)os;
|
|
if (status == kStatus_Success)
|
|
{
|
|
return(0);
|
|
}
|
|
return RAN_BLOCK_E;
|
|
}
|
|
|
|
#elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) || \
|
|
defined(FREESCALE_KSDK_BM) || defined(FREESCALE_FREE_RTOS)
|
|
/*
|
|
* Fallback to USE_TEST_GENSEED if a FREESCALE platform did not match any
|
|
* of the TRNG/RNGA/RNGB support
|
|
*/
|
|
#define USE_TEST_GENSEED
|
|
|
|
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os;
|
|
return silabs_GenerateRand(output, sz);
|
|
}
|
|
|
|
#elif defined(STM32_RNG)
|
|
/* Generate a RNG seed using the hardware random number generator
|
|
* on the STM32F2/F4/F7/L4. */
|
|
|
|
#ifdef WOLFSSL_STM32_CUBEMX
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
RNG_HandleTypeDef hrng;
|
|
word32 i = 0;
|
|
(void)os;
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* enable RNG clock source */
|
|
__HAL_RCC_RNG_CLK_ENABLE();
|
|
|
|
/* enable RNG peripheral */
|
|
XMEMSET(&hrng, 0, sizeof(hrng));
|
|
hrng.Instance = RNG;
|
|
HAL_RNG_Init(&hrng);
|
|
|
|
while (i < sz) {
|
|
/* If not aligned or there is odd/remainder */
|
|
if( (i + sizeof(word32)) > sz ||
|
|
((wc_ptr_t)&output[i] % sizeof(word32)) != 0
|
|
) {
|
|
/* Single byte at a time */
|
|
uint32_t tmpRng = 0;
|
|
if (HAL_RNG_GenerateRandomNumber(&hrng, &tmpRng) != HAL_OK) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RAN_BLOCK_E;
|
|
}
|
|
output[i++] = (byte)tmpRng;
|
|
}
|
|
else {
|
|
/* Use native 32 instruction */
|
|
if (HAL_RNG_GenerateRandomNumber(&hrng, (uint32_t*)&output[i]) != HAL_OK) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RAN_BLOCK_E;
|
|
}
|
|
i += sizeof(word32);
|
|
}
|
|
}
|
|
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_STM32F427_RNG) || defined(WOLFSSL_STM32_RNG_NOLIB)
|
|
|
|
/* Generate a RNG seed using the hardware RNG on the STM32F427
|
|
* directly, following steps outlined in STM32F4 Reference
|
|
* Manual (Chapter 24) for STM32F4xx family. */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word32 i;
|
|
(void)os;
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* enable RNG peripheral clock */
|
|
RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN;
|
|
|
|
/* enable RNG interrupt, set IE bit in RNG->CR register */
|
|
RNG->CR |= RNG_CR_IE;
|
|
|
|
/* enable RNG, set RNGEN bit in RNG->CR. Activates RNG,
|
|
* RNG_LFSR, and error detector */
|
|
RNG->CR |= RNG_CR_RNGEN;
|
|
|
|
/* verify no errors, make sure SEIS and CEIS bits are 0
|
|
* in RNG->SR register */
|
|
if (RNG->SR & (RNG_SR_SECS | RNG_SR_CECS)) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
/* wait until RNG number is ready */
|
|
while ((RNG->SR & RNG_SR_DRDY) == 0) { }
|
|
|
|
/* get value */
|
|
output[i] = RNG->DR;
|
|
}
|
|
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Generate a RNG seed using the STM32 Standard Peripheral Library */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word32 i;
|
|
(void)os;
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* enable RNG clock source */
|
|
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
|
|
|
|
/* reset RNG */
|
|
RNG_DeInit();
|
|
|
|
/* enable RNG peripheral */
|
|
RNG_Cmd(ENABLE);
|
|
|
|
/* verify no errors with RNG_CLK or Seed */
|
|
if (RNG_GetFlagStatus(RNG_FLAG_SECS | RNG_FLAG_CECS) != RESET) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
/* wait until RNG number is ready */
|
|
while (RNG_GetFlagStatus(RNG_FLAG_DRDY) == RESET) { }
|
|
|
|
/* get value */
|
|
output[i] = RNG_GetRandomNumber();
|
|
}
|
|
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
return 0;
|
|
}
|
|
#endif /* WOLFSSL_STM32_CUBEMX */
|
|
|
|
#elif defined(WOLFSSL_TIRTOS)
|
|
|
|
#include <xdc/runtime/Timestamp.h>
|
|
#include <stdlib.h>
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(xdc_runtime_Timestamp_get32());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(xdc_runtime_Timestamp_get32());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_PB)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
for (i = 0; i < sz; i++)
|
|
output[i] = UTL_Rand();
|
|
|
|
(void)os;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_NUCLEUS)
|
|
#include "nucleus.h"
|
|
#include "kernel/plus_common.h"
|
|
|
|
#warning "potential for not enough entropy, currently being used for testing"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(NU_Get_Time_Stamp());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(NU_Get_Time_Stamp());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_DEOS) && !defined(CUSTOM_RAND_GENERATE)
|
|
#include "stdlib.h"
|
|
|
|
#warning "potential for not enough entropy, currently being used for testing Deos"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
int seed = XTIME(0);
|
|
(void)os;
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand_r(&seed) % 256;
|
|
if ((i % 8) == 7) {
|
|
seed = XTIME(0);
|
|
rand_r(&seed);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_VXWORKS)
|
|
|
|
#include <randomNumGen.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) {
|
|
STATUS status;
|
|
|
|
#ifdef VXWORKS_SIM
|
|
/* cannot generate true entropy with VxWorks simulator */
|
|
#warning "not enough entropy, simulator for testing only"
|
|
int i = 0;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
randomAddTimeStamp();
|
|
}
|
|
#endif
|
|
|
|
status = randBytes (output, sz);
|
|
if (status == ERROR) {
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_NRF51) || defined(WOLFSSL_NRF5x)
|
|
#include "app_error.h"
|
|
#include "nrf_drv_rng.h"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int remaining = sz, length, pos = 0;
|
|
word32 err_code;
|
|
byte available;
|
|
static byte initialized = 0;
|
|
|
|
(void)os;
|
|
|
|
/* Make sure RNG is running */
|
|
if (!initialized) {
|
|
err_code = nrf_drv_rng_init(NULL);
|
|
if (err_code != NRF_SUCCESS && err_code != NRF_ERROR_INVALID_STATE
|
|
#ifdef NRF_ERROR_MODULE_ALREADY_INITIALIZED
|
|
&& err_code != NRF_ERROR_MODULE_ALREADY_INITIALIZED
|
|
#endif
|
|
) {
|
|
return -1;
|
|
}
|
|
initialized = 1;
|
|
}
|
|
|
|
while (remaining > 0) {
|
|
available = 0;
|
|
nrf_drv_rng_bytes_available(&available); /* void func */
|
|
length = (remaining < available) ? remaining : available;
|
|
if (length > 0) {
|
|
err_code = nrf_drv_rng_rand(&output[pos], length);
|
|
if (err_code != NRF_SUCCESS) {
|
|
break;
|
|
}
|
|
remaining -= length;
|
|
pos += length;
|
|
}
|
|
}
|
|
|
|
return (err_code == NRF_SUCCESS) ? 0 : -1;
|
|
}
|
|
|
|
#elif defined(HAVE_WNR)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
if (os == NULL || output == NULL || wnr_ctx == NULL ||
|
|
wnr_timeout < 0) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (wnr_mutex_init == 0) {
|
|
WOLFSSL_MSG("netRandom context must be created before use");
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
if (wc_LockMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
if (wnr_get_entropy(wnr_ctx, wnr_timeout, output, sz, sz) !=
|
|
WNR_ERROR_NONE)
|
|
return RNG_FAILURE_E;
|
|
|
|
wc_UnLockMutex(&wnr_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(INTIME_RTOS)
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
uint32_t randval;
|
|
word32 len;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
#ifdef INTIMEVER
|
|
/* If INTIMEVER exists then it is INTIME RTOS v6 or later */
|
|
#define INTIME_RAND_FUNC arc4random
|
|
len = 4;
|
|
#else
|
|
/* v5 and older */
|
|
#define INTIME_RAND_FUNC rand
|
|
srand(time(0));
|
|
len = 2; /* don't use all 31 returned bits */
|
|
#endif
|
|
|
|
while (sz > 0) {
|
|
if (sz < len)
|
|
len = sz;
|
|
randval = INTIME_RAND_FUNC();
|
|
XMEMCPY(output, &randval, len);
|
|
output += len;
|
|
sz -= len;
|
|
}
|
|
(void)os;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_WICED)
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
(void)os;
|
|
|
|
if (output == NULL || UINT16_MAX < sz) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
if ((ret = wiced_crypto_get_random((void*) output, sz) )
|
|
!= WICED_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_NETBURNER)
|
|
#warning using NetBurner pseudo random GetRandomByte for seed
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
(void)os;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
output[i] = GetRandomByte();
|
|
|
|
/* check if was a valid random number */
|
|
if (!RandomValid())
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(IDIRECT_DEV_RANDOM)
|
|
|
|
extern int getRandom( int sz, unsigned char *output );
|
|
|
|
int GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int num_bytes_returned = 0;
|
|
|
|
num_bytes_returned = getRandom( (int) sz, (unsigned char *) output );
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif (defined(WOLFSSL_IMX6_CAAM) || defined(WOLFSSL_IMX6_CAAM_RNG))
|
|
|
|
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
unsigned int args[4] = {0};
|
|
CAAM_BUFFER buf[1];
|
|
int ret = 0;
|
|
int times = 1000, i; /* 1000 is an arbitrary number chosen */
|
|
word32 idx = 0;
|
|
|
|
(void)os;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
/* Check Waiting to make sure entropy is ready */
|
|
for (i = 0; i < times; i++) {
|
|
buf[0].BufferType = DataBuffer | LastBuffer;
|
|
buf[0].TheAddress = (CAAM_ADDRESS)(output + idx);
|
|
buf[0].Length = ((sz - idx) < WC_CAAM_MAX_ENTROPY)?
|
|
sz - idx : WC_CAAM_MAX_ENTROPY;
|
|
|
|
args[0] = buf[0].Length;
|
|
ret = wc_caamAddAndWait(buf, 1, args, CAAM_ENTROPY);
|
|
if (ret == 0) {
|
|
idx += buf[0].Length;
|
|
if (idx == sz)
|
|
break;
|
|
}
|
|
|
|
/* driver could be waiting for entropy */
|
|
if (ret != RAN_BLOCK_E && ret != 0) {
|
|
return ret;
|
|
}
|
|
usleep(100);
|
|
}
|
|
|
|
if (i == times && ret != 0) {
|
|
return RNG_FAILURE_E;
|
|
}
|
|
else { /* Success case */
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_APACHE_MYNEWT)
|
|
|
|
#include <stdlib.h>
|
|
#include "os/os_time.h"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(os_time_get());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(os_time_get());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_ESPIDF)
|
|
#if defined(WOLFSSL_ESPWROOM32) || defined(WOLFSSL_ESPWROOM32SE)
|
|
#include <esp_system.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 rand;
|
|
while (sz > 0) {
|
|
word32 len = sizeof(rand);
|
|
if (sz < len)
|
|
len = sz;
|
|
/* Get one random 32-bit word from hw RNG */
|
|
rand = esp_random( );
|
|
XMEMCPY(output, &rand, len);
|
|
output += len;
|
|
sz -= len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* end WOLFSSL_ESPWROOM32 */
|
|
|
|
#elif defined(WOLFSSL_LINUXKM)
|
|
#include <linux/random.h>
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os;
|
|
|
|
get_random_bytes(output, sz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_RENESAS_TSIP)
|
|
#if defined(WOLFSSL_RENESA_TSIP_IAREWRX)
|
|
#include "r_bsp/mcu/all/r_rx_compiler.h"
|
|
#endif
|
|
#include "r_bsp/platform.h"
|
|
#include "r_tsip_rx_if.h"
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word32 buffer[4];
|
|
|
|
while (sz > 0) {
|
|
word32 len = sizeof(buffer);
|
|
|
|
if (sz < len) {
|
|
len = sz;
|
|
}
|
|
/* return 4 words random number*/
|
|
ret = R_TSIP_GenerateRandomNumber(buffer);
|
|
if(ret == TSIP_SUCCESS) {
|
|
XMEMCPY(output, &buffer, len);
|
|
output += len;
|
|
sz -= len;
|
|
} else
|
|
return ret;
|
|
}
|
|
return ret;
|
|
}
|
|
#elif defined(WOLFSSL_RENESAS_SCEPROTECT)
|
|
#include "r_sce.h"
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word32 buffer[4];
|
|
|
|
while (sz > 0) {
|
|
word32 len = sizeof(buffer);
|
|
|
|
if (sz < len) {
|
|
len = sz;
|
|
}
|
|
/* return 4 words random number*/
|
|
ret = R_SCE_RandomNumberGenerate(buffer);
|
|
if(ret == FSP_SUCCESS) {
|
|
XMEMCPY(output, &buffer, len);
|
|
output += len;
|
|
sz -= len;
|
|
} else
|
|
return ret;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_TRNG)
|
|
#include "hal_data.h"
|
|
|
|
#ifndef WOLFSSL_SCE_TRNG_HANDLE
|
|
#define WOLFSSL_SCE_TRNG_HANDLE g_sce_trng
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 ret;
|
|
word32 blocks;
|
|
word32 len = sz;
|
|
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->open(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
|
|
WOLFSSL_SCE_TRNG_HANDLE.p_cfg);
|
|
if (ret != SSP_SUCCESS && ret != SSP_ERR_CRYPTO_ALREADY_OPEN) {
|
|
/* error opening TRNG driver */
|
|
return -1;
|
|
}
|
|
|
|
blocks = sz / sizeof(word32);
|
|
if (blocks > 0) {
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->read(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
|
|
(word32*)output, blocks);
|
|
if (ret != SSP_SUCCESS) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
len = len - (blocks * sizeof(word32));
|
|
if (len > 0) {
|
|
word32 tmp;
|
|
|
|
if (len > sizeof(word32)) {
|
|
return -1;
|
|
}
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->read(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
|
|
(word32*)tmp, 1);
|
|
if (ret != SSP_SUCCESS) {
|
|
return -1;
|
|
}
|
|
XMEMCPY(output + (blocks * sizeof(word32)), (byte*)&tmp, len);
|
|
}
|
|
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->close(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl);
|
|
if (ret != SSP_SUCCESS) {
|
|
/* error opening TRNG driver */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#elif defined(CUSTOM_RAND_GENERATE_BLOCK)
|
|
/* #define CUSTOM_RAND_GENERATE_BLOCK myRngFunc
|
|
* extern int myRngFunc(byte* output, word32 sz);
|
|
*/
|
|
|
|
#elif defined(WOLFSSL_SAFERTOS) || defined(WOLFSSL_LEANPSK) || \
|
|
defined(WOLFSSL_IAR_ARM) || defined(WOLFSSL_MDK_ARM) || \
|
|
defined(WOLFSSL_uITRON4) || defined(WOLFSSL_uTKERNEL2) || \
|
|
defined(WOLFSSL_LPC43xx) || defined(NO_STM32_RNG) || \
|
|
defined(MBED) || defined(WOLFSSL_EMBOS) || \
|
|
defined(WOLFSSL_GENSEED_FORTEST) || defined(WOLFSSL_CHIBIOS) || \
|
|
defined(WOLFSSL_CONTIKI) || defined(WOLFSSL_AZSPHERE)
|
|
|
|
/* these platforms do not have a default random seed and
|
|
you'll need to implement your own wc_GenerateSeed or define via
|
|
CUSTOM_RAND_GENERATE_BLOCK */
|
|
|
|
#define USE_TEST_GENSEED
|
|
|
|
#elif defined(WOLFSSL_ZEPHYR)
|
|
|
|
#include <random/rand32.h>
|
|
#ifndef _POSIX_C_SOURCE
|
|
#include <posix/time.h>
|
|
#else
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
sys_rand_get(output, sz);
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_TELIT_M2MB)
|
|
|
|
#include "stdlib.h"
|
|
static long get_timestamp(void) {
|
|
long myTime = 0;
|
|
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
|
|
if (fd >= 0) {
|
|
M2MB_RTC_TIMEVAL_T timeval;
|
|
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
|
|
myTime = timeval.msec;
|
|
m2mb_rtc_close(fd);
|
|
}
|
|
return myTime;
|
|
}
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(get_timestamp());
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(get_timestamp());
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_SE050)
|
|
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz){
|
|
int ret = 0;
|
|
|
|
(void)os;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret == 0) {
|
|
ret = se050_get_random_number(sz, output);
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(DOLPHIN_EMULATOR)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
(void)os;
|
|
srand(time(NULL));
|
|
for (i = 0; i < sz; i++)
|
|
output[i] = (byte)rand();
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(NO_DEV_RANDOM)
|
|
|
|
#error "you need to write an os specific wc_GenerateSeed() here"
|
|
|
|
/*
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
return 0;
|
|
}
|
|
*/
|
|
|
|
#else
|
|
|
|
/* may block */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (os == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
if (os->devId != INVALID_DEVID) {
|
|
ret = wc_CryptoCb_RandomSeed(os, output, sz);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
ret = 0; /* reset error code */
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDSEED
|
|
if (IS_INTEL_RDSEED(intel_flags)) {
|
|
ret = wc_GenerateSeed_IntelRD(NULL, output, sz);
|
|
if (ret == 0) {
|
|
/* success, we're done */
|
|
return ret;
|
|
}
|
|
#ifdef FORCE_FAILURE_RDSEED
|
|
/* don't fallback to /dev/urandom */
|
|
return ret;
|
|
#else
|
|
/* reset error and fallback to using /dev/urandom */
|
|
ret = 0;
|
|
#endif
|
|
}
|
|
#endif /* HAVE_INTEL_RDSEED */
|
|
|
|
#ifndef NO_DEV_URANDOM /* way to disable use of /dev/urandom */
|
|
os->fd = open("/dev/urandom", O_RDONLY);
|
|
if (os->fd == -1)
|
|
#endif
|
|
{
|
|
/* may still have /dev/random */
|
|
os->fd = open("/dev/random", O_RDONLY);
|
|
if (os->fd == -1)
|
|
return OPEN_RAN_E;
|
|
}
|
|
|
|
while (sz) {
|
|
int len = (int)read(os->fd, output, sz);
|
|
if (len == -1) {
|
|
ret = READ_RAN_E;
|
|
break;
|
|
}
|
|
|
|
sz -= len;
|
|
output += len;
|
|
|
|
if (sz) {
|
|
#if defined(BLOCKING) || defined(WC_RNG_BLOCKING)
|
|
sleep(0); /* context switch */
|
|
#else
|
|
ret = RAN_BLOCK_E;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
close(os->fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef USE_TEST_GENSEED
|
|
#ifndef _MSC_VER
|
|
#warning "write a real random seed!!!!, just for testing now"
|
|
#else
|
|
#pragma message("Warning: write a real random seed!!!!, just for testing now")
|
|
#endif
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
for (i = 0; i < sz; i++ )
|
|
output[i] = i;
|
|
|
|
(void)os;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* End wc_GenerateSeed */
|
|
#endif /* WC_NO_RNG */
|
|
#endif /* HAVE_FIPS */
|