wolfssl/wolfcrypt/src/misc.c

1326 lines
35 KiB
C

/* misc.c
*
* Copyright (C) 2006-2025 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/*
DESCRIPTION
This module implements the arithmetic-shift right, left, byte swapping, XOR,
masking and clearing memory logic.
*/
#ifdef WOLFSSL_VIS_FOR_TESTS
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#else
#include <wolfssl/wolfcrypt/libwolfssl_sources.h>
#endif
#ifndef WOLF_CRYPT_MISC_C
#define WOLF_CRYPT_MISC_C
#include <wolfssl/wolfcrypt/misc.h>
/* inlining these functions is a huge speed increase and a small size decrease,
because the functions are smaller than function call setup/cleanup, e.g.,
md5 benchmark is twice as fast with inline. If you don't want it, then
define NO_INLINE and compile this file into wolfssl, otherwise it's used as
a source header
*/
/* Check for if compiling misc.c when not needed. */
#if !defined(WOLFSSL_MISC_INCLUDED) && !defined(NO_INLINE)
#ifndef WOLFSSL_IGNORE_FILE_WARN
#warning misc.c does not need to be compiled when using inline (NO_INLINE not defined)
#endif
#else
#if defined(__ICCARM__)
#include <intrinsics.h>
#endif
#ifdef INTEL_INTRINSICS
#include <stdlib.h> /* get intrinsic definitions */
/* for non visual studio probably need no long version, 32 bit only
* i.e., _rotl and _rotr */
#pragma intrinsic(_lrotl, _lrotr)
WC_MISC_STATIC WC_INLINE word32 rotlFixed(word32 x, word32 y)
{
return y ? _lrotl(x, y) : x;
}
WC_MISC_STATIC WC_INLINE word32 rotrFixed(word32 x, word32 y)
{
return y ? _lrotr(x, y) : x;
}
#elif defined(__CCRX__)
#include <builtin.h> /* get intrinsic definitions */
#if !defined(NO_INLINE)
#define rotlFixed(x, y) _builtin_rotl(x, y)
#define rotrFixed(x, y) _builtin_rotr(x, y)
#else /* create real function */
WC_MISC_STATIC WC_INLINE word32 rotlFixed(word32 x, word32 y)
{
return _builtin_rotl(x, y);
}
WC_MISC_STATIC WC_INLINE word32 rotrFixed(word32 x, word32 y)
{
return _builtin_rotr(x, y);
}
#endif
#else /* generic */
/* This routine performs a left circular arithmetic shift of <x> by <y> value. */
WC_MISC_STATIC WC_INLINE word32 rotlFixed(word32 x, word32 y)
{
return (x << y) | (x >> (sizeof(x) * 8 - y));
}
/* This routine performs a right circular arithmetic shift of <x> by <y> value. */
WC_MISC_STATIC WC_INLINE word32 rotrFixed(word32 x, word32 y)
{
return (x >> y) | (x << (sizeof(x) * 8 - y));
}
#endif
/* This routine performs a left circular arithmetic shift of <x> by <y> value */
WC_MISC_STATIC WC_INLINE word16 rotlFixed16(word16 x, word16 y)
{
return (word16)((x << y) | (x >> (sizeof(x) * 8U - y)));
}
/* This routine performs a right circular arithmetic shift of <x> by <y> value */
WC_MISC_STATIC WC_INLINE word16 rotrFixed16(word16 x, word16 y)
{
return (word16)((x >> y) | (x << (sizeof(x) * 8U - y)));
}
/* This routine performs a byte swap of 32-bit word value. */
#if defined(__CCRX__) && !defined(NO_INLINE) /* shortest version for CC-RX */
#define ByteReverseWord32(value) _builtin_revl(value)
#else
WC_MISC_STATIC WC_INLINE word32 ByteReverseWord32(word32 value)
{
#ifdef PPC_INTRINSICS
/* PPC: load reverse indexed instruction */
return (word32)__lwbrx(&value,0);
#elif defined(__ICCARM__)
return (word32)__REV(value);
#elif defined(KEIL_INTRINSICS)
return (word32)__rev(value);
#elif defined(__CCRX__)
return (word32)_builtin_revl(value);
#elif defined(WOLF_ALLOW_BUILTIN) && \
defined(__GNUC_PREREQ) && __GNUC_PREREQ(4, 3)
return (word32)__builtin_bswap32(value);
#elif defined(WOLFSSL_BYTESWAP32_ASM) && defined(__GNUC__) && \
defined(__aarch64__)
__asm__ volatile (
"REV32 %0, %0 \n"
: "+r" (value)
:
);
return value;
#elif defined(WOLFSSL_BYTESWAP32_ASM) && defined(__GNUC__) && \
(defined(__thumb__) || defined(__arm__))
__asm__ volatile (
"REV %0, %0 \n"
: "+r" (value)
:
);
return value;
#elif defined(FAST_ROTATE)
/* 5 instructions with rotate instruction, 9 without */
return (rotrFixed(value, 8U) & 0xff00ff00) |
(rotlFixed(value, 8U) & 0x00ff00ff);
#else
/* 6 instructions with rotate instruction, 8 without */
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
return rotlFixed(value, 16U);
#endif
}
#endif /* __CCRX__ */
/* This routine performs a byte swap of words array of a given count. */
WC_MISC_STATIC WC_INLINE void ByteReverseWords(word32* out, const word32* in,
word32 byteCount)
{
word32 i;
#ifdef WOLFSSL_USE_ALIGN
if ((((size_t)in & 0x3) == 0) &&
(((size_t)out & 0x3) == 0))
#endif
{
word32 count = byteCount/(word32)sizeof(word32);
for (i = 0; i < count; i++)
out[i] = ByteReverseWord32(in[i]);
}
#ifdef WOLFSSL_USE_ALIGN
else if (((size_t)in & 0x3) == 0) {
byte *out_bytes = (byte *)out;
word32 scratch;
byteCount &= ~0x3U;
for (i = 0; i < byteCount; i += (word32)sizeof(word32)) {
scratch = ByteReverseWord32(*in++);
XMEMCPY(out_bytes + i, &scratch, sizeof(scratch));
}
}
else if (((size_t)out & 0x3) == 0) {
byte *in_bytes = (byte *)in;
word32 scratch;
byteCount &= ~0x3U;
for (i = 0; i < byteCount; i += (word32)sizeof(word32)) {
XMEMCPY(&scratch, in_bytes + i, sizeof(scratch));
*out++ = ByteReverseWord32(scratch);
}
}
else {
byte *in_bytes = (byte *)in;
byte *out_bytes = (byte *)out;
word32 scratch;
byteCount &= ~0x3U;
for (i = 0; i < byteCount; i += (word32)sizeof(word32)) {
XMEMCPY(&scratch, in_bytes + i, sizeof(scratch));
scratch = ByteReverseWord32(scratch);
XMEMCPY(out_bytes + i, &scratch, sizeof(scratch));
}
}
#endif
}
WC_MISC_STATIC WC_INLINE word32 readUnalignedWord32(const byte *in)
{
if (((wc_ptr_t)in & (wc_ptr_t)(sizeof(word32) - 1U)) == (wc_ptr_t)0)
return *(word32 *)in;
else {
word32 out = 0; /* else CONFIG_FORTIFY_SOURCE -Wmaybe-uninitialized */
XMEMCPY(&out, in, sizeof(out));
return out;
}
}
WC_MISC_STATIC WC_INLINE word32 writeUnalignedWord32(void *out, word32 in)
{
if (((wc_ptr_t)out & (wc_ptr_t)(sizeof(word32) - 1U)) == (wc_ptr_t)0)
*(word32 *)out = in;
else {
XMEMCPY(out, &in, sizeof(in));
}
return in;
}
WC_MISC_STATIC WC_INLINE void readUnalignedWords32(word32 *out, const byte *in,
size_t count)
{
if (((wc_ptr_t)in & (wc_ptr_t)(sizeof(word32) - 1U)) == (wc_ptr_t)0) {
const word32 *in_word32 = (const word32 *)in;
while (count-- > 0)
*out++ = *in_word32++;
}
else {
XMEMCPY(out, in, count * sizeof(*out));
}
}
WC_MISC_STATIC WC_INLINE void writeUnalignedWords32(byte *out, const word32 *in,
size_t count)
{
if (((wc_ptr_t)out & (wc_ptr_t)(sizeof(word32) - 1U)) == (wc_ptr_t)0) {
word32 *out_word32 = (word32 *)out;
while (count-- > 0)
*out_word32++ = *in++;
}
else {
XMEMCPY(out, in, count * sizeof(*in));
}
}
#if defined(WORD64_AVAILABLE) && !defined(WOLFSSL_NO_WORD64_OPS)
WC_MISC_STATIC WC_INLINE word64 readUnalignedWord64(const byte *in)
{
if (((wc_ptr_t)in & (wc_ptr_t)(sizeof(word64) - 1U)) == (wc_ptr_t)0)
return *(word64 *)in;
else {
word64 out = 0; /* else CONFIG_FORTIFY_SOURCE -Wmaybe-uninitialized */
XMEMCPY(&out, in, sizeof(out));
return out;
}
}
WC_MISC_STATIC WC_INLINE word64 writeUnalignedWord64(void *out, word64 in)
{
if (((wc_ptr_t)out & (wc_ptr_t)(sizeof(word64) - 1U)) == (wc_ptr_t)0)
*(word64 *)out = in;
else {
XMEMCPY(out, &in, sizeof(in));
}
return in;
}
WC_MISC_STATIC WC_INLINE void readUnalignedWords64(word64 *out, const byte *in,
size_t count)
{
if (((wc_ptr_t)in & (wc_ptr_t)(sizeof(word64) - 1U)) == (wc_ptr_t)0) {
const word64 *in_word64 = (const word64 *)in;
while (count-- > 0)
*out++ = *in_word64++;
}
else {
XMEMCPY(out, in, count * sizeof(*out));
}
}
WC_MISC_STATIC WC_INLINE void writeUnalignedWords64(byte *out, const word64 *in,
size_t count)
{
if (((wc_ptr_t)out & (wc_ptr_t)(sizeof(word64) - 1U)) == (wc_ptr_t)0) {
word64 *out_word64 = (word64 *)out;
while (count-- > 0)
*out_word64++ = *in++;
}
else {
XMEMCPY(out, in, count * sizeof(*in));
}
}
WC_MISC_STATIC WC_INLINE word64 rotlFixed64(word64 x, word64 y)
{
return (x << y) | (x >> (sizeof(y) * 8 - y));
}
WC_MISC_STATIC WC_INLINE word64 rotrFixed64(word64 x, word64 y)
{
return (x >> y) | (x << (sizeof(y) * 8 - y));
}
WC_MISC_STATIC WC_INLINE word64 ByteReverseWord64(word64 value)
{
#if defined(WOLF_ALLOW_BUILTIN) && defined(__GNUC_PREREQ) && __GNUC_PREREQ(4, 3)
return (word64)__builtin_bswap64(value);
#elif defined(WOLFCRYPT_SLOW_WORD64)
return (word64)((word64)ByteReverseWord32((word32) value)) << 32 |
(word64)ByteReverseWord32((word32)(value >> 32));
#else
value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) |
((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) |
((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
return rotlFixed64(value, 32U);
#endif
}
WC_MISC_STATIC WC_INLINE void ByteReverseWords64(word64* out, const word64* in,
word32 byteCount)
{
word32 count = byteCount/(word32)sizeof(word64), i;
#ifdef WOLFSSL_USE_ALIGN
if ((((size_t)in & 0x7) == 0) &&
(((size_t)out & 0x7) == 0))
#endif
{
for (i = 0; i < count; i++)
out[i] = ByteReverseWord64(in[i]);
}
#ifdef WOLFSSL_USE_ALIGN
else if (((size_t)in & 0x7) == 0) {
byte *out_bytes = (byte *)out;
word64 scratch;
byteCount &= ~0x7U;
for (i = 0; i < byteCount; i += (word32)sizeof(word64)) {
scratch = ByteReverseWord64(*in++);
XMEMCPY(out_bytes + i, &scratch, sizeof(scratch));
}
}
else if (((size_t)out & 0x7) == 0) {
byte *in_bytes = (byte *)in;
word64 scratch;
byteCount &= ~0x7U;
for (i = 0; i < byteCount; i += (word32)sizeof(word64)) {
XMEMCPY(&scratch, in_bytes + i, sizeof(scratch));
*out++ = ByteReverseWord64(scratch);
}
}
else {
byte *in_bytes = (byte *)in;
byte *out_bytes = (byte *)out;
word64 scratch;
byteCount &= ~0x7U;
for (i = 0; i < byteCount; i += (word32)sizeof(word64)) {
XMEMCPY(&scratch, in_bytes + i, sizeof(scratch));
scratch = ByteReverseWord64(scratch);
XMEMCPY(out_bytes + i, &scratch, sizeof(scratch));
}
}
#endif
}
#endif /* WORD64_AVAILABLE && !WOLFSSL_NO_WORD64_OPS */
#ifndef WOLFSSL_NO_XOR_OPS
/* Leave no doubt that WOLFSSL_WORD_SIZE is a power of 2. */
wc_static_assert((WOLFSSL_WORD_SIZE & (WOLFSSL_WORD_SIZE - 1)) == 0);
/* This routine performs a bitwise XOR operation of <*r> and <*a> for <n> number
of wolfssl_words, placing the result in <*r>. */
WC_MISC_STATIC WC_INLINE void XorWordsOut(wolfssl_word** r,
const wolfssl_word** a, const wolfssl_word** b, word32 n)
{
const wolfssl_word *e = *a + n;
while (*a < e)
*((*r)++) = *((*a)++) ^ *((*b)++);
}
/* This routine performs a bitwise XOR operation of <*buf> and <*mask> of n
counts, placing the result in <*buf>. */
WC_MISC_STATIC WC_INLINE void xorbufout(void* out, const void* buf,
const void* mask, word32 count)
{
byte* o = (byte*)out;
const byte* b = (const byte*)buf;
const byte* m = (const byte*)mask;
/* type-punning helpers */
union {
byte* bp;
wolfssl_word* wp;
} tpo;
union {
const byte* bp;
const wolfssl_word* wp;
} tpb, tpm;
if (((((wc_ptr_t)o) & (WOLFSSL_WORD_SIZE - 1)) == 0) &&
((((wc_ptr_t)b) & (WOLFSSL_WORD_SIZE - 1)) == 0) &&
((((wc_ptr_t)m) & (WOLFSSL_WORD_SIZE - 1)) == 0))
{
/* All buffers are already aligned. Possible to XOR by words without
* fixup.
*/
tpo.bp = o;
tpb.bp = b;
tpm.bp = m;
XorWordsOut(&tpo.wp, &tpb.wp, &tpm.wp, count >> WOLFSSL_WORD_SIZE_LOG2);
o = tpo.bp;
b = tpb.bp;
m = tpm.bp;
count &= (WOLFSSL_WORD_SIZE - 1);
}
else if ((((wc_ptr_t)o) & (WOLFSSL_WORD_SIZE - 1)) ==
(((wc_ptr_t)b) & (WOLFSSL_WORD_SIZE - 1)) &&
(((wc_ptr_t)b) & (WOLFSSL_WORD_SIZE - 1)) ==
(((wc_ptr_t)m) & (WOLFSSL_WORD_SIZE - 1)))
{
/* Alignment can be fixed up to allow XOR by words. */
/* Perform bytewise xor until pointers are aligned to
* WOLFSSL_WORD_SIZE.
*/
while ((((wc_ptr_t)b & (WOLFSSL_WORD_SIZE - 1)) != 0) && (count > 0))
{
*o++ = (byte)(*b++ ^ *m++);
count--;
}
tpo.bp = o;
tpb.bp = b;
tpm.bp = m;
XorWordsOut(&tpo.wp, &tpb.wp, &tpm.wp, count >> WOLFSSL_WORD_SIZE_LOG2);
o = tpo.bp;
b = tpb.bp;
m = tpm.bp;
count &= (WOLFSSL_WORD_SIZE - 1);
}
while (count > 0) {
*o++ = (byte)(*b++ ^ *m++);
count--;
}
}
/* This routine performs a bitwise XOR operation of <*r> and <*a> for <n> number
of wolfssl_words, placing the result in <*r>. */
WC_MISC_STATIC WC_INLINE void XorWords(wolfssl_word** r, const wolfssl_word** a,
word32 n)
{
const wolfssl_word *e = *a + n;
while (*a < e)
*((*r)++) ^= *((*a)++);
}
/* This routine performs a bitwise XOR operation of <*buf> and <*mask> of n
counts, placing the result in <*buf>. */
WC_MISC_STATIC WC_INLINE void xorbuf(void* buf, const void* mask, word32 count)
{
byte* b = (byte*)buf;
const byte* m = (const byte*)mask;
/* type-punning helpers */
union {
byte* bp;
wolfssl_word* wp;
} tpb;
union {
const byte* bp;
const wolfssl_word* wp;
} tpm;
if ((((wc_ptr_t)buf & (WOLFSSL_WORD_SIZE - 1)) == 0) &&
(((wc_ptr_t)mask & (WOLFSSL_WORD_SIZE - 1)) == 0))
{
/* Both buffers are already aligned. Possible to XOR by words without
* fixup.
*/
tpb.bp = b;
tpm.bp = m;
/* Work around false positives from linuxkm CONFIG_FORTIFY_SOURCE. */
#if defined(WOLFSSL_LINUXKM) && defined(CONFIG_FORTIFY_SOURCE)
PRAGMA_GCC_DIAG_PUSH;
PRAGMA_GCC("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
#endif
XorWords(&tpb.wp, &tpm.wp, count >> WOLFSSL_WORD_SIZE_LOG2);
#if defined(WOLFSSL_LINUXKM) && defined(CONFIG_FORTIFY_SOURCE)
PRAGMA_GCC_DIAG_POP;
#endif
b = tpb.bp;
m = tpm.bp;
count &= (WOLFSSL_WORD_SIZE - 1);
}
else if (((wc_ptr_t)buf & (WOLFSSL_WORD_SIZE - 1)) ==
((wc_ptr_t)mask & (WOLFSSL_WORD_SIZE - 1)))
{
/* Alignment can be fixed up to allow XOR by words. */
/* Perform bytewise xor until pointers are aligned to
* WOLFSSL_WORD_SIZE.
*/
while ((((wc_ptr_t)b & (WOLFSSL_WORD_SIZE - 1)) != 0) && (count > 0))
{
*(b++) ^= *(m++);
count--;
}
tpb.bp = b;
tpm.bp = m;
/* Work around false positives from linuxkm CONFIG_FORTIFY_SOURCE. */
#if defined(WOLFSSL_LINUXKM) && defined(CONFIG_FORTIFY_SOURCE)
PRAGMA_GCC_DIAG_PUSH;
PRAGMA_GCC("GCC diagnostic ignored \"-Wmaybe-uninitialized\"")
#endif
XorWords(&tpb.wp, &tpm.wp, count >> WOLFSSL_WORD_SIZE_LOG2);
#if defined(WOLFSSL_LINUXKM) && defined(CONFIG_FORTIFY_SOURCE)
PRAGMA_GCC_DIAG_POP;
#endif
b = tpb.bp;
m = tpm.bp;
count &= (WOLFSSL_WORD_SIZE - 1);
}
while (count > 0) {
*b++ ^= *m++;
count--;
}
}
#endif /* !WOLFSSL_NO_XOR_OPS */
#ifndef WOLFSSL_NO_FORCE_ZERO
/* This routine fills the first len bytes of the memory area pointed by mem
with zeros. It ensures compiler optimization doesn't skip it */
WC_MISC_STATIC WC_INLINE void ForceZero(void* mem, word32 len)
{
volatile byte* z = (volatile byte*)mem;
#if (defined(WOLFSSL_X86_64_BUILD) || defined(WOLFSSL_AARCH64_BUILD)) \
&& defined(WORD64_AVAILABLE)
volatile word64* w;
#ifndef WOLFSSL_UNALIGNED_64BIT_ACCESS
word32 l = (sizeof(word64) - ((size_t)z & (sizeof(word64)-1))) &
(sizeof(word64)-1);
if (len < l) l = len;
len -= l;
while (l--) *z++ = 0;
#endif
for (w = (volatile word64*)z;
len >= sizeof(*w);
len -= (word32)sizeof(*w))
{
*w++ = 0;
}
z = (volatile byte*)w;
#endif
while (len--) *z++ = 0;
}
#endif
#ifndef WOLFSSL_NO_CONST_CMP
/* check all length bytes for equality, return 0 on success */
WC_MISC_STATIC WC_INLINE int ConstantCompare(const byte* a, const byte* b,
int length)
{
int i;
int compareSum = 0;
for (i = 0; i < length; i++) {
compareSum |= a[i] ^ b[i];
}
return compareSum;
}
#endif
#ifndef WOLFSSL_NO_CT_OPS
/* Constant time - mask set when a > b. */
WC_MISC_STATIC WC_INLINE byte ctMaskGT(int a, int b)
{
return (byte)((((word32)a - (word32)b - 1) >> 31) - 1);
}
/* Constant time - mask set when a >= b. */
WC_MISC_STATIC WC_INLINE byte ctMaskGTE(int a, int b)
{
return (byte)((((word32)a - (word32)b) >> 31) - 1);
}
/* Constant time - mask set when a >= b. */
WC_MISC_STATIC WC_INLINE int ctMaskIntGTE(int a, int b)
{
return (int)((((word32)a - (word32)b) >> 31) - 1);
}
#ifdef WORD64_AVAILABLE
/* Constant time - mask set when a >= b. */
WC_MISC_STATIC WC_INLINE word32 ctMaskWord32GTE(word32 a, word32 b)
{
return (word32)((((word64)a - (word64)b) >> 63) - 1);
}
#endif
/* Constant time - mask set when a < b. */
WC_MISC_STATIC WC_INLINE byte ctMaskLT(int a, int b)
{
return (byte)((((word32)b - (word32)a - 1) >> 31) - 1);
}
/* Constant time - mask set when a <= b. */
WC_MISC_STATIC WC_INLINE byte ctMaskLTE(int a, int b)
{
return (byte)((((word32)b - (word32)a) >> 31) - 1);
}
/* Constant time - mask set when a == b. */
WC_MISC_STATIC WC_INLINE byte ctMaskEq(int a, int b)
{
return (byte)((byte)(~ctMaskGT(a, b)) & (byte)(~ctMaskLT(a, b)));
}
/* Constant time - sets 16 bit integer mask when a > b */
WC_MISC_STATIC WC_INLINE word16 ctMask16GT(int a, int b)
{
return (word16)((((word32)a - (word32)b - 1) >> 31) - 1);
}
/* Constant time - sets 16 bit integer mask when a >= b */
WC_MISC_STATIC WC_INLINE word16 ctMask16GTE(int a, int b)
{
return (word16)((((word32)a - (word32)b) >> 31) - 1);
}
/* Constant time - sets 16 bit integer mask when a < b. */
WC_MISC_STATIC WC_INLINE word16 ctMask16LT(int a, int b)
{
return (word16)((((word32)b - (word32)a - 1) >> 31) - 1);
}
/* Constant time - sets 16 bit integer mask when a <= b. */
WC_MISC_STATIC WC_INLINE word16 ctMask16LTE(int a, int b)
{
return (word16)((((word32)b - (word32)a) >> 31) - 1);
}
/* Constant time - sets 16 bit integer mask when a == b. */
WC_MISC_STATIC WC_INLINE word16 ctMask16Eq(int a, int b)
{
return (word16)((word16)(~ctMask16GT(a, b)) & (word16)(~ctMask16LT(a, b)));
}
/* Constant time - mask set when a != b. */
WC_MISC_STATIC WC_INLINE byte ctMaskNotEq(int a, int b)
{
return (byte)((byte)ctMaskGT(a, b) | (byte)ctMaskLT(a, b));
}
/* Constant time - select a when mask is set and b otherwise. */
WC_MISC_STATIC WC_INLINE byte ctMaskSel(byte m, byte a, byte b)
{
return (byte)((b & ((byte)~(word32)m)) | (a & m));
}
/* Constant time - select integer a when mask is set and integer b otherwise. */
WC_MISC_STATIC WC_INLINE int ctMaskSelInt(byte m, int a, int b)
{
return (b & (~(signed int)(signed char)m)) |
(a & ( (signed int)(signed char)m));
}
/* Constant time - select word32 a when mask is set and word32 b otherwise. */
WC_MISC_STATIC WC_INLINE word32 ctMaskSelWord32(byte m, word32 a, word32 b)
{
return (((word32)b & (word32)(~(signed int)(signed char)m)) |
((word32)a & (word32)( (signed int)(signed char)m)));
}
/* Constant time - bit set when a <= b. */
WC_MISC_STATIC WC_INLINE byte ctSetLTE(int a, int b)
{
return (byte)(((word32)a - (word32)b - 1) >> 31);
}
/* Constant time - conditionally copy size bytes from src to dst if mask is set
*/
WC_MISC_STATIC WC_INLINE void ctMaskCopy(byte mask, byte* dst, byte* src,
word16 size)
{
int i;
for (i = 0; i < size; ++i) {
dst[i] ^= (dst[i] ^ src[i]) & mask;
}
}
#endif /* !WOLFSSL_NO_CT_OPS */
#ifndef WOLFSSL_HAVE_MIN
#define WOLFSSL_HAVE_MIN
#if defined(HAVE_FIPS) && !defined(min) /* so ifdef check passes */
#define min min
#endif
/* returns the smaller of a and b */
WC_MISC_STATIC WC_INLINE word32 min(word32 a, word32 b)
{
#if !defined(WOLFSSL_NO_CT_OPS) && defined(WORD64_AVAILABLE)
word32 gte_mask = (word32)ctMaskWord32GTE(a, b);
return (a & ~gte_mask) | (b & gte_mask);
#else /* WOLFSSL_NO_CT_OPS */
return a > b ? b : a;
#endif /* WOLFSSL_NO_CT_OPS */
}
#endif /* !WOLFSSL_HAVE_MIN */
#ifndef WOLFSSL_HAVE_MAX
#define WOLFSSL_HAVE_MAX
#if defined(HAVE_FIPS) && !defined(max) /* so ifdef check passes */
#define max max
#endif
WC_MISC_STATIC WC_INLINE word32 max(word32 a, word32 b)
{
#if !defined(WOLFSSL_NO_CT_OPS) && defined(WORD64_AVAILABLE)
word32 gte_mask = (word32)ctMaskWord32GTE(a, b);
return (a & gte_mask) | (b & ~gte_mask);
#else /* WOLFSSL_NO_CT_OPS */
return a > b ? a : b;
#endif /* WOLFSSL_NO_CT_OPS */
}
#endif /* !WOLFSSL_HAVE_MAX */
#ifndef WOLFSSL_NO_INT_ENCODE
/* converts a 32 bit integer to 24 bit */
WC_MISC_STATIC WC_INLINE void c32to24(word32 in, word24 out)
{
out[0] = (byte)((in >> 16) & 0xff);
out[1] = (byte)((in >> 8) & 0xff);
out[2] = (byte)(in & 0xff);
}
/* convert 16 bit integer to opaque */
WC_MISC_STATIC WC_INLINE void c16toa(word16 wc_u16, byte* c)
{
c[0] = (byte)((wc_u16 >> 8) & 0xff);
c[1] = (byte)(wc_u16 & 0xff);
}
/* convert 32 bit integer to opaque */
WC_MISC_STATIC WC_INLINE void c32toa(word32 wc_u32, byte* c)
{
#ifdef WOLFSSL_USE_ALIGN
c[0] = (byte)((wc_u32 >> 24) & 0xff);
c[1] = (byte)((wc_u32 >> 16) & 0xff);
c[2] = (byte)((wc_u32 >> 8) & 0xff);
c[3] = (byte)(wc_u32 & 0xff);
#elif defined(LITTLE_ENDIAN_ORDER)
*(word32*)c = ByteReverseWord32(wc_u32);
#else
*(word32*)c = wc_u32;
#endif
}
#endif
#ifndef WOLFSSL_NO_INT_DECODE
/* convert a 24 bit integer into a 32 bit one */
WC_MISC_STATIC WC_INLINE void c24to32(const word24 wc_u24, word32* wc_u32)
{
*wc_u32 = ((word32)wc_u24[0] << 16) |
((word32)wc_u24[1] << 8) |
(word32)wc_u24[2];
}
/* convert opaque to 24 bit integer */
WC_MISC_STATIC WC_INLINE void ato24(const byte* c, word32* wc_u24)
{
*wc_u24 = ((word32)c[0] << 16) | ((word32)c[1] << 8) | c[2];
}
/* convert opaque to 16 bit integer */
WC_MISC_STATIC WC_INLINE void ato16(const byte* c, word16* wc_u16)
{
*wc_u16 = (word16) ((c[0] << 8) | (c[1]));
}
/* convert opaque to 32 bit integer */
WC_MISC_STATIC WC_INLINE void ato32(const byte* c, word32* wc_u32)
{
#ifdef WOLFSSL_USE_ALIGN
*wc_u32 = ((word32)c[0] << 24) |
((word32)c[1] << 16) |
((word32)c[2] << 8) |
(word32)c[3];
#elif defined(LITTLE_ENDIAN_ORDER)
*wc_u32 = ByteReverseWord32(*(word32*)c);
#else
*wc_u32 = *(word32*)c;
#endif
}
/* convert opaque to 32 bit integer. Interpret as little endian. */
WC_MISC_STATIC WC_INLINE void ato32le(const byte* c, word32* wc_u32)
{
*wc_u32 = (word32)c[0] |
((word32)c[1] << 8) |
((word32)c[2] << 16) |
((word32)c[3] << 24);
}
WC_MISC_STATIC WC_INLINE word32 btoi(byte b)
{
return (word32)(b - 0x30);
}
#endif
WC_MISC_STATIC WC_INLINE signed char HexCharToByte(char ch)
{
signed char ret = (signed char)ch;
if (ret >= '0' && ret <= '9')
ret = (signed char)(ret - '0');
else if (ret >= 'A' && ret <= 'F')
ret = (signed char)(ret - ('A' - 10));
else if (ret >= 'a' && ret <= 'f')
ret = (signed char)(ret - ('a' - 10));
else
ret = -1; /* error case - return code must be signed */
return ret;
}
WC_MISC_STATIC WC_INLINE char ByteToHex(byte in)
{
static ALIGN64 const char kHexChar[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
return (char)(kHexChar[in & 0xF]);
}
WC_MISC_STATIC WC_INLINE int ByteToHexStr(byte in, char* out)
{
if (out == NULL)
return -1;
out[0] = ByteToHex((byte)(in >> 4));
out[1] = ByteToHex((byte)(in & 0xf));
return 0;
}
WC_MISC_STATIC WC_INLINE int CharIsWhiteSpace(char ch)
{
#ifndef WOLFSSL_NO_CT_OPS
return (ctMaskEq(ch, ' ') |
ctMaskEq(ch, '\t') |
ctMaskEq(ch, '\n')) & 1;
#else /* WOLFSSL_NO_CT_OPS */
switch (ch) {
case ' ':
case '\t':
case '\n':
return 1;
default:
return 0;
}
#endif /* WOLFSSL_NO_CT_OPS */
}
#if defined(WOLFSSL_W64_WRAPPER)
#if defined(WORD64_AVAILABLE) && !defined(WOLFSSL_W64_WRAPPER_TEST)
WC_MISC_STATIC WC_INLINE void w64Increment(w64wrapper *n) {
n->n++;
}
WC_MISC_STATIC WC_INLINE void w64Decrement(w64wrapper *n) {
n->n--;
}
WC_MISC_STATIC WC_INLINE byte w64Equal(w64wrapper a, w64wrapper b) {
return (a.n == b.n);
}
WC_MISC_STATIC WC_INLINE word32 w64GetLow32(w64wrapper n) {
return (word32)n.n;
}
WC_MISC_STATIC WC_INLINE word32 w64GetHigh32(w64wrapper n) {
return (word32)(n.n >> 32);
}
WC_MISC_STATIC WC_INLINE void w64SetLow32(w64wrapper *n, word32 low) {
n->n = (n->n & (~(word64)(0xffffffff))) | low;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Add32(w64wrapper a, word32 b, byte *wrap)
{
a.n += b;
if (a.n < b && wrap != NULL)
*wrap = 1;
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Add(w64wrapper a, w64wrapper b,
byte *wrap)
{
a.n += b.n;
if (a.n < b.n && wrap != NULL)
*wrap = 1;
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Sub32(w64wrapper a, word32 b, byte *wrap)
{
if (a.n < b && wrap != NULL)
*wrap = 1;
a.n = a.n - b;
return a;
}
WC_MISC_STATIC WC_INLINE byte w64GT(w64wrapper a, w64wrapper b)
{
return a.n > b.n;
}
WC_MISC_STATIC WC_INLINE byte w64IsZero(w64wrapper a)
{
return a.n == 0;
}
WC_MISC_STATIC WC_INLINE void c64toa(const w64wrapper *a, byte *out)
{
#ifdef BIG_ENDIAN_ORDER
XMEMCPY(out, &a->n, sizeof(a->n));
#else
word64 _out;
_out = ByteReverseWord64(a->n);
XMEMCPY(out, &_out, sizeof(_out));
#endif /* BIG_ENDIAN_ORDER */
}
WC_MISC_STATIC WC_INLINE void ato64(const byte *in, w64wrapper *w64)
{
#ifdef BIG_ENDIAN_ORDER
XMEMCPY(&w64->n, in, sizeof(w64->n));
#else
word64 _in;
XMEMCPY(&_in, in, sizeof(_in));
w64->n = ByteReverseWord64(_in);
#endif /* BIG_ENDIAN_ORDER */
}
WC_MISC_STATIC WC_INLINE w64wrapper w64From32(word32 hi, word32 lo)
{
w64wrapper ret;
ret.n = ((word64)hi << 32) | lo;
return ret;
}
WC_MISC_STATIC WC_INLINE byte w64GTE(w64wrapper a, w64wrapper b)
{
return a.n >= b.n;
}
WC_MISC_STATIC WC_INLINE byte w64LT(w64wrapper a, w64wrapper b)
{
return a.n < b.n;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Sub(w64wrapper a, w64wrapper b)
{
a.n -= b.n;
return a;
}
WC_MISC_STATIC WC_INLINE void w64Zero(w64wrapper *a)
{
a->n = 0;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64ShiftRight(w64wrapper a, int shift)
{
a.n >>= shift;
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64ShiftLeft(w64wrapper a, int shift)
{
a.n <<= shift;
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Mul(word32 a, word32 b)
{
w64wrapper ret;
ret.n = (word64)a * (word64)b;
return ret;
}
#else
WC_MISC_STATIC WC_INLINE void w64Increment(w64wrapper *n)
{
n->n[1]++;
if (n->n[1] == 0)
n->n[0]++;
}
WC_MISC_STATIC WC_INLINE void w64Decrement(w64wrapper *n) {
if (n->n[1] == 0)
n->n[0]--;
n->n[1]--;
}
WC_MISC_STATIC WC_INLINE byte w64Equal(w64wrapper a, w64wrapper b)
{
return (a.n[0] == b.n[0] && a.n[1] == b.n[1]);
}
WC_MISC_STATIC WC_INLINE word32 w64GetLow32(w64wrapper n) {
return n.n[1];
}
WC_MISC_STATIC WC_INLINE word32 w64GetHigh32(w64wrapper n) {
return n.n[0];
}
WC_MISC_STATIC WC_INLINE void w64SetLow32(w64wrapper *n, word32 low)
{
n->n[1] = low;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Add32(w64wrapper a, word32 b, byte *wrap)
{
a.n[1] += b;
if (a.n[1] < b) {
a.n[0]++;
if (wrap != NULL && a.n[0] == 0)
*wrap = 1;
}
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Add(w64wrapper a, w64wrapper b,
byte *wrap)
{
a.n[1] += b.n[1];
if (a.n[1] < b.n[1]) {
a.n[0]++;
if (wrap != NULL && a.n[0] == 0)
*wrap = 1;
}
a.n[0] += b.n[0];
if (wrap != NULL && a.n[0] < b.n[0]) {
*wrap = 1;
}
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Sub32(w64wrapper a, word32 b, byte *wrap)
{
byte _underflow = 0;
if (a.n[1] < b)
_underflow = 1;
a.n[1] -= b;
if (_underflow) {
if (a.n[0] == 0 && wrap != NULL)
*wrap = 1;
a.n[0]--;
}
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Sub(w64wrapper a, w64wrapper b)
{
if (a.n[1] < b.n[1])
a.n[0]--;
a.n[1] -= b.n[1];
a.n[0] -= b.n[0];
return a;
}
WC_MISC_STATIC WC_INLINE void w64Zero(w64wrapper *a)
{
a->n[0] = a->n[1] = 0;
}
WC_MISC_STATIC WC_INLINE byte w64GT(w64wrapper a, w64wrapper b)
{
if (a.n[0] > b.n[0])
return 1;
if (a.n[0] == b.n[0])
return a.n[1] > b.n[1];
return 0;
}
WC_MISC_STATIC WC_INLINE byte w64GTE(w64wrapper a, w64wrapper b)
{
if (a.n[0] > b.n[0])
return 1;
if (a.n[0] == b.n[0])
return a.n[1] >= b.n[1];
return 0;
}
WC_MISC_STATIC WC_INLINE byte w64IsZero(w64wrapper a)
{
return a.n[0] == 0 && a.n[1] == 0;
}
WC_MISC_STATIC WC_INLINE void c64toa(const w64wrapper *a, byte *out)
{
#ifdef BIG_ENDIAN_ORDER
word32 *_out = (word32*)(out);
_out[0] = a->n[0];
_out[1] = a->n[1];
#else
c32toa(a->n[0], out);
c32toa(a->n[1], out + 4);
#endif /* BIG_ENDIAN_ORDER */
}
WC_MISC_STATIC WC_INLINE void ato64(const byte *in, w64wrapper *w64)
{
#ifdef BIG_ENDIAN_ORDER
const word32 *_in = (const word32*)(in);
w64->n[0] = *_in;
w64->n[1] = *(_in + 1);
#else
ato32(in, &w64->n[0]);
ato32(in + 4, &w64->n[1]);
#endif /* BIG_ENDIAN_ORDER */
}
WC_MISC_STATIC WC_INLINE w64wrapper w64From32(word32 hi, word32 lo)
{
w64wrapper w64;
w64.n[0] = hi;
w64.n[1] = lo;
return w64;
}
WC_MISC_STATIC WC_INLINE byte w64LT(w64wrapper a, w64wrapper b)
{
if (a.n[0] < b.n[0])
return 1;
if (a.n[0] == b.n[0])
return a.n[1] < b.n[1];
return 0;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64ShiftRight(w64wrapper a, int shift)
{
if (shift < 32) {
a.n[1] = (a.n[1] >> shift) | (a.n[0] << (32 - shift));
a.n[0] >>= shift;
}
else {
a.n[1] = a.n[0] >> (shift - 32);
a.n[0] = 0;
}
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64ShiftLeft(w64wrapper a, int shift)
{
if (shift < 32) {
a.n[0] = (a.n[0] << shift) | (a.n[1] >> (32 - shift));
a.n[1] <<= shift;
}
else {
a.n[0] = a.n[1] << (shift - 32);
a.n[1] = 0;
}
return a;
}
WC_MISC_STATIC WC_INLINE w64wrapper w64Mul(word32 a, word32 b)
{
w64wrapper ret;
word16 ltlA, ltlB, ltlC, ltlD;
word32 bigA, bigB, bigC, bigD;
ltlA = a & 0xFFFF;
ltlB = (a >> 16) & 0xFFFF;
ltlC = b & 0xFFFF;
ltlD = (b >> 16) & 0xFFFF;
bigA = (word32)ltlA * (word32)ltlC;
bigC = (word32)ltlB * (word32)ltlC;
bigD = (word32)ltlA * (word32)ltlD;
bigB = (word32)ltlB * (word32)ltlD;
ret = w64From32(0, bigB);
ret = w64ShiftLeft(ret, 16);
ret = w64Add32(ret, bigD, NULL);
ret = w64Add32(ret, bigC, NULL);
ret = w64ShiftLeft(ret, 16);
return w64Add32(ret, bigA, NULL);
}
#endif /* WORD64_AVAILABLE && !WOLFSSL_W64_WRAPPER_TEST */
#endif /* WOLFSSL_W64_WRAPPER */
#if defined(HAVE_SESSION_TICKET) || !defined(NO_CERTS) || \
!defined(NO_SESSION_CACHE)
/* Make a word from the front of random hash */
WC_MISC_STATIC WC_INLINE word32 MakeWordFromHash(const byte* hashID)
{
return ((word32)hashID[0] << 24) | ((word32)hashID[1] << 16) |
((word32)hashID[2] << 8) | (word32)hashID[3];
}
#endif /* HAVE_SESSION_TICKET || !NO_CERTS || !NO_SESSION_CACHE */
#if !defined(WOLFCRYPT_ONLY) && !defined(NO_HASH_WRAPPER) && \
(!defined(NO_SESSION_CACHE) || defined(HAVE_SESSION_TICKET))
#include <wolfssl/wolfcrypt/hash.h>
/* some session IDs aren't random after all, let's make them random */
WC_MISC_STATIC WC_INLINE word32 HashObject(const byte* o, word32 len,
int* error)
{
byte digest[WC_MAX_DIGEST_SIZE];
#ifndef NO_MD5
*error = wc_Md5Hash(o, len, digest);
#elif !defined(NO_SHA)
*error = wc_ShaHash(o, len, digest);
#elif !defined(NO_SHA256)
*error = wc_Sha256Hash(o, len, digest);
#else
#error "We need a digest to hash the session IDs"
#endif
return *error == 0 ? MakeWordFromHash(digest) : 0; /* 0 on failure */
}
#endif /* WOLFCRYPT_ONLY && !NO_HASH_WRAPPER &&
* (!NO_SESSION_CACHE || HAVE_SESSION_TICKET) */
WC_MISC_STATIC WC_INLINE char* CopyString(const char* src, int srcLen,
void* heap, int type) {
char* dst = NULL;
if (src == NULL)
return NULL;
if (srcLen <= 0)
srcLen = (int)XSTRLEN(src);
dst = (char*)XMALLOC((size_t)srcLen + 1, heap, type);
if (dst != NULL) {
XMEMCPY(dst, src, (size_t)srcLen);
dst[srcLen] = '\0';
}
return dst;
}
#endif /* !WOLFSSL_MISC_INCLUDED && !NO_INLINE */
#endif /* WOLF_CRYPT_MISC_C */