mirror of https://github.com/wolfSSL/wolfssl.git
4026 lines
111 KiB
C
4026 lines
111 KiB
C
/* random.c
|
|
*
|
|
* Copyright (C) 2006-2023 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
/*
|
|
|
|
DESCRIPTION
|
|
This library contains implementation for the random number generator.
|
|
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/settings.h>
|
|
#include <wolfssl/wolfcrypt/error-crypt.h>
|
|
#if defined(DEBUG_WOLFSSL)
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
#endif
|
|
|
|
/* on HPUX 11 you may need to install /dev/random see
|
|
http://h20293.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=KRNG11I
|
|
|
|
*/
|
|
#if defined(ESP_IDF_VERSION_MAJOR) && ESP_IDF_VERSION_MAJOR >= 5
|
|
#include <esp_random.h>
|
|
#endif
|
|
|
|
#if defined(HAVE_FIPS) && \
|
|
defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)
|
|
|
|
/* set NO_WRAPPERS before headers, use direct internal f()s not wrappers */
|
|
#define FIPS_NO_WRAPPERS
|
|
|
|
#ifdef USE_WINDOWS_API
|
|
#pragma code_seg(".fipsA$c")
|
|
#pragma const_seg(".fipsB$c")
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#include <wolfssl/wolfcrypt/random.h>
|
|
#include <wolfssl/wolfcrypt/cpuid.h>
|
|
#ifdef HAVE_ENTROPY_MEMUSE
|
|
#include <wolfssl/wolfcrypt/sha3.h>
|
|
#if defined(__APPLE__) || defined(__MACH__)
|
|
#include <mach/mach_time.h>
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifndef WC_NO_RNG /* if not FIPS and RNG is disabled then do not compile */
|
|
|
|
#include <wolfssl/wolfcrypt/sha256.h>
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
#include <wolfssl/wolfcrypt/cryptocb.h>
|
|
#endif
|
|
|
|
#ifdef NO_INLINE
|
|
#include <wolfssl/wolfcrypt/misc.h>
|
|
#else
|
|
#define WOLFSSL_MISC_INCLUDED
|
|
#include <wolfcrypt/src/misc.c>
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SGX)
|
|
#include <sgx_trts.h>
|
|
#elif defined(USE_WINDOWS_API)
|
|
#ifndef _WIN32_WINNT
|
|
#define _WIN32_WINNT 0x0400
|
|
#endif
|
|
#include <windows.h>
|
|
#include <wincrypt.h>
|
|
#elif defined(HAVE_WNR)
|
|
#include <wnr.h>
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
wolfSSL_Mutex wnr_mutex WOLFSSL_MUTEX_INITIALIZER_CLAUSE(wnr_mutex); /* global netRandom mutex */
|
|
int wnr_timeout = 0; /* entropy timeout, milliseconds */
|
|
#ifndef WOLFSSL_MUTEX_INITIALIZER
|
|
int wnr_mutex_inited = 0; /* flag for mutex init */
|
|
#endif
|
|
int wnr_inited = 0; /* flag for whether wc_InitNetRandom() has been called */
|
|
wnr_context* wnr_ctx; /* global netRandom context */
|
|
#elif defined(FREESCALE_KSDK_2_0_TRNG)
|
|
#include "fsl_trng.h"
|
|
#elif defined(FREESCALE_KSDK_2_0_RNGA)
|
|
#include "fsl_rnga.h"
|
|
#elif defined(WOLFSSL_WICED)
|
|
#include "wiced_crypto.h"
|
|
#elif defined(WOLFSSL_NETBURNER)
|
|
#include <predef.h>
|
|
#include <basictypes.h>
|
|
#include <random.h>
|
|
#elif defined(WOLFSSL_XILINX_CRYPT_VERSAL)
|
|
#include "wolfssl/wolfcrypt/port/xilinx/xil-versal-trng.h"
|
|
#elif defined(NO_DEV_RANDOM)
|
|
#elif defined(CUSTOM_RAND_GENERATE)
|
|
#elif defined(CUSTOM_RAND_GENERATE_BLOCK)
|
|
#elif defined(CUSTOM_RAND_GENERATE_SEED)
|
|
#elif defined(WOLFSSL_GENSEED_FORTEST)
|
|
#elif defined(WOLFSSL_MDK_ARM)
|
|
#elif defined(WOLFSSL_IAR_ARM)
|
|
#elif defined(WOLFSSL_ROWLEY_ARM)
|
|
#elif defined(WOLFSSL_EMBOS)
|
|
#elif defined(WOLFSSL_DEOS)
|
|
#elif defined(MICRIUM)
|
|
#elif defined(WOLFSSL_NUCLEUS)
|
|
#elif defined(WOLFSSL_PB)
|
|
#elif defined(WOLFSSL_ZEPHYR)
|
|
#elif defined(WOLFSSL_TELIT_M2MB)
|
|
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_TRNG)
|
|
#elif defined(WOLFSSL_IMXRT1170_CAAM)
|
|
#elif defined(WOLFSSL_GETRANDOM)
|
|
#include <errno.h>
|
|
#include <sys/random.h>
|
|
#else
|
|
/* include headers that may be needed to get good seed */
|
|
#include <fcntl.h>
|
|
#ifndef EBSNET
|
|
#include <unistd.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SILABS_SE_ACCEL)
|
|
#include <wolfssl/wolfcrypt/port/silabs/silabs_random.h>
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_IOTSAFE) && defined(HAVE_IOTSAFE_HWRNG)
|
|
#include <wolfssl/wolfcrypt/port/iotsafe/iotsafe.h>
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_HAVE_PSA) && !defined(WOLFSSL_PSA_NO_RNG)
|
|
#include <wolfssl/wolfcrypt/port/psa/psa.h>
|
|
#endif
|
|
|
|
#if defined(HAVE_INTEL_RDRAND) || defined(HAVE_INTEL_RDSEED) || \
|
|
defined(HAVE_AMD_RDSEED)
|
|
static word32 intel_flags = 0;
|
|
static void wc_InitRng_IntelRD(void)
|
|
{
|
|
intel_flags = cpuid_get_flags();
|
|
}
|
|
#if (defined(HAVE_INTEL_RDSEED) || defined(HAVE_AMD_RDSEED)) && \
|
|
!defined(WOLFSSL_LINUXKM)
|
|
static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz);
|
|
#endif
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz);
|
|
#endif
|
|
|
|
#ifdef USE_WINDOWS_API
|
|
#define USE_INTEL_INTRINSICS
|
|
#elif !defined __GNUC__ || defined __clang__ || __GNUC__ > 4
|
|
#define USE_INTEL_INTRINSICS
|
|
#else
|
|
#undef USE_INTEL_INTRINSICS
|
|
#endif
|
|
|
|
#ifdef USE_INTEL_INTRINSICS
|
|
#include <immintrin.h>
|
|
/* Before clang 7 or GCC 9, immintrin.h did not define _rdseed64_step() */
|
|
#ifndef HAVE_INTEL_RDSEED
|
|
#elif defined __clang__ && __clang_major__ > 6
|
|
#elif !defined __GNUC__
|
|
#elif __GNUC__ > 8
|
|
#else
|
|
#ifndef __clang__
|
|
#pragma GCC push_options
|
|
#pragma GCC target("rdseed")
|
|
#else
|
|
#define __RDSEED__
|
|
#endif
|
|
#include <x86intrin.h>
|
|
#ifndef __clang__
|
|
#pragma GCC pop_options
|
|
#endif
|
|
#endif
|
|
#endif /* USE_WINDOWS_API */
|
|
#endif
|
|
|
|
/* Start NIST DRBG code */
|
|
#ifdef HAVE_HASHDRBG
|
|
|
|
#define OUTPUT_BLOCK_LEN (WC_SHA256_DIGEST_SIZE)
|
|
#define MAX_REQUEST_LEN (0x10000)
|
|
#define RESEED_INTERVAL WC_RESEED_INTERVAL
|
|
|
|
|
|
/* The security strength for the RNG is the target number of bits of
|
|
* entropy you are looking for in a seed. */
|
|
#ifndef RNG_SECURITY_STRENGTH
|
|
/* SHA-256 requires a minimum of 256-bits of entropy. */
|
|
#define RNG_SECURITY_STRENGTH (256)
|
|
#endif
|
|
|
|
#ifndef ENTROPY_SCALE_FACTOR
|
|
/* The entropy scale factor should be the whole number inverse of the
|
|
* minimum bits of entropy per bit of NDRNG output. */
|
|
#if defined(HAVE_ENTROPY_MEMUSE)
|
|
/* Full strength, conditioned entropy is requested of MemUse Entropy. */
|
|
#if defined(HAVE_FIPS) && defined(HAVE_FIPS_VERSION) && \
|
|
(HAVE_FIPS_VERSION >= 2)
|
|
#define ENTROPY_SCALE_FACTOR (4)
|
|
#else
|
|
#define ENTROPY_SCALE_FACTOR (1)
|
|
#endif
|
|
#elif defined(HAVE_AMD_RDSEED)
|
|
/* This will yield a SEED_SZ of 16kb. Since nonceSz will be 0,
|
|
* we'll add an additional 8kb on top. */
|
|
#define ENTROPY_SCALE_FACTOR (512)
|
|
#elif defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
|
|
/* The value of 2 applies to Intel's RDSEED which provides about
|
|
* 0.5 bits minimum of entropy per bit. The value of 4 gives a
|
|
* conservative margin for FIPS. */
|
|
#if defined(HAVE_FIPS) && defined(HAVE_FIPS_VERSION) && \
|
|
(HAVE_FIPS_VERSION >= 2)
|
|
#define ENTROPY_SCALE_FACTOR (2*4)
|
|
#else
|
|
/* Not FIPS, but Intel RDSEED, only double. */
|
|
#define ENTROPY_SCALE_FACTOR (2)
|
|
#endif
|
|
#elif defined(HAVE_FIPS) && defined(HAVE_FIPS_VERSION) && \
|
|
(HAVE_FIPS_VERSION >= 2)
|
|
/* If doing a FIPS build without a specific scale factor, default
|
|
* to 4. This will give 1024 bits of entropy. More is better, but
|
|
* more is also slower. */
|
|
#define ENTROPY_SCALE_FACTOR (4)
|
|
#else
|
|
/* Setting the default to 1. */
|
|
#define ENTROPY_SCALE_FACTOR (1)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef SEED_BLOCK_SZ
|
|
/* The seed block size, is the size of the output of the underlying NDRNG.
|
|
* This value is used for testing the output of the NDRNG. */
|
|
#if defined(HAVE_AMD_RDSEED)
|
|
/* AMD's RDSEED instruction works in 128-bit blocks read 64-bits
|
|
* at a time. */
|
|
#define SEED_BLOCK_SZ (sizeof(word64)*2)
|
|
#elif defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
|
|
/* RDSEED outputs in blocks of 64-bits. */
|
|
#define SEED_BLOCK_SZ sizeof(word64)
|
|
#else
|
|
/* Setting the default to 4. */
|
|
#define SEED_BLOCK_SZ 4
|
|
#endif
|
|
#endif
|
|
|
|
#define SEED_SZ (RNG_SECURITY_STRENGTH*ENTROPY_SCALE_FACTOR/8)
|
|
|
|
/* The maximum seed size will be the seed size plus a seed block for the
|
|
* test, and an additional half of the seed size. This additional half
|
|
* is in case the user does not supply a nonce. A nonce will be obtained
|
|
* from the NDRNG. */
|
|
#define MAX_SEED_SZ (SEED_SZ + SEED_SZ/2 + SEED_BLOCK_SZ)
|
|
|
|
|
|
#ifdef WC_RNG_SEED_CB
|
|
|
|
static wc_RngSeed_Cb seedCb = NULL;
|
|
|
|
int wc_SetSeed_Cb(wc_RngSeed_Cb cb)
|
|
{
|
|
seedCb = cb;
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/* Internal return codes */
|
|
#define DRBG_SUCCESS 0
|
|
#define DRBG_FAILURE 1
|
|
#define DRBG_NEED_RESEED 2
|
|
#define DRBG_CONT_FAILURE 3
|
|
#define DRBG_NO_SEED_CB 4
|
|
|
|
/* RNG health states */
|
|
#define DRBG_NOT_INIT 0
|
|
#define DRBG_OK 1
|
|
#define DRBG_FAILED 2
|
|
#define DRBG_CONT_FAILED 3
|
|
|
|
#define RNG_HEALTH_TEST_CHECK_SIZE (WC_SHA256_DIGEST_SIZE * 4)
|
|
|
|
/* Verify max gen block len */
|
|
#if RNG_MAX_BLOCK_LEN > MAX_REQUEST_LEN
|
|
#error RNG_MAX_BLOCK_LEN is larger than NIST DBRG max request length
|
|
#endif
|
|
|
|
enum {
|
|
drbgInitC = 0,
|
|
drbgReseed = 1,
|
|
drbgGenerateW = 2,
|
|
drbgGenerateH = 3,
|
|
drbgInitV = 4
|
|
};
|
|
|
|
typedef struct DRBG_internal DRBG_internal;
|
|
|
|
static int wc_RNG_HealthTestLocal(int reseed, void* heap, int devId);
|
|
|
|
/* Hash Derivation Function */
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_df(DRBG_internal* drbg, byte* out, word32 outSz, byte type,
|
|
const byte* inA, word32 inASz,
|
|
const byte* inB, word32 inBSz)
|
|
{
|
|
int ret = DRBG_FAILURE;
|
|
byte ctr;
|
|
word32 i;
|
|
word32 len;
|
|
word32 bits = (outSz * 8); /* reverse byte order */
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256* sha = &drbg->sha256;
|
|
#else
|
|
wc_Sha256 sha[1];
|
|
#endif
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
byte* digest;
|
|
#else
|
|
byte digest[WC_SHA256_DIGEST_SIZE];
|
|
#endif
|
|
|
|
if (drbg == NULL) {
|
|
return DRBG_FAILURE;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
digest = (byte*)XMALLOC(WC_SHA256_DIGEST_SIZE, drbg->heap,
|
|
DYNAMIC_TYPE_DIGEST);
|
|
if (digest == NULL)
|
|
return DRBG_FAILURE;
|
|
#endif
|
|
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
bits = ByteReverseWord32(bits);
|
|
#endif
|
|
len = (outSz / OUTPUT_BLOCK_LEN)
|
|
+ ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
|
|
|
|
ctr = 1;
|
|
for (i = 0; i < len; i++) {
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(sha);
|
|
#endif
|
|
if (ret != 0)
|
|
break;
|
|
#endif
|
|
ret = wc_Sha256Update(sha, &ctr, sizeof(ctr));
|
|
if (ret == 0) {
|
|
ctr++;
|
|
ret = wc_Sha256Update(sha, (byte*)&bits, sizeof(bits));
|
|
}
|
|
|
|
if (ret == 0) {
|
|
/* churning V is the only string that doesn't have the type added */
|
|
if (type != drbgInitV)
|
|
ret = wc_Sha256Update(sha, &type, sizeof(type));
|
|
}
|
|
if (ret == 0)
|
|
ret = wc_Sha256Update(sha, inA, inASz);
|
|
if (ret == 0) {
|
|
if (inB != NULL && inBSz > 0)
|
|
ret = wc_Sha256Update(sha, inB, inBSz);
|
|
}
|
|
if (ret == 0)
|
|
ret = wc_Sha256Final(sha, digest);
|
|
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(sha);
|
|
#endif
|
|
if (ret == 0) {
|
|
if (outSz > OUTPUT_BLOCK_LEN) {
|
|
XMEMCPY(out, digest, OUTPUT_BLOCK_LEN);
|
|
outSz -= OUTPUT_BLOCK_LEN;
|
|
out += OUTPUT_BLOCK_LEN;
|
|
}
|
|
else {
|
|
XMEMCPY(out, digest, outSz);
|
|
}
|
|
}
|
|
}
|
|
|
|
ForceZero(digest, WC_SHA256_DIGEST_SIZE);
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(digest, drbg->heap, DYNAMIC_TYPE_DIGEST);
|
|
#endif
|
|
|
|
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_DRBG_Reseed(DRBG_internal* drbg, const byte* seed, word32 seedSz)
|
|
{
|
|
int ret;
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
byte* newV;
|
|
#else
|
|
byte newV[DRBG_SEED_LEN];
|
|
#endif
|
|
|
|
if (drbg == NULL) {
|
|
return DRBG_FAILURE;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
newV = (byte*)XMALLOC(DRBG_SEED_LEN, drbg->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
if (newV == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
XMEMSET(newV, 0, DRBG_SEED_LEN);
|
|
|
|
ret = Hash_df(drbg, newV, DRBG_SEED_LEN, drbgReseed,
|
|
drbg->V, sizeof(drbg->V), seed, seedSz);
|
|
if (ret == DRBG_SUCCESS) {
|
|
XMEMCPY(drbg->V, newV, sizeof(drbg->V));
|
|
ForceZero(newV, DRBG_SEED_LEN);
|
|
|
|
ret = Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
|
|
sizeof(drbg->V), NULL, 0);
|
|
}
|
|
if (ret == DRBG_SUCCESS) {
|
|
drbg->reseedCtr = 1;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(newV, drbg->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS and DRBG_FAILURE or BAD_FUNC_ARG on fail */
|
|
int wc_RNG_DRBG_Reseed(WC_RNG* rng, const byte* seed, word32 seedSz)
|
|
{
|
|
if (rng == NULL || seed == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (rng->drbg == NULL) {
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND)
|
|
if (IS_INTEL_RDRAND(intel_flags)) {
|
|
/* using RDRAND not DRBG, so return success */
|
|
return 0;
|
|
}
|
|
return BAD_FUNC_ARG;
|
|
#endif
|
|
}
|
|
|
|
return Hash_DRBG_Reseed((DRBG_internal *)rng->drbg, seed, seedSz);
|
|
}
|
|
|
|
static WC_INLINE void array_add_one(byte* data, word32 dataSz)
|
|
{
|
|
int i;
|
|
for (i = (int)dataSz - 1; i >= 0; i--) {
|
|
data[i]++;
|
|
if (data[i] != 0) break;
|
|
}
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_gen(DRBG_internal* drbg, byte* out, word32 outSz, const byte* V)
|
|
{
|
|
int ret = DRBG_FAILURE;
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
byte* data;
|
|
byte* digest;
|
|
#else
|
|
byte data[DRBG_SEED_LEN];
|
|
byte digest[WC_SHA256_DIGEST_SIZE];
|
|
#endif
|
|
word32 i;
|
|
word32 len;
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256* sha = &drbg->sha256;
|
|
#else
|
|
wc_Sha256 sha[1];
|
|
#endif
|
|
|
|
if (drbg == NULL) {
|
|
return DRBG_FAILURE;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
data = (byte*)XMALLOC(DRBG_SEED_LEN, drbg->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
digest = (byte*)XMALLOC(WC_SHA256_DIGEST_SIZE, drbg->heap,
|
|
DYNAMIC_TYPE_DIGEST);
|
|
if (data == NULL || digest == NULL) {
|
|
XFREE(digest, drbg->heap, DYNAMIC_TYPE_DIGEST);
|
|
XFREE(data, drbg->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
return DRBG_FAILURE;
|
|
}
|
|
#endif
|
|
|
|
/* Special case: outSz is 0 and out is NULL. wc_Generate a block to save for
|
|
* the continuous test. */
|
|
|
|
if (outSz == 0) {
|
|
outSz = 1;
|
|
}
|
|
|
|
len = (outSz / OUTPUT_BLOCK_LEN) + ((outSz % OUTPUT_BLOCK_LEN) ? 1 : 0);
|
|
|
|
XMEMCPY(data, V, DRBG_SEED_LEN);
|
|
for (i = 0; i < len; i++) {
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(sha);
|
|
#endif
|
|
if (ret == 0)
|
|
#endif
|
|
ret = wc_Sha256Update(sha, data, DRBG_SEED_LEN);
|
|
if (ret == 0)
|
|
ret = wc_Sha256Final(sha, digest);
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(sha);
|
|
#endif
|
|
|
|
if (ret == 0) {
|
|
if (out != NULL && outSz != 0) {
|
|
if (outSz >= OUTPUT_BLOCK_LEN) {
|
|
XMEMCPY(out, digest, OUTPUT_BLOCK_LEN);
|
|
outSz -= OUTPUT_BLOCK_LEN;
|
|
out += OUTPUT_BLOCK_LEN;
|
|
array_add_one(data, DRBG_SEED_LEN);
|
|
}
|
|
else {
|
|
XMEMCPY(out, digest, outSz);
|
|
outSz = 0;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* wc_Sha256Update or wc_Sha256Final returned error */
|
|
break;
|
|
}
|
|
}
|
|
ForceZero(data, DRBG_SEED_LEN);
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(digest, drbg->heap, DYNAMIC_TYPE_DIGEST);
|
|
XFREE(data, drbg->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
#endif
|
|
|
|
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
static WC_INLINE void array_add(byte* d, word32 dLen, const byte* s, word32 sLen)
|
|
{
|
|
if (dLen > 0 && sLen > 0 && dLen >= sLen) {
|
|
int sIdx, dIdx;
|
|
word16 carry = 0;
|
|
|
|
dIdx = (int)dLen - 1;
|
|
for (sIdx = (int)sLen - 1; sIdx >= 0; sIdx--) {
|
|
carry += (word16)(d[dIdx] + s[sIdx]);
|
|
d[dIdx] = (byte)carry;
|
|
carry >>= 8;
|
|
dIdx--;
|
|
}
|
|
|
|
for (; dIdx >= 0; dIdx--) {
|
|
carry += (word16)d[dIdx];
|
|
d[dIdx] = (byte)carry;
|
|
carry >>= 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS, DRBG_NEED_RESEED, or DRBG_FAILURE */
|
|
static int Hash_DRBG_Generate(DRBG_internal* drbg, byte* out, word32 outSz)
|
|
{
|
|
int ret;
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256* sha = &drbg->sha256;
|
|
#else
|
|
wc_Sha256 sha[1];
|
|
#endif
|
|
byte type;
|
|
word32 reseedCtr;
|
|
|
|
if (drbg == NULL) {
|
|
return DRBG_FAILURE;
|
|
}
|
|
|
|
if (drbg->reseedCtr == RESEED_INTERVAL) {
|
|
return DRBG_NEED_RESEED;
|
|
}
|
|
else {
|
|
#ifndef WOLFSSL_SMALL_STACK
|
|
byte digest[WC_SHA256_DIGEST_SIZE];
|
|
#else
|
|
byte* digest = (byte*)XMALLOC(WC_SHA256_DIGEST_SIZE, drbg->heap,
|
|
DYNAMIC_TYPE_DIGEST);
|
|
if (digest == NULL)
|
|
return DRBG_FAILURE;
|
|
#endif
|
|
|
|
type = drbgGenerateH;
|
|
reseedCtr = drbg->reseedCtr;
|
|
|
|
ret = Hash_gen(drbg, out, outSz, drbg->V);
|
|
if (ret == DRBG_SUCCESS) {
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(sha, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(sha);
|
|
#endif
|
|
if (ret == 0)
|
|
#endif
|
|
ret = wc_Sha256Update(sha, &type, sizeof(type));
|
|
if (ret == 0)
|
|
ret = wc_Sha256Update(sha, drbg->V, sizeof(drbg->V));
|
|
if (ret == 0)
|
|
ret = wc_Sha256Final(sha, digest);
|
|
|
|
#ifndef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(sha);
|
|
#endif
|
|
|
|
if (ret == 0) {
|
|
array_add(drbg->V, sizeof(drbg->V), digest, WC_SHA256_DIGEST_SIZE);
|
|
array_add(drbg->V, sizeof(drbg->V), drbg->C, sizeof(drbg->C));
|
|
#ifdef LITTLE_ENDIAN_ORDER
|
|
reseedCtr = ByteReverseWord32(reseedCtr);
|
|
#endif
|
|
array_add(drbg->V, sizeof(drbg->V),
|
|
(byte*)&reseedCtr, sizeof(reseedCtr));
|
|
ret = DRBG_SUCCESS;
|
|
}
|
|
drbg->reseedCtr++;
|
|
}
|
|
ForceZero(digest, WC_SHA256_DIGEST_SIZE);
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(digest, drbg->heap, DYNAMIC_TYPE_DIGEST);
|
|
#endif
|
|
}
|
|
|
|
return (ret == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_DRBG_Instantiate(DRBG_internal* drbg, const byte* seed, word32 seedSz,
|
|
const byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret = DRBG_FAILURE;
|
|
|
|
XMEMSET(drbg, 0, sizeof(DRBG_internal));
|
|
drbg->heap = heap;
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
drbg->devId = devId;
|
|
#else
|
|
(void)devId;
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
ret = wc_InitSha256_ex(&drbg->sha256, drbg->heap, drbg->devId);
|
|
#else
|
|
ret = wc_InitSha256(&drbg->sha256);
|
|
#endif
|
|
if (ret != 0)
|
|
return ret;
|
|
#endif
|
|
|
|
if (Hash_df(drbg, drbg->V, sizeof(drbg->V), drbgInitV, seed, seedSz,
|
|
nonce, nonceSz) == DRBG_SUCCESS &&
|
|
Hash_df(drbg, drbg->C, sizeof(drbg->C), drbgInitC, drbg->V,
|
|
sizeof(drbg->V), NULL, 0) == DRBG_SUCCESS) {
|
|
|
|
drbg->reseedCtr = 1;
|
|
ret = DRBG_SUCCESS;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Returns: DRBG_SUCCESS or DRBG_FAILURE */
|
|
static int Hash_DRBG_Uninstantiate(DRBG_internal* drbg)
|
|
{
|
|
word32 i;
|
|
int compareSum = 0;
|
|
byte* compareDrbg = (byte*)drbg;
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK_CACHE
|
|
wc_Sha256Free(&drbg->sha256);
|
|
#endif
|
|
|
|
ForceZero(drbg, sizeof(DRBG_internal));
|
|
|
|
for (i = 0; i < sizeof(DRBG_internal); i++) {
|
|
compareSum |= compareDrbg[i] ^ 0;
|
|
}
|
|
|
|
return (compareSum == 0) ? DRBG_SUCCESS : DRBG_FAILURE;
|
|
}
|
|
|
|
|
|
int wc_RNG_TestSeed(const byte* seed, word32 seedSz)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Check the seed for duplicate words. */
|
|
word32 seedIdx = 0;
|
|
word32 scratchSz = min(SEED_BLOCK_SZ, seedSz - SEED_BLOCK_SZ);
|
|
|
|
while (seedIdx < seedSz - SEED_BLOCK_SZ) {
|
|
if (ConstantCompare(seed + seedIdx,
|
|
seed + seedIdx + scratchSz,
|
|
(int)scratchSz) == 0) {
|
|
|
|
ret = DRBG_CONT_FAILURE;
|
|
}
|
|
seedIdx += SEED_BLOCK_SZ;
|
|
scratchSz = min(SEED_BLOCK_SZ, (seedSz - seedIdx));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif /* HAVE_HASHDRBG */
|
|
/* End NIST DRBG Code */
|
|
|
|
#ifdef HAVE_ENTROPY_MEMUSE
|
|
/* Define ENTROPY_MEMUSE_THREAD to force use of counter in a new thread.
|
|
* Only do this when high resolution timer not otherwise available.
|
|
*/
|
|
|
|
/* Number of bytes that will hold the maximum entropy bits. */
|
|
#define MAX_ENTROPY_BYTES (MAX_ENTROPY_BITS / 8)
|
|
/* Number of bits stored for one sample. */
|
|
#define ENTROPY_BITS_USED 8
|
|
|
|
/* Minimum entropy from a sample. */
|
|
#define ENTROPY_MIN 1
|
|
/* Number of extra samples to ensure full entropy. */
|
|
#define ENTROPY_EXTRA 64
|
|
/* Maximum number of bytes to sample to produce max entropy. */
|
|
#define MAX_NOISE_CNT (MAX_ENTROPY_BITS * 8 + ENTROPY_EXTRA)
|
|
|
|
/* MemUse entropy global state initialized. */
|
|
static int entropy_memuse_initialized = 0;
|
|
/* Global SHA-3 object used for conditioning entropy and creating noise. */
|
|
static wc_Sha3 entropyHash;
|
|
/* Reset the health tests. */
|
|
static void Entropy_HealthTest_Reset(void);
|
|
|
|
#if !defined(ENTROPY_MEMUSE_THREAD) && \
|
|
(defined(__x86_64__) || defined(__i386__))
|
|
/* Get the high resolution time counter.
|
|
*
|
|
* @return 64-bit count of CPU cycles.
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
unsigned int lo_c, hi_c;
|
|
__asm__ __volatile__ (
|
|
"rdtsc"
|
|
: "=a"(lo_c), "=d"(hi_c) /* out */
|
|
: "a"(0) /* in */
|
|
: "%ebx", "%ecx"); /* clobber */
|
|
return ((word64)lo_c) | (((word64)hi_c) << 32);
|
|
}
|
|
#elif !defined(ENTROPY_MEMUSE_THREAD) && \
|
|
(defined(__APPLE__) || defined(__MACH__))
|
|
/* Get the high resolution time counter.
|
|
*
|
|
* @return 64-bit time in nanoseconds.
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
return mach_absolute_time();
|
|
}
|
|
#elif !defined(ENTROPY_MEMUSE_THREAD) && defined(__aarch64__)
|
|
/* Get the high resolution time counter.
|
|
*
|
|
* @return 64-bit timer count.
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
word64 cnt;
|
|
__asm__ __volatile__ (
|
|
"mrs %[cnt], cntvct_el0"
|
|
: [cnt] "=r"(cnt)
|
|
:
|
|
:
|
|
);
|
|
return cnt;
|
|
}
|
|
#elif !defined(ENTROPY_MEMUSE_THREAD) && defined(__MICROBLAZE__)
|
|
|
|
#define LPD_SCNTR_BASE_ADDRESS 0xFF250000
|
|
|
|
/* Get the high resolution time counter.
|
|
* Collect ticks from LPD_SCNTR
|
|
* @return 64-bit tick count.
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
word64 cnt;
|
|
word32 *ptr;
|
|
|
|
ptr = (word32*)LPD_SCNTR_BASE_ADDRESS;
|
|
cnt = *(ptr+1);
|
|
cnt = cnt << 32;
|
|
cnt |= *ptr;
|
|
|
|
return cnt;
|
|
}
|
|
#elif !defined(ENTROPY_MEMUSE_THREAD) && (_POSIX_C_SOURCE >= 199309L)
|
|
/* Get the high resolution time counter.
|
|
*
|
|
* @return 64-bit time that is the nanoseconds of current time.
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
struct timespec now;
|
|
|
|
clock_gettime(CLOCK_REALTIME, &now);
|
|
|
|
return now.tv_nsec;
|
|
}
|
|
#elif defined(_WIN32) /* USE_WINDOWS_API */
|
|
/* Get the high resolution time counter.
|
|
*
|
|
* @return 64-bit timer
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
LARGE_INTEGER count;
|
|
QueryPerformanceCounter(&count);
|
|
return (word64)(count.QuadPart);
|
|
}
|
|
#elif defined(WOLFSSL_THREAD_NO_JOIN)
|
|
|
|
/* Start and stop thread that counts as a proxy for time counter. */
|
|
#define ENTROPY_MEMUSE_THREADED
|
|
|
|
/* Data for entropy thread. */
|
|
typedef struct ENTROPY_THREAD_DATA {
|
|
/* Current counter - proxy for time. */
|
|
word64 counter;
|
|
/* Whether to stop thread. */
|
|
int stop;
|
|
} ENTROPY_THREAD_DATA;
|
|
|
|
/* Track whether entropy thread has been started already. */
|
|
static int entropy_thread_started = 0;
|
|
/* Data for thread to update/observer. */
|
|
static volatile ENTROPY_THREAD_DATA entropy_thread_data = { 0, 0 };
|
|
|
|
/* Get the high resolution time counter. Counter incremented in thread.
|
|
*
|
|
* @return 64-bit counter.
|
|
*/
|
|
static WC_INLINE word64 Entropy_TimeHiRes(void)
|
|
{
|
|
/* Return counter update in thread. */
|
|
return entropy_thread_data.counter;
|
|
}
|
|
|
|
/* Thread that increments counter while not told to stop.
|
|
*
|
|
* @param [in,out] args Entropy data including: counter and stop flag.
|
|
* @return NULL always.
|
|
*/
|
|
static THREAD_RETURN WOLFSSL_THREAD_NO_JOIN Entropy_IncCounter(void* args)
|
|
{
|
|
(void)args;
|
|
|
|
/* Keep going until caller tells us to stop and exit. */
|
|
while (!entropy_thread_data.stop) {
|
|
/* Increment counter acting as high resolution timer. */
|
|
entropy_thread_data.counter++;
|
|
}
|
|
|
|
#ifdef WOLFSSL_DEBUG_ENTROPY_MEMUSE
|
|
fprintf(stderr, "EXITING ENTROPY COUNTER THREAD\n");
|
|
#endif
|
|
/* Exit from thread. */
|
|
WOLFSSL_RETURN_FROM_THREAD(0);
|
|
}
|
|
|
|
/* Start a thread that increments counter if not one already.
|
|
*
|
|
* Won't start a new thread if one already running.
|
|
* Waits for thread to start by waiting for counter to have incremented.
|
|
*
|
|
* @return 0 on success.
|
|
* @return Negative on failure.
|
|
*/
|
|
static int Entropy_StartThread(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Only continue if we haven't started a thread. */
|
|
if (!entropy_thread_started) {
|
|
/* Get counter before starting thread. */
|
|
word64 start_counter = entropy_thread_data.counter;
|
|
|
|
/* In case of restarting thread, set stop indicator to false. */
|
|
entropy_thread_data.stop = 0;
|
|
|
|
#ifdef WOLFSSL_DEBUG_ENTROPY_MEMUSE
|
|
fprintf(stderr, "STARTING ENTROPY COUNTER THREAD\n");
|
|
#endif
|
|
/* Create a thread that increments the counter in the data. */
|
|
/* Thread resources to be disposed of. */
|
|
ret = wolfSSL_NewThreadNoJoin(Entropy_IncCounter, NULL);
|
|
if (ret == 0) {
|
|
/* Wait for the counter to increase indicating thread started. */
|
|
while (entropy_thread_data.counter == start_counter) {
|
|
sched_yield();
|
|
}
|
|
}
|
|
|
|
entropy_thread_started = (ret == 0);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Tell thread to stop and wait for it to complete.
|
|
*
|
|
* Called by wolfCrypt_Cleanup().
|
|
*/
|
|
static void Entropy_StopThread(void)
|
|
{
|
|
/* Only stop a thread if one is running. */
|
|
if (entropy_thread_started) {
|
|
/* Tell thread to stop. */
|
|
entropy_thread_data.stop = 1;
|
|
/* Stopped thread so no thread started anymore. */
|
|
entropy_thread_started = 0;
|
|
}
|
|
}
|
|
/* end if defined(HAVE_PTHREAD) */
|
|
|
|
#else
|
|
|
|
#error "No high precision time available for MemUse Entropy."
|
|
|
|
#endif
|
|
|
|
#ifndef ENTROPY_NUM_WORDS_BITS
|
|
/* Number of bits to count of 64-bit words in state. */
|
|
#define ENTROPY_NUM_WORDS_BITS 14
|
|
#endif
|
|
|
|
/* Floor of 8 yields pool of 256x 64-bit word samples
|
|
* 9 -> 512x 64-bit word samples
|
|
* 10 -> 1,024x 64-bit word samples
|
|
* 11 -> 2,048x 64-bit word samples
|
|
* 12 -> 4,096x 64-bit word samples
|
|
* 13 -> 8,192x 64-bit word samples
|
|
* 14 -> 16,384x 64-bit word samples
|
|
* 15 -> 32,768x 64-bit word samples
|
|
* ... doubling every time up to a maximum of:
|
|
* 30 -> 1,073,741,824x 64-bit word samples
|
|
* 1 billion+ samples should be more then sufficient for any use-case
|
|
*/
|
|
#if ENTROPY_NUM_WORDS_BITS < 8
|
|
#error "ENTROPY_NUM_WORDS_BITS must be 8 or more"
|
|
#elif ENTROPY_NUM_WORDS_BITS > 30
|
|
#error "ENTROPY_NUM_WORDS_BITS must be less than 31"
|
|
#endif
|
|
/* Number of 64-bit words in state. */
|
|
#define ENTROPY_NUM_WORDS (1 << ENTROPY_NUM_WORDS_BITS)
|
|
|
|
/* Size of one block of 64-bit words. */
|
|
#define ENTROPY_BLOCK_SZ (ENTROPY_NUM_WORDS_BITS - 8)
|
|
|
|
#ifndef ENTROPY_NUM_UPDATES
|
|
/* Number of times to update random blocks.
|
|
* Less than 2^ENTROPY_BLOCK_SZ (default: 2^6 = 64).
|
|
* Maximize value to maximize entropy per sample.
|
|
* Limit value to ensure entropy is collected in a timely manner.
|
|
*/
|
|
#define ENTROPY_NUM_UPDATES 18
|
|
/* Upper round of log2(ENTROPY_NUM_UPDATES) */
|
|
#define ENTROPY_NUM_UPDATES_BITS 5
|
|
#elif !defined(ENTROPY_NUM_UPDATES_BITS)
|
|
#define ENTROPY_NUM_UPDATES_BITS ENTROPY_BLOCK_SZ
|
|
#endif
|
|
/* Amount to shift offset to get better coverage of a block */
|
|
#define ENTROPY_OFFSET_SHIFTING \
|
|
(ENTROPY_BLOCK_SZ / ENTROPY_NUM_UPDATES_BITS)
|
|
|
|
#ifndef ENTROPY_NUM_64BIT_WORDS
|
|
/* Number of 64-bit words to update - 32. */
|
|
#define ENTROPY_NUM_64BIT_WORDS WC_SHA3_256_DIGEST_SIZE
|
|
#elif ENTROPY_NUM_64BIT_WORDS > WC_SHA3_256_DIGEST_SIZE
|
|
#error "ENTROPY_NUM_64BIT_WORDS must be <= SHA3-256 digest size in bytes"
|
|
#endif
|
|
|
|
/* State to update that is multiple cache lines long. */
|
|
static word64 entropy_state[ENTROPY_NUM_WORDS] = {0};
|
|
|
|
/* Using memory will take different amount of times depending on the CPU's
|
|
* caches and business.
|
|
*/
|
|
static void Entropy_MemUse(void)
|
|
{
|
|
int i;
|
|
static byte d[WC_SHA3_256_DIGEST_SIZE];
|
|
int j;
|
|
|
|
for (j = 0; j < ENTROPY_NUM_UPDATES; j++) {
|
|
/* Hash the first 32 64-bit words of state. */
|
|
wc_Sha3_256_Update(&entropyHash, (byte*)entropy_state,
|
|
sizeof(*entropy_state) * ENTROPY_NUM_64BIT_WORDS);
|
|
/* Get pseudo-random indices. */
|
|
wc_Sha3_256_Final(&entropyHash, d);
|
|
|
|
for (i = 0; i < ENTROPY_NUM_64BIT_WORDS; i++) {
|
|
/* Choose a 64-bit word from a pseudo-random block.*/
|
|
int idx = ((int)d[i] << ENTROPY_BLOCK_SZ) +
|
|
(j << ENTROPY_OFFSET_SHIFTING);
|
|
/* Update a pseudo-random 64-bit word with a pseudo-random value. */
|
|
entropy_state[idx] += Entropy_TimeHiRes();
|
|
/* Ensure part of state that is hashed is updated. */
|
|
entropy_state[i] += entropy_state[idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Last time entropy sample was gathered. */
|
|
static word64 entropy_last_time = 0;
|
|
|
|
/* Get a sample of noise.
|
|
*
|
|
* Value is time taken to use memory.
|
|
*
|
|
* Called to test raw entropy.
|
|
*
|
|
* @return 64-bit value that is the noise.
|
|
*/
|
|
static word64 Entropy_GetSample(void)
|
|
{
|
|
word64 now;
|
|
word64 ret;
|
|
|
|
/* Use memory such that it will take an unpredictable amount of time. */
|
|
Entropy_MemUse();
|
|
|
|
/* Get the time now to subtract from previous end time. */
|
|
now = Entropy_TimeHiRes();
|
|
/* Calculate time diff since last sampling. */
|
|
ret = now - entropy_last_time;
|
|
/* Store last time. */
|
|
entropy_last_time = now;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Get as many samples of noise as required.
|
|
*
|
|
* One sample is one byte.
|
|
*
|
|
* @param [out] noise Buffer to hold samples.
|
|
* @param [in] samples Number of one byte samples to get.
|
|
*/
|
|
static void Entropy_GetNoise(unsigned char* noise, int samples)
|
|
{
|
|
int i;
|
|
|
|
/* Do it once to get things going. */
|
|
Entropy_MemUse();
|
|
|
|
/* Get as many samples as required. */
|
|
for (i = 0; i < samples; i++) {
|
|
noise[i] = (byte)Entropy_GetSample();
|
|
}
|
|
}
|
|
|
|
/* Generate raw entropy for performing assessment.
|
|
*
|
|
* @param [out] raw Buffer to hold raw entropy data.
|
|
* @param [in] cnt Number of bytes of raw entropy to get.
|
|
* @return 0 on success.
|
|
* @return Negative when creating a thread fails - when no high resolution
|
|
* clock available.
|
|
*/
|
|
int wc_Entropy_GetRawEntropy(unsigned char* raw, int cnt)
|
|
{
|
|
int ret = 0;
|
|
|
|
#ifdef ENTROPY_MEMUSE_THREADED
|
|
/* Start the counter thread as a proxy for time counter. */
|
|
ret = Entropy_StartThread();
|
|
if (ret == 0)
|
|
#endif
|
|
{
|
|
Entropy_GetNoise(raw, cnt);
|
|
}
|
|
#ifdef ENTROPY_MEMUSE_THREADED
|
|
/* Stop the counter thread to avoid thrashing the system. */
|
|
Entropy_StopThread();
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if ENTROPY_MIN == 1
|
|
/* SP800-90b 4.4.1 - Repetition Test
|
|
* C = 1 + upper(-log2(alpha) / H)
|
|
* When alpha = 2^-30 and H = 1,
|
|
* C = 1 + upper(30 / 1) = 31
|
|
*/
|
|
#define REP_CUTOFF 31
|
|
#else
|
|
#error "Minimum entropy not defined to a recognized value."
|
|
#endif
|
|
|
|
/* Have valid previous sample for repetition test. */
|
|
static int rep_have_prev = 0;
|
|
/* Previous sample value. */
|
|
static byte rep_prev_noise;
|
|
|
|
static void Entropy_HealthTest_Repetition_Reset(void)
|
|
{
|
|
/* No previous stored. */
|
|
rep_have_prev = 0;
|
|
/* Clear previous. */
|
|
rep_prev_noise = 0;
|
|
}
|
|
|
|
/* Test sample value with repetition test.
|
|
*
|
|
* @param [in] noise Sample to test.
|
|
* @return 0 on success.
|
|
* @return ENTROPY_RT_E on failure.
|
|
*/
|
|
static int Entropy_HealthTest_Repetition(byte noise)
|
|
{
|
|
int ret = 0;
|
|
/* Number of times previous value has been seen continuously. */
|
|
static int rep_cnt = 0;
|
|
|
|
/* If we don't have a previous then store this one for next time. */
|
|
if (!rep_have_prev) {
|
|
rep_prev_noise = noise;
|
|
rep_have_prev = 1;
|
|
}
|
|
/* Check whether this sample matches last. */
|
|
else if (noise == rep_prev_noise) {
|
|
/* Update count of repetitions. */
|
|
rep_cnt++;
|
|
/* Fail if we reach cutoff. */
|
|
if (rep_cnt >= REP_CUTOFF) {
|
|
#ifdef WOLFSSL_DEBUG_ENTROPY_MEMUSE
|
|
fprintf(stderr, "REPETITION FAILED: %d\n", noise);
|
|
#endif
|
|
Entropy_HealthTest_Repetition_Reset();
|
|
ret = ENTROPY_RT_E;
|
|
}
|
|
}
|
|
else {
|
|
/* Cache new previous and seen one so far. */
|
|
rep_prev_noise = noise;
|
|
rep_cnt = 1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* SP800-90b 4.4.2 - Adaptive Proportion Test
|
|
* Para 2
|
|
* ... The window size W is selected based on the alphabet size ... 512 if
|
|
* the noise source is not binary ...
|
|
*/
|
|
#define PROP_WINDOW_SIZE 512
|
|
#if ENTROPY_MIN == 1
|
|
/* SP800-90b 4.4.2 - Adaptive Proportion Test
|
|
* Note 10
|
|
* C = 1 + CRITBINOM(W, power(2,( -H)),1-alpha)
|
|
* alpa = 2^-30 = POWER(2,-30), H = 1, W = 512
|
|
* C = 1 + CRITBINOM(512, 0.5, 1-POWER(2,-30)) = 1 + 324 = 325
|
|
*/
|
|
#define PROP_CUTOFF 325
|
|
#else
|
|
#error "Minimum entropy not defined to a recognized value."
|
|
#endif
|
|
|
|
/* Total number of samples storef for Adaptive proportion test.
|
|
* Need the next 512 samples to compare this this one.
|
|
*/
|
|
static word16 prop_total = 0;
|
|
/* Index of first sample. */
|
|
static word16 prop_first = 0;
|
|
/* Index to put next sample in. */
|
|
static word16 prop_last = 0;
|
|
/* Count of each value seen in queue. */
|
|
static word16 prop_cnt[1 << ENTROPY_BITS_USED] = { 0 };
|
|
/* Circular queue of samples. */
|
|
static word16 prop_samples[PROP_WINDOW_SIZE];
|
|
|
|
/* Resets the data for the Adaptive Proportion Test.
|
|
*/
|
|
static void Entropy_HealthTest_Proportion_Reset(void)
|
|
{
|
|
/* Clear out samples. */
|
|
XMEMSET(prop_samples, 0, sizeof(prop_samples));
|
|
/* Clear out counts. */
|
|
XMEMSET(prop_cnt, 0, sizeof(prop_cnt));
|
|
/* Clear stored count. */
|
|
prop_total = 0;
|
|
/* Reset first and last index for samples. */
|
|
prop_first = 0;
|
|
prop_last = 0;
|
|
}
|
|
|
|
/* Add sample to Adaptive Proportion test.
|
|
*
|
|
* SP800-90b 4.4.2 - Adaptive Proportion Test
|
|
*
|
|
* Sample is accumulated into buffer until required successive values seen.
|
|
*
|
|
* @param [in] noise Sample to test.
|
|
* @return 0 on success.
|
|
* @return ENTROPY_APT_E on failure.
|
|
*/
|
|
static int Entropy_HealthTest_Proportion(byte noise)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Need at least 512-1 samples to test with. */
|
|
if (prop_total < PROP_WINDOW_SIZE - 1) {
|
|
/* Store sample at last position in circular queue. */
|
|
prop_samples[prop_last++] = noise;
|
|
/* Update count of seen value based on new sample. */
|
|
prop_cnt[noise]++;
|
|
/* Update count of store values. */
|
|
prop_total++;
|
|
}
|
|
else {
|
|
/* Get first value in queue - value to test. */
|
|
byte val = (byte)prop_samples[prop_first];
|
|
/* Store new sample in queue. */
|
|
prop_samples[prop_last] = noise;
|
|
/* Update first index now that we have removed in from the queue. */
|
|
prop_first = (prop_first + 1) % PROP_WINDOW_SIZE;
|
|
/* Update last index now that we have added new sample to queue. */
|
|
prop_last = (prop_last + 1) % PROP_WINDOW_SIZE;
|
|
/* Removed sample from queue - remove count. */
|
|
prop_cnt[val]--;
|
|
/* Added sample to queue - add count. */
|
|
prop_cnt[noise]++;
|
|
/* Check whether removed value has too many repetitions in queue. */
|
|
if (prop_cnt[val] >= PROP_CUTOFF) {
|
|
#ifdef WOLFSSL_DEBUG_ENTROPY_MEMUSE
|
|
fprintf(stderr, "PROPORTION FAILED: %d %d\n", val, prop_cnt[val]);
|
|
#endif
|
|
Entropy_HealthTest_Proportion_Reset();
|
|
/* Error code returned. */
|
|
ret = ENTROPY_APT_E;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* SP800-90b 4.3 - Requirements for Health Tests
|
|
* 1.4: The entropy source's startup tests shall run the continuous health
|
|
* tests over at least 1024 consecutive samples.
|
|
*
|
|
* Adaptive Proportion Test requires a number of samples to compared too.
|
|
*/
|
|
#define ENTROPY_INITIAL_COUNT (1024 + PROP_WINDOW_SIZE)
|
|
|
|
/* Perform startup health testing.
|
|
*
|
|
* Fill adaptive proportion test buffer and then do 1024 samples.
|
|
* Perform repetition test on all samples expect last.
|
|
*
|
|
* Discards samples from health tests on failure.
|
|
*
|
|
* @return 0 on success.
|
|
* @return ENTROPY_RT_E or ENTROPY_APT_E on failure.
|
|
*/
|
|
static int Entropy_HealthTest_Startup(void)
|
|
{
|
|
int ret = 0;
|
|
byte initial[ENTROPY_INITIAL_COUNT];
|
|
int i;
|
|
|
|
#ifdef WOLFSSL_DEBUG_ENTROPY_MEMUSE
|
|
fprintf(stderr, "STARTUP HEALTH TEST\n");
|
|
#endif
|
|
/* Fill initial sample buffer with noise. */
|
|
Entropy_GetNoise(initial, ENTROPY_INITIAL_COUNT);
|
|
/* Health check initial noise. */
|
|
for (i = 0; (ret == 0) && (i < ENTROPY_INITIAL_COUNT); i++) {
|
|
ret = Entropy_HealthTest_Repetition(initial[i]);
|
|
if (ret == 0) {
|
|
ret = Entropy_HealthTest_Proportion(initial[i]);
|
|
}
|
|
}
|
|
|
|
if (ret != 0) {
|
|
/* Failing test only resets its own data. */
|
|
Entropy_HealthTest_Reset();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Condition raw entropy noise using SHA-3-256.
|
|
*
|
|
* Put noise into a hash function: SHA-3-256.
|
|
* Add the current time counter to help with uniqueness.
|
|
*
|
|
* @param [out] output Buffer to conditioned data.
|
|
* @param [in] len Number of bytes to put into output buffer.
|
|
* @param [in] noise Buffer with raw noise data.
|
|
* @param [in] noise_len Length of noise data in bytes.
|
|
* @return 0 on success.
|
|
* @return Negative on failure.
|
|
*/
|
|
static int Entropy_Condition(byte* output, word32 len, byte* noise,
|
|
word32 noise_len)
|
|
{
|
|
int ret;
|
|
|
|
/* Add noise to initialized hash. */
|
|
ret = wc_Sha3_256_Update(&entropyHash, noise, noise_len);
|
|
if (ret == 0) {
|
|
word64 now = Entropy_TimeHiRes();
|
|
/* Add time now counter. */
|
|
ret = wc_Sha3_256_Update(&entropyHash, (byte*)&now, sizeof(now));
|
|
}
|
|
if (ret == 0) {
|
|
/* Finalize into output buffer. */
|
|
if (len == WC_SHA3_256_DIGEST_SIZE) {
|
|
ret = wc_Sha3_256_Final(&entropyHash, output);
|
|
}
|
|
else {
|
|
byte hash[WC_SHA3_256_DIGEST_SIZE];
|
|
|
|
ret = wc_Sha3_256_Final(&entropyHash, hash);
|
|
if (ret == 0) {
|
|
XMEMCPY(output, hash, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Mutex to prevent multiple callers requesting entropy operations at the
|
|
* same time.
|
|
*/
|
|
static wolfSSL_Mutex entropy_mutex WOLFSSL_MUTEX_INITIALIZER_CLAUSE(entropy_mutex);
|
|
|
|
/* Get entropy of specified strength.
|
|
*
|
|
* SP800-90b 2.3.1 - GetEntropy: An Interface to the Entropy Source
|
|
*
|
|
* In threaded environment, only one thread at a time can get entropy.
|
|
*
|
|
* @param [in] bits Number of entropy bits. 256 is max value.
|
|
* @param [out] entropy Buffer to hold entropy.
|
|
* @param [in] len Length of data to put into buffer in bytes.
|
|
* @return 0 on success.
|
|
* @return ENTROPY_RT_E or ENTROPY_APT_E on failure.
|
|
* @return BAD_MUTEX_E when unable to lock mutex.
|
|
*/
|
|
int wc_Entropy_Get(int bits, unsigned char* entropy, word32 len)
|
|
{
|
|
int ret = 0;
|
|
byte noise[MAX_NOISE_CNT];
|
|
/* Noise length is the number of 8 byte samples required to get the bits of
|
|
* entropy requested. */
|
|
int noise_len = (bits + ENTROPY_EXTRA) / ENTROPY_MIN;
|
|
|
|
/* Lock the mutex as collection uses globals. */
|
|
if (wc_LockMutex(&entropy_mutex) != 0) {
|
|
ret = BAD_MUTEX_E;
|
|
}
|
|
|
|
#ifdef ENTROPY_MEMUSE_THREADED
|
|
if (ret == 0) {
|
|
/* Start the counter thread as a proxy for time counter. */
|
|
ret = Entropy_StartThread();
|
|
}
|
|
#endif
|
|
|
|
/* Check we have had a startup health check pass. */
|
|
if ((ret == 0) && ((prop_total == 0) || (!rep_have_prev))) {
|
|
/* Try again as check failed. */
|
|
ret = Entropy_HealthTest_Startup();
|
|
}
|
|
|
|
/* Keep putting data into buffer until full. */
|
|
while ((ret == 0) && (len > 0)) {
|
|
int i;
|
|
word32 entropy_len = WC_SHA3_256_DIGEST_SIZE;
|
|
|
|
/* Output 32 bytes at a time unless buffer has fewer bytes remaining. */
|
|
if (len < entropy_len) {
|
|
entropy_len = len;
|
|
}
|
|
|
|
/* Get raw entropy noise. */
|
|
Entropy_GetNoise(noise, noise_len);
|
|
/* Health check each noise value. */
|
|
for (i = 0; (ret == 0) && (i < noise_len); i++) {
|
|
ret = Entropy_HealthTest_Repetition(noise[i]);
|
|
if (ret == 0) {
|
|
ret = Entropy_HealthTest_Proportion(noise[i]);
|
|
}
|
|
}
|
|
|
|
if (ret == 0) {
|
|
/* Condition noise value down to 32-bytes or less. */
|
|
ret = Entropy_Condition(entropy, entropy_len, noise, noise_len);
|
|
}
|
|
if (ret == 0) {
|
|
/* Update buffer pointer and count of bytes left to generate. */
|
|
entropy += entropy_len;
|
|
len -= entropy_len;
|
|
}
|
|
}
|
|
|
|
#ifdef ENTROPY_MEMUSE_THREADED
|
|
/* Stop the counter thread to avoid thrashing the system. */
|
|
Entropy_StopThread();
|
|
#endif
|
|
|
|
if (ret != BAD_MUTEX_E) {
|
|
/* Unlock mutex now we are done. */
|
|
wc_UnLockMutex(&entropy_mutex);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Performs on-demand testing.
|
|
*
|
|
* In threaded environment, locks out other threads from getting entropy.
|
|
*
|
|
* @return 0 on success.
|
|
* @return ENTROPY_RT_E or ENTROPY_APT_E on failure.
|
|
* @return BAD_MUTEX_E when unable to lock mutex.
|
|
*/
|
|
int wc_Entropy_OnDemandTest()
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Lock the mutex as we don't want collecting to happen during testing. */
|
|
if (wc_LockMutex(&entropy_mutex) != 0) {
|
|
ret = BAD_MUTEX_E;
|
|
}
|
|
|
|
if (ret == 0) {
|
|
/* Reset health test state for startup test. */
|
|
Entropy_HealthTest_Reset();
|
|
/* Perform startup tests. */
|
|
ret = Entropy_HealthTest_Startup();
|
|
}
|
|
|
|
if (ret != BAD_MUTEX_E) {
|
|
/* Unlock mutex now we are done. */
|
|
wc_UnLockMutex(&entropy_mutex);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Initialize global state for MemUse Entropy and do startup health test.
|
|
*
|
|
* @return 0 on success.
|
|
* @return Negative on failure.
|
|
*/
|
|
int Entropy_Init()
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Check whether initialization has succeeded before. */
|
|
if (!entropy_memuse_initialized) {
|
|
#if !defined(SINGLE_THREADED) && !defined(WOLFSSL_MUTEX_INITIALIZER)
|
|
ret = wc_InitMutex(&entropy_mutex);
|
|
#endif
|
|
if (ret == 0) {
|
|
/* Initialize a SHA3-256 object for use in entropy operations. */
|
|
ret = wc_InitSha3_256(&entropyHash, NULL, INVALID_DEVID);
|
|
}
|
|
/* Set globals initialized. */
|
|
entropy_memuse_initialized = (ret == 0);
|
|
if (ret == 0) {
|
|
#ifdef ENTROPY_MEMUSE_THREADED
|
|
/* Start the counter thread as a proxy for time counter. */
|
|
ret = Entropy_StartThread();
|
|
if (ret == 0)
|
|
#endif
|
|
{
|
|
/* Do first startup test now. */
|
|
ret = Entropy_HealthTest_Startup();
|
|
}
|
|
#ifdef ENTROPY_MEMUSE_THREADED
|
|
/* Stop the counter thread to avoid thrashing the system. */
|
|
Entropy_StopThread();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Finalize the data associated with the MemUse Entropy source.
|
|
*/
|
|
void Entropy_Final()
|
|
{
|
|
/* Only finalize when initialized. */
|
|
if (entropy_memuse_initialized) {
|
|
/* Dispose of the SHA3-356 hash object. */
|
|
wc_Sha3_256_Free(&entropyHash);
|
|
#if !defined(SINGLE_THREADED) && !defined(WOLFSSL_MUTEX_INITIALIZER)
|
|
wc_FreeMutex(&entropy_mutex);
|
|
#endif
|
|
/* Clear health test data. */
|
|
Entropy_HealthTest_Reset();
|
|
/* No longer initialized. */
|
|
entropy_memuse_initialized = 0;
|
|
}
|
|
}
|
|
|
|
/* Reset the data associated with the MemUse Entropy health tests.
|
|
*/
|
|
static void Entropy_HealthTest_Reset(void)
|
|
{
|
|
Entropy_HealthTest_Repetition_Reset();
|
|
Entropy_HealthTest_Proportion_Reset();
|
|
}
|
|
|
|
#endif /* HAVE_ENTROPY_MEMUSE */
|
|
|
|
static int _InitRng(WC_RNG* rng, byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret = 0;
|
|
#ifdef HAVE_HASHDRBG
|
|
word32 seedSz = SEED_SZ + SEED_BLOCK_SZ;
|
|
#endif
|
|
|
|
(void)nonce;
|
|
(void)nonceSz;
|
|
|
|
if (rng == NULL)
|
|
return BAD_FUNC_ARG;
|
|
if (nonce == NULL && nonceSz != 0)
|
|
return BAD_FUNC_ARG;
|
|
|
|
#ifdef WOLFSSL_HEAP_TEST
|
|
rng->heap = (void*)WOLFSSL_HEAP_TEST;
|
|
(void)heap;
|
|
#else
|
|
rng->heap = heap;
|
|
#endif
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
rng->devId = devId;
|
|
#if defined(WOLF_CRYPTO_CB)
|
|
rng->seed.devId = devId;
|
|
#endif
|
|
#else
|
|
(void)devId;
|
|
#endif
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
/* init the DBRG to known values */
|
|
rng->drbg = NULL;
|
|
rng->status = DRBG_NOT_INIT;
|
|
#endif
|
|
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_INTEL_RDRAND) || \
|
|
defined(HAVE_AMD_RDSEED)
|
|
/* init the intel RD seed and/or rand */
|
|
wc_InitRng_IntelRD();
|
|
#endif
|
|
|
|
/* configure async RNG source if available */
|
|
#ifdef WOLFSSL_ASYNC_CRYPT
|
|
ret = wolfAsync_DevCtxInit(&rng->asyncDev, WOLFSSL_ASYNC_MARKER_RNG,
|
|
rng->heap, rng->devId);
|
|
if (ret != 0) {
|
|
#ifdef HAVE_HASHDRBG
|
|
rng->status = DRBG_OK;
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
/* if CPU supports RDRAND, use it directly and by-pass DRBG init */
|
|
if (IS_INTEL_RDRAND(intel_flags)) {
|
|
#ifdef HAVE_HASHDRBG
|
|
rng->status = DRBG_OK;
|
|
#endif
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_XILINX_CRYPT_VERSAL
|
|
ret = wc_VersalTrngInit(nonce, nonceSz);
|
|
if (ret) {
|
|
#ifdef HAVE_HASHDRBG
|
|
rng->status = DRBG_OK;
|
|
#endif
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CUSTOM_RAND_GENERATE_BLOCK
|
|
ret = 0; /* success */
|
|
#else
|
|
|
|
/* not CUSTOM_RAND_GENERATE_BLOCK follows */
|
|
#ifdef HAVE_HASHDRBG
|
|
if (nonceSz == 0) {
|
|
seedSz = MAX_SEED_SZ;
|
|
}
|
|
|
|
ret = wc_RNG_HealthTestLocal(0, rng->heap, devId);
|
|
if (ret != 0) {
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("wc_RNG_HealthTestLocal failed err = %d", ret);
|
|
#endif
|
|
ret = DRBG_CONT_FAILURE;
|
|
}
|
|
else {
|
|
#ifndef WOLFSSL_SMALL_STACK
|
|
byte seed[MAX_SEED_SZ];
|
|
#else
|
|
byte* seed = (byte*)XMALLOC(MAX_SEED_SZ, rng->heap,
|
|
DYNAMIC_TYPE_SEED);
|
|
if (seed == NULL)
|
|
return MEMORY_E;
|
|
#endif
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
rng->drbg =
|
|
(struct DRBG*)XMALLOC(sizeof(DRBG_internal), rng->heap,
|
|
DYNAMIC_TYPE_RNG);
|
|
if (rng->drbg == NULL) {
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("_InitRng XMALLOC failed to allocate %d bytes",
|
|
sizeof(DRBG_internal));
|
|
#endif
|
|
ret = MEMORY_E;
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
#else
|
|
rng->drbg = (struct DRBG*)&rng->drbg_data;
|
|
#endif /* WOLFSSL_NO_MALLOC or WOLFSSL_STATIC_MEMORY */
|
|
|
|
if (ret != 0) {
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("_InitRng failed. err = ", ret);
|
|
#endif
|
|
}
|
|
else {
|
|
#ifdef WC_RNG_SEED_CB
|
|
if (seedCb == NULL) {
|
|
ret = DRBG_NO_SEED_CB;
|
|
}
|
|
else {
|
|
ret = seedCb(&rng->seed, seed, seedSz);
|
|
if (ret != 0) {
|
|
ret = DRBG_FAILURE;
|
|
}
|
|
}
|
|
#else
|
|
ret = wc_GenerateSeed(&rng->seed, seed, seedSz);
|
|
#endif /* WC_RNG_SEED_CB */
|
|
if (ret == 0)
|
|
ret = wc_RNG_TestSeed(seed, seedSz);
|
|
else {
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("wc_RNG_TestSeed failed... %d", ret);
|
|
#endif
|
|
ret = DRBG_FAILURE;
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = Hash_DRBG_Instantiate((DRBG_internal *)rng->drbg,
|
|
seed + SEED_BLOCK_SZ, seedSz - SEED_BLOCK_SZ,
|
|
nonce, nonceSz, rng->heap, devId);
|
|
|
|
if (ret != DRBG_SUCCESS) {
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
XFREE(rng->drbg, rng->heap, DYNAMIC_TYPE_RNG);
|
|
#endif
|
|
rng->drbg = NULL;
|
|
}
|
|
} /* ret == 0 */
|
|
|
|
ForceZero(seed, seedSz);
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(seed, rng->heap, DYNAMIC_TYPE_SEED);
|
|
#endif
|
|
} /* else swc_RNG_HealthTestLocal was successful */
|
|
|
|
if (ret == DRBG_SUCCESS) {
|
|
#ifdef WOLFSSL_CHECK_MEM_ZERO
|
|
#ifdef HAVE_HASHDRBG
|
|
struct DRBG_internal* drbg = (struct DRBG_internal*)rng->drbg;
|
|
wc_MemZero_Add("DRBG V", &drbg->V, sizeof(drbg->V));
|
|
wc_MemZero_Add("DRBG C", &drbg->C, sizeof(drbg->C));
|
|
#endif
|
|
#endif
|
|
|
|
rng->status = DRBG_OK;
|
|
ret = 0;
|
|
}
|
|
else if (ret == DRBG_CONT_FAILURE) {
|
|
rng->status = DRBG_CONT_FAILED;
|
|
ret = DRBG_CONT_FIPS_E;
|
|
}
|
|
else if (ret == DRBG_FAILURE) {
|
|
rng->status = DRBG_FAILED;
|
|
ret = RNG_FAILURE_E;
|
|
}
|
|
else {
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
#endif /* HAVE_HASHDRBG */
|
|
#endif /* CUSTOM_RAND_GENERATE_BLOCK */
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
WOLFSSL_ABI
|
|
WC_RNG* wc_rng_new(byte* nonce, word32 nonceSz, void* heap)
|
|
{
|
|
WC_RNG* rng;
|
|
|
|
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), heap, DYNAMIC_TYPE_RNG);
|
|
if (rng) {
|
|
int error = _InitRng(rng, nonce, nonceSz, heap, INVALID_DEVID) != 0;
|
|
if (error) {
|
|
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
|
|
rng = NULL;
|
|
}
|
|
}
|
|
|
|
return rng;
|
|
}
|
|
|
|
|
|
int wc_rng_new_ex(WC_RNG **rng, byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret;
|
|
|
|
*rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), heap, DYNAMIC_TYPE_RNG);
|
|
if (*rng == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
|
|
ret = _InitRng(*rng, nonce, nonceSz, heap, devId);
|
|
if (ret != 0) {
|
|
XFREE(*rng, heap, DYNAMIC_TYPE_RNG);
|
|
*rng = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
WOLFSSL_ABI
|
|
void wc_rng_free(WC_RNG* rng)
|
|
{
|
|
if (rng) {
|
|
void* heap = rng->heap;
|
|
|
|
wc_FreeRng(rng);
|
|
ForceZero(rng, sizeof(WC_RNG));
|
|
XFREE(rng, heap, DYNAMIC_TYPE_RNG);
|
|
(void)heap;
|
|
}
|
|
}
|
|
|
|
WOLFSSL_ABI
|
|
int wc_InitRng(WC_RNG* rng)
|
|
{
|
|
return _InitRng(rng, NULL, 0, NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
int wc_InitRng_ex(WC_RNG* rng, void* heap, int devId)
|
|
{
|
|
return _InitRng(rng, NULL, 0, heap, devId);
|
|
}
|
|
|
|
|
|
int wc_InitRngNonce(WC_RNG* rng, byte* nonce, word32 nonceSz)
|
|
{
|
|
return _InitRng(rng, nonce, nonceSz, NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
int wc_InitRngNonce_ex(WC_RNG* rng, byte* nonce, word32 nonceSz,
|
|
void* heap, int devId)
|
|
{
|
|
return _InitRng(rng, nonce, nonceSz, heap, devId);
|
|
}
|
|
|
|
|
|
/* place a generated block in output */
|
|
WOLFSSL_ABI
|
|
int wc_RNG_GenerateBlock(WC_RNG* rng, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
|
|
if (rng == NULL || output == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
#ifndef WOLF_CRYPTO_CB_FIND
|
|
if (rng->devId != INVALID_DEVID)
|
|
#endif
|
|
{
|
|
ret = wc_CryptoCb_RandomBlock(rng, output, sz);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
if (IS_INTEL_RDRAND(intel_flags))
|
|
return wc_GenerateRand_IntelRD(NULL, output, sz);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_SILABS_SE_ACCEL) && defined(WOLFSSL_SILABS_TRNG)
|
|
return silabs_GenerateRand(output, sz);
|
|
#endif
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT)
|
|
if (rng->asyncDev.marker == WOLFSSL_ASYNC_MARKER_RNG) {
|
|
/* these are blocking */
|
|
#ifdef HAVE_CAVIUM
|
|
return NitroxRngGenerateBlock(rng, output, sz);
|
|
#elif defined(HAVE_INTEL_QA) && defined(QAT_ENABLE_RNG)
|
|
return IntelQaDrbg(&rng->asyncDev, output, sz);
|
|
#else
|
|
/* simulator not supported */
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef CUSTOM_RAND_GENERATE_BLOCK
|
|
XMEMSET(output, 0, sz);
|
|
ret = (int)CUSTOM_RAND_GENERATE_BLOCK(output, sz);
|
|
#else
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
if (sz > RNG_MAX_BLOCK_LEN)
|
|
return BAD_FUNC_ARG;
|
|
|
|
if (rng->status != DRBG_OK)
|
|
return RNG_FAILURE_E;
|
|
|
|
ret = Hash_DRBG_Generate((DRBG_internal *)rng->drbg, output, sz);
|
|
if (ret == DRBG_NEED_RESEED) {
|
|
int devId = INVALID_DEVID;
|
|
#if defined(WOLFSSL_ASYNC_CRYPT) || defined(WOLF_CRYPTO_CB)
|
|
devId = rng->devId;
|
|
#endif
|
|
if (wc_RNG_HealthTestLocal(1, rng->heap, devId) == 0) {
|
|
#ifndef WOLFSSL_SMALL_STACK
|
|
byte newSeed[SEED_SZ + SEED_BLOCK_SZ];
|
|
ret = DRBG_SUCCESS;
|
|
#else
|
|
byte* newSeed = (byte*)XMALLOC(SEED_SZ + SEED_BLOCK_SZ, rng->heap,
|
|
DYNAMIC_TYPE_SEED);
|
|
ret = (newSeed == NULL) ? MEMORY_E : DRBG_SUCCESS;
|
|
#endif
|
|
if (ret == DRBG_SUCCESS) {
|
|
#ifdef WC_RNG_SEED_CB
|
|
if (seedCb == NULL) {
|
|
ret = DRBG_NO_SEED_CB;
|
|
}
|
|
else {
|
|
ret = seedCb(&rng->seed, newSeed, SEED_SZ + SEED_BLOCK_SZ);
|
|
if (ret != 0) {
|
|
ret = DRBG_FAILURE;
|
|
}
|
|
}
|
|
#else
|
|
ret = wc_GenerateSeed(&rng->seed, newSeed,
|
|
SEED_SZ + SEED_BLOCK_SZ);
|
|
#endif
|
|
if (ret != 0)
|
|
ret = DRBG_FAILURE;
|
|
}
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = wc_RNG_TestSeed(newSeed, SEED_SZ + SEED_BLOCK_SZ);
|
|
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = Hash_DRBG_Reseed((DRBG_internal *)rng->drbg,
|
|
newSeed + SEED_BLOCK_SZ, SEED_SZ);
|
|
if (ret == DRBG_SUCCESS)
|
|
ret = Hash_DRBG_Generate((DRBG_internal *)rng->drbg, output, sz);
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
if (newSeed != NULL) {
|
|
ForceZero(newSeed, SEED_SZ + SEED_BLOCK_SZ);
|
|
}
|
|
XFREE(newSeed, rng->heap, DYNAMIC_TYPE_SEED);
|
|
#else
|
|
ForceZero(newSeed, sizeof(newSeed));
|
|
#endif
|
|
}
|
|
else {
|
|
ret = DRBG_CONT_FAILURE;
|
|
}
|
|
}
|
|
|
|
if (ret == DRBG_SUCCESS) {
|
|
ret = 0;
|
|
}
|
|
else if (ret == DRBG_CONT_FAILURE) {
|
|
ret = DRBG_CONT_FIPS_E;
|
|
rng->status = DRBG_CONT_FAILED;
|
|
}
|
|
else {
|
|
ret = RNG_FAILURE_E;
|
|
rng->status = DRBG_FAILED;
|
|
}
|
|
#else
|
|
|
|
/* if we get here then there is an RNG configuration error */
|
|
ret = RNG_FAILURE_E;
|
|
|
|
#endif /* HAVE_HASHDRBG */
|
|
#endif /* CUSTOM_RAND_GENERATE_BLOCK */
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
int wc_RNG_GenerateByte(WC_RNG* rng, byte* b)
|
|
{
|
|
return wc_RNG_GenerateBlock(rng, b, 1);
|
|
}
|
|
|
|
|
|
int wc_FreeRng(WC_RNG* rng)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (rng == NULL)
|
|
return BAD_FUNC_ARG;
|
|
|
|
#if defined(WOLFSSL_ASYNC_CRYPT)
|
|
wolfAsync_DevCtxFree(&rng->asyncDev, WOLFSSL_ASYNC_MARKER_RNG);
|
|
#endif
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
if (rng->drbg != NULL) {
|
|
if (Hash_DRBG_Uninstantiate((DRBG_internal *)rng->drbg) != DRBG_SUCCESS)
|
|
ret = RNG_FAILURE_E;
|
|
|
|
#if !defined(WOLFSSL_NO_MALLOC) || defined(WOLFSSL_STATIC_MEMORY)
|
|
XFREE(rng->drbg, rng->heap, DYNAMIC_TYPE_RNG);
|
|
#elif defined(WOLFSSL_CHECK_MEM_ZERO)
|
|
wc_MemZero_Check(rng->drbg, sizeof(DRBG_internal));
|
|
#endif
|
|
rng->drbg = NULL;
|
|
}
|
|
|
|
rng->status = DRBG_NOT_INIT;
|
|
#endif /* HAVE_HASHDRBG */
|
|
|
|
#ifdef WOLFSSL_XILINX_CRYPT_VERSAL
|
|
/* don't overwrite previously set error */
|
|
if (wc_VersalTrngReset() && !ret)
|
|
ret = WC_HW_E;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef HAVE_HASHDRBG
|
|
int wc_RNG_HealthTest(int reseed, const byte* seedA, word32 seedASz,
|
|
const byte* seedB, word32 seedBSz,
|
|
byte* output, word32 outputSz)
|
|
{
|
|
return wc_RNG_HealthTest_ex(reseed, NULL, 0,
|
|
seedA, seedASz, seedB, seedBSz,
|
|
output, outputSz,
|
|
NULL, INVALID_DEVID);
|
|
}
|
|
|
|
|
|
int wc_RNG_HealthTest_ex(int reseed, const byte* nonce, word32 nonceSz,
|
|
const byte* seedA, word32 seedASz,
|
|
const byte* seedB, word32 seedBSz,
|
|
byte* output, word32 outputSz,
|
|
void* heap, int devId)
|
|
{
|
|
int ret = -1;
|
|
DRBG_internal* drbg;
|
|
#ifndef WOLFSSL_SMALL_STACK
|
|
DRBG_internal drbg_var;
|
|
#endif
|
|
|
|
if (seedA == NULL || output == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (reseed != 0 && seedB == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (outputSz != RNG_HEALTH_TEST_CHECK_SIZE) {
|
|
return ret;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
drbg = (DRBG_internal*)XMALLOC(sizeof(DRBG_internal), heap,
|
|
DYNAMIC_TYPE_RNG);
|
|
if (drbg == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#else
|
|
drbg = &drbg_var;
|
|
#endif
|
|
|
|
if (Hash_DRBG_Instantiate(drbg, seedA, seedASz, nonce, nonceSz,
|
|
heap, devId) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
|
|
if (reseed) {
|
|
if (Hash_DRBG_Reseed(drbg, seedB, seedBSz) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
}
|
|
|
|
/* This call to generate is prescribed by the NIST DRBGVS
|
|
* procedure. The results are thrown away. The known
|
|
* answer test checks the second block of DRBG out of
|
|
* the generator to ensure the internal state is updated
|
|
* as expected. */
|
|
if (Hash_DRBG_Generate(drbg, output, outputSz) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
|
|
if (Hash_DRBG_Generate(drbg, output, outputSz) != 0) {
|
|
goto exit_rng_ht;
|
|
}
|
|
|
|
/* Mark success */
|
|
ret = 0;
|
|
|
|
exit_rng_ht:
|
|
|
|
/* This is safe to call even if Hash_DRBG_Instantiate fails */
|
|
if (Hash_DRBG_Uninstantiate(drbg) != 0) {
|
|
ret = -1;
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(drbg, heap, DYNAMIC_TYPE_RNG);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
const FLASH_QUALIFIER byte seedA_data[] = {
|
|
0x63, 0x36, 0x33, 0x77, 0xe4, 0x1e, 0x86, 0x46, 0x8d, 0xeb, 0x0a, 0xb4,
|
|
0xa8, 0xed, 0x68, 0x3f, 0x6a, 0x13, 0x4e, 0x47, 0xe0, 0x14, 0xc7, 0x00,
|
|
0x45, 0x4e, 0x81, 0xe9, 0x53, 0x58, 0xa5, 0x69, 0x80, 0x8a, 0xa3, 0x8f,
|
|
0x2a, 0x72, 0xa6, 0x23, 0x59, 0x91, 0x5a, 0x9f, 0x8a, 0x04, 0xca, 0x68
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte reseedSeedA_data[] = {
|
|
0xe6, 0x2b, 0x8a, 0x8e, 0xe8, 0xf1, 0x41, 0xb6, 0x98, 0x05, 0x66, 0xe3,
|
|
0xbf, 0xe3, 0xc0, 0x49, 0x03, 0xda, 0xd4, 0xac, 0x2c, 0xdf, 0x9f, 0x22,
|
|
0x80, 0x01, 0x0a, 0x67, 0x39, 0xbc, 0x83, 0xd3
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte outputA_data[] = {
|
|
0x04, 0xee, 0xc6, 0x3b, 0xb2, 0x31, 0xdf, 0x2c, 0x63, 0x0a, 0x1a, 0xfb,
|
|
0xe7, 0x24, 0x94, 0x9d, 0x00, 0x5a, 0x58, 0x78, 0x51, 0xe1, 0xaa, 0x79,
|
|
0x5e, 0x47, 0x73, 0x47, 0xc8, 0xb0, 0x56, 0x62, 0x1c, 0x18, 0xbd, 0xdc,
|
|
0xdd, 0x8d, 0x99, 0xfc, 0x5f, 0xc2, 0xb9, 0x20, 0x53, 0xd8, 0xcf, 0xac,
|
|
0xfb, 0x0b, 0xb8, 0x83, 0x12, 0x05, 0xfa, 0xd1, 0xdd, 0xd6, 0xc0, 0x71,
|
|
0x31, 0x8a, 0x60, 0x18, 0xf0, 0x3b, 0x73, 0xf5, 0xed, 0xe4, 0xd4, 0xd0,
|
|
0x71, 0xf9, 0xde, 0x03, 0xfd, 0x7a, 0xea, 0x10, 0x5d, 0x92, 0x99, 0xb8,
|
|
0xaf, 0x99, 0xaa, 0x07, 0x5b, 0xdb, 0x4d, 0xb9, 0xaa, 0x28, 0xc1, 0x8d,
|
|
0x17, 0x4b, 0x56, 0xee, 0x2a, 0x01, 0x4d, 0x09, 0x88, 0x96, 0xff, 0x22,
|
|
0x82, 0xc9, 0x55, 0xa8, 0x19, 0x69, 0xe0, 0x69, 0xfa, 0x8c, 0xe0, 0x07,
|
|
0xa1, 0x80, 0x18, 0x3a, 0x07, 0xdf, 0xae, 0x17
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte seedB_data[] = {
|
|
0xa6, 0x5a, 0xd0, 0xf3, 0x45, 0xdb, 0x4e, 0x0e, 0xff, 0xe8, 0x75, 0xc3,
|
|
0xa2, 0xe7, 0x1f, 0x42, 0xc7, 0x12, 0x9d, 0x62, 0x0f, 0xf5, 0xc1, 0x19,
|
|
0xa9, 0xef, 0x55, 0xf0, 0x51, 0x85, 0xe0, 0xfb, /* nonce next */
|
|
0x85, 0x81, 0xf9, 0x31, 0x75, 0x17, 0x27, 0x6e, 0x06, 0xe9, 0x60, 0x7d,
|
|
0xdb, 0xcb, 0xcc, 0x2e
|
|
};
|
|
|
|
const FLASH_QUALIFIER byte outputB_data[] = {
|
|
0xd3, 0xe1, 0x60, 0xc3, 0x5b, 0x99, 0xf3, 0x40, 0xb2, 0x62, 0x82, 0x64,
|
|
0xd1, 0x75, 0x10, 0x60, 0xe0, 0x04, 0x5d, 0xa3, 0x83, 0xff, 0x57, 0xa5,
|
|
0x7d, 0x73, 0xa6, 0x73, 0xd2, 0xb8, 0xd8, 0x0d, 0xaa, 0xf6, 0xa6, 0xc3,
|
|
0x5a, 0x91, 0xbb, 0x45, 0x79, 0xd7, 0x3f, 0xd0, 0xc8, 0xfe, 0xd1, 0x11,
|
|
0xb0, 0x39, 0x13, 0x06, 0x82, 0x8a, 0xdf, 0xed, 0x52, 0x8f, 0x01, 0x81,
|
|
0x21, 0xb3, 0xfe, 0xbd, 0xc3, 0x43, 0xe7, 0x97, 0xb8, 0x7d, 0xbb, 0x63,
|
|
0xdb, 0x13, 0x33, 0xde, 0xd9, 0xd1, 0xec, 0xe1, 0x77, 0xcf, 0xa6, 0xb7,
|
|
0x1f, 0xe8, 0xab, 0x1d, 0xa4, 0x66, 0x24, 0xed, 0x64, 0x15, 0xe5, 0x1c,
|
|
0xcd, 0xe2, 0xc7, 0xca, 0x86, 0xe2, 0x83, 0x99, 0x0e, 0xea, 0xeb, 0x91,
|
|
0x12, 0x04, 0x15, 0x52, 0x8b, 0x22, 0x95, 0x91, 0x02, 0x81, 0xb0, 0x2d,
|
|
0xd4, 0x31, 0xf4, 0xc9, 0xf7, 0x04, 0x27, 0xdf
|
|
};
|
|
|
|
|
|
static int wc_RNG_HealthTestLocal(int reseed, void* heap, int devId)
|
|
{
|
|
int ret = 0;
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
byte* check;
|
|
#else
|
|
byte check[RNG_HEALTH_TEST_CHECK_SIZE];
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
check = (byte*)XMALLOC(RNG_HEALTH_TEST_CHECK_SIZE, NULL,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
if (check == NULL) {
|
|
return MEMORY_E;
|
|
}
|
|
#endif
|
|
|
|
if (reseed) {
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
byte* seedA = (byte*)XMALLOC(sizeof(seedA_data), heap,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
byte* reseedSeedA = (byte*)XMALLOC(sizeof(reseedSeedA_data), heap,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
byte* outputA = (byte*)XMALLOC(sizeof(outputA_data), heap,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
|
|
if (!seedA || !reseedSeedA || !outputA) {
|
|
XFREE(seedA, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(reseedSeedA, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputA, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
ret = MEMORY_E;
|
|
}
|
|
else {
|
|
XMEMCPY_P(seedA, seedA_data, sizeof(seedA_data));
|
|
XMEMCPY_P(reseedSeedA, reseedSeedA_data, sizeof(reseedSeedA_data));
|
|
XMEMCPY_P(outputA, outputA_data, sizeof(outputA_data));
|
|
#else
|
|
const byte* seedA = seedA_data;
|
|
const byte* reseedSeedA = reseedSeedA_data;
|
|
const byte* outputA = outputA_data;
|
|
#endif
|
|
ret = wc_RNG_HealthTest_ex(1, NULL, 0,
|
|
seedA, sizeof(seedA_data),
|
|
reseedSeedA, sizeof(reseedSeedA_data),
|
|
check, RNG_HEALTH_TEST_CHECK_SIZE,
|
|
heap, devId);
|
|
if (ret == 0) {
|
|
if (ConstantCompare(check, outputA,
|
|
RNG_HEALTH_TEST_CHECK_SIZE) != 0)
|
|
ret = -1;
|
|
}
|
|
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
XFREE(seedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(reseedSeedA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputA, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
byte* seedB = (byte*)XMALLOC(sizeof(seedB_data), heap,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
byte* outputB = (byte*)XMALLOC(sizeof(outputB_data), heap,
|
|
DYNAMIC_TYPE_TMP_BUFFER);
|
|
|
|
if (!seedB || !outputB) {
|
|
XFREE(seedB, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputB, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
ret = MEMORY_E;
|
|
}
|
|
else {
|
|
XMEMCPY_P(seedB, seedB_data, sizeof(seedB_data));
|
|
XMEMCPY_P(outputB, outputB_data, sizeof(outputB_data));
|
|
#else
|
|
const byte* seedB = seedB_data;
|
|
const byte* outputB = outputB_data;
|
|
#endif
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("RNG_HEALTH_TEST_CHECK_SIZE = %d",
|
|
RNG_HEALTH_TEST_CHECK_SIZE);
|
|
WOLFSSL_MSG_EX("sizeof(seedB_data) = %d",
|
|
(int)sizeof(outputB_data));
|
|
#endif
|
|
ret = wc_RNG_HealthTest_ex(0, NULL, 0,
|
|
seedB, sizeof(seedB_data),
|
|
NULL, 0,
|
|
check, RNG_HEALTH_TEST_CHECK_SIZE,
|
|
heap, devId);
|
|
if (ret != 0) {
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("RNG_HealthTest failed: err = %d", ret);
|
|
#endif
|
|
}
|
|
else {
|
|
ret = ConstantCompare(check, outputB,
|
|
RNG_HEALTH_TEST_CHECK_SIZE);
|
|
if (ret != 0) {
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG_EX("Random ConstantCompare failed: err = %d", ret);
|
|
#endif
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
/* The previous test cases use a large seed instead of a seed and nonce.
|
|
* seedB is actually from a test case with a seed and nonce, and
|
|
* just concatenates them. The pivot point between seed and nonce is
|
|
* byte 32, feed them into the health test separately. */
|
|
if (ret == 0) {
|
|
ret = wc_RNG_HealthTest_ex(0,
|
|
seedB + 32, sizeof(seedB_data) - 32,
|
|
seedB, 32,
|
|
NULL, 0,
|
|
check, RNG_HEALTH_TEST_CHECK_SIZE,
|
|
heap, devId);
|
|
if (ret == 0) {
|
|
if (ConstantCompare(check, outputB, sizeof(outputB_data)) != 0)
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
#ifdef WOLFSSL_USE_FLASHMEM
|
|
XFREE(seedB, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
XFREE(outputB, heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef WOLFSSL_SMALL_STACK
|
|
XFREE(check, NULL, DYNAMIC_TYPE_TMP_BUFFER);
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* HAVE_HASHDRBG */
|
|
|
|
|
|
#ifdef HAVE_WNR
|
|
|
|
/*
|
|
* Init global Whitewood netRandom context
|
|
* Returns 0 on success, negative on error
|
|
*/
|
|
int wc_InitNetRandom(const char* configFile, wnr_hmac_key hmac_cb, int timeout)
|
|
{
|
|
int ret;
|
|
|
|
if (configFile == NULL || timeout < 0)
|
|
return BAD_FUNC_ARG;
|
|
|
|
#ifndef WOLFSSL_MUTEX_INITIALIZER
|
|
if (wnr_mutex_inited > 0) {
|
|
WOLFSSL_MSG("netRandom context already created, skipping");
|
|
return 0;
|
|
}
|
|
|
|
if (wc_InitMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Init Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
wnr_mutex_inited = 1;
|
|
#endif
|
|
|
|
if (wnr_inited > 0) {
|
|
WOLFSSL_MSG("netRandom context already created, skipping");
|
|
return 0;
|
|
}
|
|
|
|
if (wc_LockMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
/* store entropy timeout */
|
|
wnr_timeout = timeout;
|
|
|
|
/* create global wnr_context struct */
|
|
if (wnr_create(&wnr_ctx) != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error creating global netRandom context");
|
|
ret = RNG_FAILURE_E;
|
|
goto out;
|
|
}
|
|
|
|
/* load config file */
|
|
if (wnr_config_loadf(wnr_ctx, (char*)configFile) != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error loading config file into netRandom context");
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
ret = RNG_FAILURE_E;
|
|
goto out;
|
|
}
|
|
|
|
/* create/init polling mechanism */
|
|
if (wnr_poll_create() != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error initializing netRandom polling mechanism");
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
ret = RNG_FAILURE_E;
|
|
goto out;
|
|
}
|
|
|
|
/* validate config, set HMAC callback (optional) */
|
|
if (wnr_setup(wnr_ctx, hmac_cb) != WNR_ERROR_NONE) {
|
|
WOLFSSL_MSG("Error setting up netRandom context");
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
wnr_poll_destroy();
|
|
ret = RNG_FAILURE_E;
|
|
goto out;
|
|
}
|
|
|
|
wnr_inited = 1;
|
|
|
|
out:
|
|
|
|
wc_UnLockMutex(&wnr_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free global Whitewood netRandom context
|
|
* Returns 0 on success, negative on error
|
|
*/
|
|
int wc_FreeNetRandom(void)
|
|
{
|
|
if (wnr_inited > 0) {
|
|
|
|
if (wc_LockMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
if (wnr_ctx != NULL) {
|
|
wnr_destroy(wnr_ctx);
|
|
wnr_ctx = NULL;
|
|
}
|
|
wnr_poll_destroy();
|
|
|
|
wc_UnLockMutex(&wnr_mutex);
|
|
|
|
#ifndef WOLFSSL_MUTEX_INITIALIZER
|
|
wc_FreeMutex(&wnr_mutex);
|
|
wnr_mutex_inited = 0;
|
|
#endif
|
|
|
|
wnr_inited = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_WNR */
|
|
|
|
|
|
#if defined(HAVE_INTEL_RDRAND) || defined(HAVE_INTEL_RDSEED) || \
|
|
defined(HAVE_AMD_RDSEED)
|
|
|
|
#ifdef WOLFSSL_ASYNC_CRYPT
|
|
/* need more retries if multiple cores */
|
|
#define INTELRD_RETRY (32 * 8)
|
|
#else
|
|
#define INTELRD_RETRY 32
|
|
#endif
|
|
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_AMD_RDSEED)
|
|
|
|
#ifndef USE_INTEL_INTRINSICS
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDseed64(word64* seed)
|
|
{
|
|
unsigned char ok;
|
|
|
|
__asm__ volatile("rdseed %0; setc %1":"=r"(*seed), "=qm"(ok));
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#else /* USE_INTEL_INTRINSICS */
|
|
/* The compiler Visual Studio uses does not allow inline assembly.
|
|
* It does allow for Intel intrinsic functions. */
|
|
|
|
/* return 0 on success */
|
|
# ifdef __GNUC__
|
|
__attribute__((target("rdseed")))
|
|
# endif
|
|
static WC_INLINE int IntelRDseed64(word64* seed)
|
|
{
|
|
int ok;
|
|
|
|
ok = _rdseed64_step((unsigned long long*) seed);
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#endif /* USE_INTEL_INTRINSICS */
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDseed64_r(word64* rnd)
|
|
{
|
|
int i;
|
|
for (i = 0; i < INTELRD_RETRY; i++) {
|
|
if (IntelRDseed64(rnd) == 0)
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
#ifndef WOLFSSL_LINUXKM
|
|
/* return 0 on success */
|
|
static int wc_GenerateSeed_IntelRD(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word64 rndTmp;
|
|
|
|
(void)os;
|
|
|
|
if (!IS_INTEL_RDSEED(intel_flags))
|
|
return -1;
|
|
|
|
for (; (sz / sizeof(word64)) > 0; sz -= sizeof(word64),
|
|
output += sizeof(word64)) {
|
|
ret = IntelRDseed64_r((word64*)output);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
/* handle unaligned remainder */
|
|
ret = IntelRDseed64_r(&rndTmp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
XMEMCPY(output, &rndTmp, sz);
|
|
ForceZero(&rndTmp, sizeof(rndTmp));
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#endif /* HAVE_INTEL_RDSEED || HAVE_AMD_RDSEED */
|
|
|
|
#ifdef HAVE_INTEL_RDRAND
|
|
|
|
#ifndef USE_INTEL_INTRINSICS
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDrand64(word64 *rnd)
|
|
{
|
|
unsigned char ok;
|
|
|
|
__asm__ volatile("rdrand %0; setc %1":"=r"(*rnd), "=qm"(ok));
|
|
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#else /* USE_INTEL_INTRINSICS */
|
|
/* The compiler Visual Studio uses does not allow inline assembly.
|
|
* It does allow for Intel intrinsic functions. */
|
|
|
|
/* return 0 on success */
|
|
# ifdef __GNUC__
|
|
__attribute__((target("rdrnd")))
|
|
# endif
|
|
static WC_INLINE int IntelRDrand64(word64 *rnd)
|
|
{
|
|
int ok;
|
|
|
|
ok = _rdrand64_step((unsigned long long*) rnd);
|
|
|
|
return (ok) ? 0 : -1;
|
|
}
|
|
|
|
#endif /* USE_INTEL_INTRINSICS */
|
|
|
|
/* return 0 on success */
|
|
static WC_INLINE int IntelRDrand64_r(word64 *rnd)
|
|
{
|
|
int i;
|
|
for (i = 0; i < INTELRD_RETRY; i++) {
|
|
if (IntelRDrand64(rnd) == 0)
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* return 0 on success */
|
|
static int wc_GenerateRand_IntelRD(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word64 rndTmp;
|
|
|
|
(void)os;
|
|
|
|
if (!IS_INTEL_RDRAND(intel_flags))
|
|
return -1;
|
|
|
|
for (; (sz / sizeof(word64)) > 0; sz -= sizeof(word64),
|
|
output += sizeof(word64)) {
|
|
ret = IntelRDrand64_r((word64 *)output);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
if (sz == 0)
|
|
return 0;
|
|
|
|
/* handle unaligned remainder */
|
|
ret = IntelRDrand64_r(&rndTmp);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
XMEMCPY(output, &rndTmp, sz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif /* HAVE_INTEL_RDRAND */
|
|
#endif /* HAVE_INTEL_RDRAND || HAVE_INTEL_RDSEED || HAVE_AMD_RDSEED */
|
|
|
|
|
|
/* Begin wc_GenerateSeed Implementations */
|
|
#if defined(CUSTOM_RAND_GENERATE_SEED)
|
|
|
|
/* Implement your own random generation function
|
|
* Return 0 to indicate success
|
|
* int rand_gen_seed(byte* output, word32 sz);
|
|
* #define CUSTOM_RAND_GENERATE_SEED rand_gen_seed */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os; /* Suppress unused arg warning */
|
|
return CUSTOM_RAND_GENERATE_SEED(output, sz);
|
|
}
|
|
|
|
#elif defined(CUSTOM_RAND_GENERATE_SEED_OS)
|
|
|
|
/* Implement your own random generation function,
|
|
* which includes OS_Seed.
|
|
* Return 0 to indicate success
|
|
* int rand_gen_seed(OS_Seed* os, byte* output, word32 sz);
|
|
* #define CUSTOM_RAND_GENERATE_SEED_OS rand_gen_seed */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
return CUSTOM_RAND_GENERATE_SEED_OS(os, output, sz);
|
|
}
|
|
|
|
#elif defined(CUSTOM_RAND_GENERATE)
|
|
|
|
/* Implement your own random generation function
|
|
* word32 rand_gen(void);
|
|
* #define CUSTOM_RAND_GENERATE rand_gen */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i = 0;
|
|
|
|
(void)os;
|
|
|
|
while (i < sz)
|
|
{
|
|
/* If not aligned or there is odd/remainder */
|
|
if( (i + sizeof(CUSTOM_RAND_TYPE)) > sz ||
|
|
((wc_ptr_t)&output[i] % sizeof(CUSTOM_RAND_TYPE)) != 0
|
|
) {
|
|
/* Single byte at a time */
|
|
output[i++] = (byte)CUSTOM_RAND_GENERATE();
|
|
}
|
|
else {
|
|
/* Use native 8, 16, 32 or 64 copy instruction */
|
|
*((CUSTOM_RAND_TYPE*)&output[i]) = CUSTOM_RAND_GENERATE();
|
|
i += sizeof(CUSTOM_RAND_TYPE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_SGX)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = !SGX_SUCCESS;
|
|
int i, read_max = 10;
|
|
|
|
for (i = 0; i < read_max && ret != SGX_SUCCESS; i++) {
|
|
ret = sgx_read_rand(output, sz);
|
|
}
|
|
|
|
(void)os;
|
|
return (ret == SGX_SUCCESS) ? 0 : 1;
|
|
}
|
|
|
|
#elif defined(USE_WINDOWS_API)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
#ifdef WOLF_CRYPTO_CB
|
|
int ret;
|
|
|
|
if (os != NULL
|
|
#ifndef WOLF_CRYPTO_CB_FIND
|
|
&& os->devId != INVALID_DEVID)
|
|
#endif
|
|
{
|
|
ret = wc_CryptoCb_RandomSeed(os, output, sz);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_INTEL_RDSEED
|
|
if (IS_INTEL_RDSEED(intel_flags)) {
|
|
if (!wc_GenerateSeed_IntelRD(NULL, output, sz)) {
|
|
/* success, we're done */
|
|
return 0;
|
|
}
|
|
#ifdef FORCE_FAILURE_RDSEED
|
|
/* don't fall back to CryptoAPI */
|
|
return READ_RAN_E;
|
|
#endif
|
|
}
|
|
#endif /* HAVE_INTEL_RDSEED */
|
|
|
|
if(!CryptAcquireContext(&os->handle, 0, 0, PROV_RSA_FULL,
|
|
CRYPT_VERIFYCONTEXT))
|
|
return WINCRYPT_E;
|
|
|
|
if (!CryptGenRandom(os->handle, sz, output))
|
|
return CRYPTGEN_E;
|
|
|
|
CryptReleaseContext(os->handle, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#elif defined(HAVE_RTP_SYS) || defined(EBSNET)
|
|
|
|
#include "rtprand.h" /* rtp_rand () */
|
|
|
|
#if (defined(HAVE_RTP_SYS) || (defined(RTPLATFORM) && (RTPLATFORM != 0)))
|
|
#include "rtptime.h" /* rtp_get_system_msec() */
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
|
|
rtp_srand(rtp_get_system_msec());
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rtp_rand() % 256;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
KS_SEED(ks_get_ticks());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = KS_RANDOM() % 256;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* defined(HAVE_RTP_SYS) || (defined(RTPLATFORM) && (RTPLATFORM != 0)) */
|
|
|
|
#elif (defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC_RNG)) && \
|
|
!defined(WOLFSSL_PIC32MZ_RNG)
|
|
/* enable ATECC RNG unless using PIC32MZ one instead */
|
|
#include <wolfssl/wolfcrypt/port/atmel/atmel.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = 0;
|
|
|
|
(void)os;
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
ret = atmel_get_random_number(sz, output);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(MICROCHIP_PIC32)
|
|
|
|
#ifdef MICROCHIP_MPLAB_HARMONY
|
|
#ifdef MICROCHIP_MPLAB_HARMONY_3
|
|
#include "system/time/sys_time.h"
|
|
#define PIC32_SEED_COUNT SYS_TIME_CounterGet
|
|
#else
|
|
#define PIC32_SEED_COUNT _CP0_GET_COUNT
|
|
#endif
|
|
#else
|
|
#if !defined(WOLFSSL_MICROCHIP_PIC32MZ)
|
|
#include <peripheral/timer.h>
|
|
#endif
|
|
extern word32 ReadCoreTimer(void);
|
|
#define PIC32_SEED_COUNT ReadCoreTimer
|
|
#endif
|
|
|
|
#ifdef WOLFSSL_PIC32MZ_RNG
|
|
#include "xc.h"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
byte rnd[8];
|
|
word32 *rnd32 = (word32 *)rnd;
|
|
word32 size = sz;
|
|
byte* op = output;
|
|
|
|
#if ((__PIC32_FEATURE_SET0 == 'E') && (__PIC32_FEATURE_SET1 == 'C'))
|
|
RNGNUMGEN1 = _CP0_GET_COUNT();
|
|
RNGPOLY1 = _CP0_GET_COUNT();
|
|
RNGPOLY2 = _CP0_GET_COUNT();
|
|
RNGNUMGEN2 = _CP0_GET_COUNT();
|
|
#else
|
|
/* All others can be seeded from the TRNG */
|
|
RNGCONbits.TRNGMODE = 1;
|
|
RNGCONbits.TRNGEN = 1;
|
|
while (RNGCNT < 64);
|
|
RNGCONbits.LOAD = 1;
|
|
while (RNGCONbits.LOAD == 1);
|
|
while (RNGCNT < 64);
|
|
RNGPOLY2 = RNGSEED2;
|
|
RNGPOLY1 = RNGSEED1;
|
|
#endif
|
|
|
|
RNGCONbits.PLEN = 0x40;
|
|
RNGCONbits.PRNGEN = 1;
|
|
for (i=0; i<5; i++) { /* wait for RNGNUMGEN ready */
|
|
volatile int x, y;
|
|
x = RNGNUMGEN1;
|
|
y = RNGNUMGEN2;
|
|
(void)x;
|
|
(void)y;
|
|
}
|
|
do {
|
|
rnd32[0] = RNGNUMGEN1;
|
|
rnd32[1] = RNGNUMGEN2;
|
|
|
|
for(i=0; i<8; i++, op++) {
|
|
*op = rnd[i];
|
|
size --;
|
|
if(size==0)break;
|
|
}
|
|
} while(size);
|
|
return 0;
|
|
}
|
|
#else /* WOLFSSL_PIC32MZ_RNG */
|
|
/* uses the core timer, in nanoseconds to seed srand */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(PIC32_SEED_COUNT() * 25);
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ( (i % 8) == 7)
|
|
srand(PIC32_SEED_COUNT() * 25);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* WOLFSSL_PIC32MZ_RNG */
|
|
|
|
#elif defined(FREESCALE_K70_RNGA) || defined(FREESCALE_RNGA)
|
|
/*
|
|
* wc_Generates a RNG seed using the Random Number Generator Accelerator
|
|
* on the Kinetis K70. Documentation located in Chapter 37 of
|
|
* K70 Sub-Family Reference Manual (see Note 3 in the README for link).
|
|
*/
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
|
|
/* turn on RNGA module */
|
|
#if defined(SIM_SCGC3_RNGA_MASK)
|
|
SIM_SCGC3 |= SIM_SCGC3_RNGA_MASK;
|
|
#endif
|
|
#if defined(SIM_SCGC6_RNGA_MASK)
|
|
/* additionally needed for at least K64F */
|
|
SIM_SCGC6 |= SIM_SCGC6_RNGA_MASK;
|
|
#endif
|
|
|
|
/* set SLP bit to 0 - "RNGA is not in sleep mode" */
|
|
RNG_CR &= ~RNG_CR_SLP_MASK;
|
|
|
|
/* set HA bit to 1 - "security violations masked" */
|
|
RNG_CR |= RNG_CR_HA_MASK;
|
|
|
|
/* set GO bit to 1 - "output register loaded with data" */
|
|
RNG_CR |= RNG_CR_GO_MASK;
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
|
|
/* wait for RNG FIFO to be full */
|
|
while((RNG_SR & RNG_SR_OREG_LVL(0xF)) == 0) {}
|
|
|
|
/* get value */
|
|
output[i] = RNG_OR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(FREESCALE_K53_RNGB) || defined(FREESCALE_RNGB)
|
|
/*
|
|
* wc_Generates a RNG seed using the Random Number Generator (RNGB)
|
|
* on the Kinetis K53. Documentation located in Chapter 33 of
|
|
* K53 Sub-Family Reference Manual (see note in the README for link).
|
|
*/
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
|
|
/* turn on RNGB module */
|
|
SIM_SCGC3 |= SIM_SCGC3_RNGB_MASK;
|
|
|
|
/* reset RNGB */
|
|
RNG_CMD |= RNG_CMD_SR_MASK;
|
|
|
|
/* FIFO generate interrupt, return all zeros on underflow,
|
|
* set auto reseed */
|
|
RNG_CR |= (RNG_CR_FUFMOD_MASK | RNG_CR_AR_MASK);
|
|
|
|
/* gen seed, clear interrupts, clear errors */
|
|
RNG_CMD |= (RNG_CMD_GS_MASK | RNG_CMD_CI_MASK | RNG_CMD_CE_MASK);
|
|
|
|
/* wait for seeding to complete */
|
|
while ((RNG_SR & RNG_SR_SDN_MASK) == 0) {}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
|
|
/* wait for a word to be available from FIFO */
|
|
while((RNG_SR & RNG_SR_FIFO_LVL_MASK) == 0) {}
|
|
|
|
/* get value */
|
|
output[i] = RNG_OUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(FREESCALE_KSDK_2_0_TRNG)
|
|
#ifndef TRNG0
|
|
#define TRNG0 TRNG
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
status_t status;
|
|
status = TRNG_GetRandomData(TRNG0, output, sz);
|
|
(void)os;
|
|
if (status == kStatus_Success)
|
|
{
|
|
return(0);
|
|
}
|
|
return RAN_BLOCK_E;
|
|
}
|
|
|
|
#elif defined(FREESCALE_KSDK_2_0_RNGA)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
status_t status;
|
|
status = RNGA_GetRandomData(RNG, output, sz);
|
|
(void)os;
|
|
if (status == kStatus_Success)
|
|
{
|
|
return(0);
|
|
}
|
|
return RAN_BLOCK_E;
|
|
}
|
|
|
|
|
|
#elif defined(FREESCALE_RNGA)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
status_t status;
|
|
status = RNGA_GetRandomData(RNG, output, sz);
|
|
(void)os;
|
|
if (status == kStatus_Success)
|
|
{
|
|
return(0);
|
|
}
|
|
return RAN_BLOCK_E;
|
|
}
|
|
|
|
#elif !defined(WOLFSSL_CAAM) && \
|
|
(defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX) || \
|
|
defined(FREESCALE_KSDK_BM) || defined(FREESCALE_FREE_RTOS))
|
|
/*
|
|
* Fallback to USE_TEST_GENSEED if a FREESCALE platform did not match any
|
|
* of the TRNG/RNGA/RNGB support
|
|
*/
|
|
#define USE_TEST_GENSEED
|
|
|
|
#elif defined(WOLFSSL_SILABS_SE_ACCEL)
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os;
|
|
return silabs_GenerateRand(output, sz);
|
|
}
|
|
|
|
#elif defined(STM32_RNG)
|
|
/* Generate a RNG seed using the hardware random number generator
|
|
* on the STM32F2/F4/F7/L4. */
|
|
|
|
#ifdef WOLFSSL_STM32_CUBEMX
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
RNG_HandleTypeDef hrng;
|
|
word32 i = 0;
|
|
(void)os;
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* enable RNG clock source */
|
|
__HAL_RCC_RNG_CLK_ENABLE();
|
|
|
|
/* enable RNG peripheral */
|
|
XMEMSET(&hrng, 0, sizeof(hrng));
|
|
hrng.Instance = RNG;
|
|
HAL_RNG_Init(&hrng);
|
|
|
|
while (i < sz) {
|
|
/* If not aligned or there is odd/remainder */
|
|
if( (i + sizeof(word32)) > sz ||
|
|
((wc_ptr_t)&output[i] % sizeof(word32)) != 0
|
|
) {
|
|
/* Single byte at a time */
|
|
uint32_t tmpRng = 0;
|
|
if (HAL_RNG_GenerateRandomNumber(&hrng, &tmpRng) != HAL_OK) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RAN_BLOCK_E;
|
|
}
|
|
output[i++] = (byte)tmpRng;
|
|
}
|
|
else {
|
|
/* Use native 32 instruction */
|
|
if (HAL_RNG_GenerateRandomNumber(&hrng, (uint32_t*)&output[i]) != HAL_OK) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RAN_BLOCK_E;
|
|
}
|
|
i += sizeof(word32);
|
|
}
|
|
}
|
|
|
|
HAL_RNG_DeInit(&hrng);
|
|
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_STM32F427_RNG) || defined(WOLFSSL_STM32_RNG_NOLIB) \
|
|
|| defined(STM32_NUTTX_RNG)
|
|
|
|
#ifdef STM32_NUTTX_RNG
|
|
#include "hardware/stm32_rng.h"
|
|
/* Set CONFIG_STM32U5_RNG in NuttX to enable the RCC */
|
|
#define WC_RNG_CR *((volatile uint32_t*)(STM32_RNG_CR))
|
|
#define WC_RNG_SR *((volatile uint32_t*)(STM32_RNG_SR))
|
|
#define WC_RNG_DR *((volatile uint32_t*)(STM32_RNG_DR))
|
|
#else
|
|
/* Comes from "stm32xxxx_hal.h" */
|
|
#define WC_RNG_CR RNG->CR
|
|
#define WC_RNG_SR RNG->SR
|
|
#define WC_RNG_DR RNG->DR
|
|
#endif
|
|
|
|
|
|
/* Generate a RNG seed using the hardware RNG on the STM32F427
|
|
* directly, following steps outlined in STM32F4 Reference
|
|
* Manual (Chapter 24) for STM32F4xx family. */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word32 i;
|
|
(void)os;
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
#ifndef STM32_NUTTX_RNG
|
|
/* enable RNG peripheral clock */
|
|
RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN;
|
|
#endif
|
|
|
|
/* enable RNG interrupt, set IE bit in RNG->CR register */
|
|
WC_RNG_CR |= RNG_CR_IE;
|
|
|
|
/* enable RNG, set RNGEN bit in RNG->CR. Activates RNG,
|
|
* RNG_LFSR, and error detector */
|
|
WC_RNG_CR |= RNG_CR_RNGEN;
|
|
|
|
/* verify no errors, make sure SEIS and CEIS bits are 0
|
|
* in RNG->SR register */
|
|
if (WC_RNG_SR & (RNG_SR_SECS | RNG_SR_CECS)) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
/* wait until RNG number is ready */
|
|
while ((WC_RNG_SR & RNG_SR_DRDY) == 0) { }
|
|
|
|
/* get value */
|
|
output[i] = WC_RNG_DR;
|
|
}
|
|
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
/* Generate a RNG seed using the STM32 Standard Peripheral Library */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
word32 i;
|
|
(void)os;
|
|
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* enable RNG clock source */
|
|
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
|
|
|
|
/* reset RNG */
|
|
RNG_DeInit();
|
|
|
|
/* enable RNG peripheral */
|
|
RNG_Cmd(ENABLE);
|
|
|
|
/* verify no errors with RNG_CLK or Seed */
|
|
if (RNG_GetFlagStatus(RNG_FLAG_SECS | RNG_FLAG_CECS) != RESET) {
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
/* wait until RNG number is ready */
|
|
while (RNG_GetFlagStatus(RNG_FLAG_DRDY) == RESET) { }
|
|
|
|
/* get value */
|
|
output[i] = RNG_GetRandomNumber();
|
|
}
|
|
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
|
|
return 0;
|
|
}
|
|
#endif /* WOLFSSL_STM32_CUBEMX */
|
|
|
|
#elif defined(WOLFSSL_TIRTOS)
|
|
#warning "potential for not enough entropy, currently being used for testing"
|
|
#include <xdc/runtime/Timestamp.h>
|
|
#include <stdlib.h>
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(xdc_runtime_Timestamp_get32());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(xdc_runtime_Timestamp_get32());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_PB)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
for (i = 0; i < sz; i++)
|
|
output[i] = UTL_Rand();
|
|
|
|
(void)os;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_NUCLEUS)
|
|
#include "nucleus.h"
|
|
#include "kernel/plus_common.h"
|
|
|
|
#warning "potential for not enough entropy, currently being used for testing"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(NU_Get_Time_Stamp());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(NU_Get_Time_Stamp());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_DEOS) && !defined(CUSTOM_RAND_GENERATE)
|
|
#include "stdlib.h"
|
|
|
|
#warning "potential for not enough entropy, currently being used for testing Deos"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
int seed = XTIME(0);
|
|
(void)os;
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand_r(&seed) % 256;
|
|
if ((i % 8) == 7) {
|
|
seed = XTIME(0);
|
|
rand_r(&seed);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_VXWORKS)
|
|
#ifdef WOLFSSL_VXWORKS_6_x
|
|
#include "stdlib.h"
|
|
#warning "potential for not enough entropy, currently being used for testing"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
unsigned int seed = (unsigned int)XTIME(0);
|
|
(void)os;
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand_r(&seed) % 256;
|
|
if ((i % 8) == 7) {
|
|
seed = (unsigned int)XTIME(0);
|
|
rand_r(&seed);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#include <randomNumGen.h>
|
|
#include <tickLib.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz) {
|
|
STATUS status = ERROR;
|
|
RANDOM_NUM_GEN_STATUS r_status = RANDOM_NUM_GEN_ERROR;
|
|
_Vx_ticks_t seed = 0;
|
|
|
|
#ifdef VXWORKS_SIM
|
|
/* cannot generate true entropy with VxWorks simulator */
|
|
#warning "not enough entropy, simulator for testing only"
|
|
int i = 0;
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
randomAddTimeStamp();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
wolfSSL can request 52 Bytes of random bytes. We need to add
|
|
buffer to the entropy pool to ensure we can get more than 32 Bytes.
|
|
Because VxWorks has entropy limits (ENTROPY_MIN and ENTROPY_MAX)
|
|
defined as 256 and 1024 bits, see randomSWNumGenLib.c.
|
|
|
|
randStatus() can return the following status:
|
|
RANDOM_NUM_GEN_NO_ENTROPY when entropy is 0
|
|
RANDOM_NUM_GEN_ERROR, entropy is not initialized
|
|
RANDOM_NUM_GEN_NOT_ENOUGH_ENTROPY if entropy < 32 Bytes
|
|
RANDOM_NUM_GEN_ENOUGH_ENTROPY if entropy is between 32 and 128 Bytes
|
|
RANDOM_NUM_GEN_MAX_ENTROPY if entropy is greater than 128 Bytes
|
|
*/
|
|
|
|
do {
|
|
seed = tickGet();
|
|
status = randAdd(&seed, sizeof(_Vx_ticks_t), 2);
|
|
if (status == OK)
|
|
r_status = randStatus();
|
|
|
|
} while (r_status != RANDOM_NUM_GEN_MAX_ENTROPY &&
|
|
r_status != RANDOM_NUM_GEN_ERROR && status == OK);
|
|
|
|
if (r_status == RANDOM_NUM_GEN_ERROR)
|
|
return RNG_FAILURE_E;
|
|
|
|
status = randBytes (output, sz);
|
|
|
|
if (status == ERROR) {
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
#elif defined(WOLFSSL_NRF51) || defined(WOLFSSL_NRF5x)
|
|
#include "app_error.h"
|
|
#include "nrf_drv_rng.h"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int remaining = sz, pos = 0;
|
|
word32 err_code;
|
|
byte available;
|
|
static byte initialized = 0;
|
|
|
|
(void)os;
|
|
|
|
/* Make sure RNG is running */
|
|
if (!initialized) {
|
|
err_code = nrf_drv_rng_init(NULL);
|
|
if (err_code != NRF_SUCCESS && err_code != NRF_ERROR_INVALID_STATE
|
|
#ifdef NRF_ERROR_MODULE_ALREADY_INITIALIZED
|
|
&& err_code != NRF_ERROR_MODULE_ALREADY_INITIALIZED
|
|
#endif
|
|
) {
|
|
return -1;
|
|
}
|
|
initialized = 1;
|
|
}
|
|
|
|
while (remaining > 0) {
|
|
int length;
|
|
available = 0;
|
|
nrf_drv_rng_bytes_available(&available); /* void func */
|
|
length = (remaining < available) ? remaining : available;
|
|
if (length > 0) {
|
|
err_code = nrf_drv_rng_rand(&output[pos], length);
|
|
if (err_code != NRF_SUCCESS) {
|
|
break;
|
|
}
|
|
remaining -= length;
|
|
pos += length;
|
|
}
|
|
}
|
|
|
|
return (err_code == NRF_SUCCESS) ? 0 : -1;
|
|
}
|
|
|
|
#elif defined(HAVE_WNR)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
if (os == NULL || output == NULL || wnr_ctx == NULL ||
|
|
wnr_timeout < 0) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
if (wnr_mutex_init == 0) {
|
|
WOLFSSL_MSG("netRandom context must be created before use");
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
if (wc_LockMutex(&wnr_mutex) != 0) {
|
|
WOLFSSL_MSG("Bad Lock Mutex wnr_mutex");
|
|
return BAD_MUTEX_E;
|
|
}
|
|
|
|
if (wnr_get_entropy(wnr_ctx, wnr_timeout, output, sz, sz) !=
|
|
WNR_ERROR_NONE)
|
|
return RNG_FAILURE_E;
|
|
|
|
wc_UnLockMutex(&wnr_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(INTIME_RTOS)
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
uint32_t randval;
|
|
word32 len;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
#ifdef INTIMEVER
|
|
/* If INTIMEVER exists then it is INTIME RTOS v6 or later */
|
|
#define INTIME_RAND_FUNC arc4random
|
|
len = 4;
|
|
#else
|
|
/* v5 and older */
|
|
#define INTIME_RAND_FUNC rand
|
|
srand(time(0));
|
|
len = 2; /* don't use all 31 returned bits */
|
|
#endif
|
|
|
|
while (sz > 0) {
|
|
if (sz < len)
|
|
len = sz;
|
|
randval = INTIME_RAND_FUNC();
|
|
XMEMCPY(output, &randval, len);
|
|
output += len;
|
|
sz -= len;
|
|
}
|
|
(void)os;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_WICED)
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret;
|
|
(void)os;
|
|
|
|
if (output == NULL || UINT16_MAX < sz) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
if ((ret = wiced_crypto_get_random((void*) output, sz) )
|
|
!= WICED_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_NETBURNER)
|
|
#warning using NetBurner pseudo random GetRandomByte for seed
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
(void)os;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
for (i = 0; i < sz; i++) {
|
|
output[i] = GetRandomByte();
|
|
|
|
/* check if was a valid random number */
|
|
if (!RandomValid())
|
|
return RNG_FAILURE_E;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#elif defined(IDIRECT_DEV_RANDOM)
|
|
|
|
extern int getRandom( int sz, unsigned char *output );
|
|
|
|
int GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int num_bytes_returned = 0;
|
|
|
|
num_bytes_returned = getRandom( (int) sz, (unsigned char *) output );
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_CAAM)
|
|
|
|
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
unsigned int args[4] = {0};
|
|
CAAM_BUFFER buf[1];
|
|
int ret = 0;
|
|
int times = 1000, i; /* 1000 is an arbitrary number chosen */
|
|
word32 idx = 0;
|
|
|
|
(void)os;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
|
|
/* Check Waiting to make sure entropy is ready */
|
|
for (i = 0; i < times; i++) {
|
|
buf[0].BufferType = DataBuffer | LastBuffer;
|
|
buf[0].TheAddress = (CAAM_ADDRESS)(output + idx);
|
|
buf[0].Length = ((sz - idx) < WC_CAAM_MAX_ENTROPY)?
|
|
sz - idx : WC_CAAM_MAX_ENTROPY;
|
|
|
|
args[0] = buf[0].Length;
|
|
ret = wc_caamAddAndWait(buf, 1, args, CAAM_ENTROPY);
|
|
if (ret == 0) {
|
|
idx += buf[0].Length;
|
|
if (idx == sz)
|
|
break;
|
|
}
|
|
|
|
/* driver could be waiting for entropy */
|
|
if (ret != RAN_BLOCK_E && ret != 0) {
|
|
return ret;
|
|
}
|
|
#ifndef WOLFSSL_IMXRT1170_CAAM
|
|
usleep(100);
|
|
#endif
|
|
}
|
|
|
|
if (i == times && ret != 0) {
|
|
return RNG_FAILURE_E;
|
|
}
|
|
else { /* Success case */
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_APACHE_MYNEWT)
|
|
|
|
#include <stdlib.h>
|
|
#include "os/os_time.h"
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(os_time_get());
|
|
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(os_time_get());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(ARDUINO)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = 0;
|
|
word32 rand;
|
|
while (sz > 0) {
|
|
word32 len = sizeof(rand);
|
|
if (sz < len)
|
|
len = sz;
|
|
/* Get an Arduino framework random number */
|
|
#if defined(ARDUINO_SAMD_NANO_33_IOT) || \
|
|
defined(ARDUINO_ARCH_RP2040)
|
|
/* Known, tested boards working with random() */
|
|
rand = random();
|
|
#elif defined(ARDUINO_SAM_DUE)
|
|
/* See: https://github.com/avrxml/asf/tree/master/sam/utils/cmsis/sam3x/include */
|
|
#if defined(__SAM3A4C__)
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#elif defined(__SAM3A8C__)
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#elif defined(__SAM3X4C__)
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#elif defined(__SAM3X4E__)
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#elif defined(__SAM3X8C__)
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#elif defined(__SAM3X8E__)
|
|
/* This is the Arduino Due */
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#elif defined(__SAM3A8H__)
|
|
#ifndef TRNG
|
|
#define TRNG (0x400BC000U)
|
|
#endif
|
|
#else
|
|
#ifndef TRNG
|
|
#error "Unknown TRNG for this device"
|
|
#endif
|
|
#endif
|
|
|
|
srand(analogRead(0));
|
|
rand = trng_read_output_data(TRNG);
|
|
#elif defined(__STM32__)
|
|
/* TODO: confirm this is proper random number on Arduino STM32 */
|
|
#warning "Not yet tested on STM32 targets"
|
|
rand = random();
|
|
#else
|
|
/* TODO: Pull requests appreciated for new targets.
|
|
* Do *all* other Arduino boards support random()?
|
|
* Probably not 100%, but most will likely work: */
|
|
rand = random();
|
|
#endif
|
|
|
|
XMEMCPY(output, &rand, len);
|
|
output += len;
|
|
sz -= len;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_ESPIDF)
|
|
|
|
/* Espressif */
|
|
#if defined(WOLFSSL_ESP32) || defined(WOLFSSL_ESPWROOM32SE)
|
|
|
|
/* Espressif ESP32 */
|
|
#include <esp_system.h>
|
|
#if defined(CONFIG_IDF_TARGET_ESP32S2) || \
|
|
defined(CONFIG_IDF_TARGET_ESP32S3)
|
|
#include <esp_random.h>
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 rand;
|
|
while (sz > 0) {
|
|
word32 len = sizeof(rand);
|
|
if (sz < len)
|
|
len = sz;
|
|
/* Get one random 32-bit word from hw RNG */
|
|
rand = esp_random( );
|
|
XMEMCPY(output, &rand, len);
|
|
output += len;
|
|
sz -= len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_ESP8266)
|
|
|
|
/* Espressif ESP8266 */
|
|
#include <esp_system.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_ENTER("ESP8266 Random");
|
|
#endif
|
|
word32 rand;
|
|
while (sz > 0) {
|
|
word32 len = sizeof(rand);
|
|
if (sz < len)
|
|
len = sz;
|
|
/* Get one random 32-bit word from hw RNG */
|
|
rand = esp_random( );
|
|
XMEMCPY(output, &rand, len);
|
|
output += len;
|
|
sz -= len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* end WOLFSSL_ESPIDF */
|
|
|
|
#elif defined(WOLFSSL_LINUXKM)
|
|
#include <linux/random.h>
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os;
|
|
|
|
get_random_bytes(output, sz);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#elif defined(WOLFSSL_SCE) && !defined(WOLFSSL_SCE_NO_TRNG)
|
|
#include "hal_data.h"
|
|
|
|
#ifndef WOLFSSL_SCE_TRNG_HANDLE
|
|
#define WOLFSSL_SCE_TRNG_HANDLE g_sce_trng
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 ret;
|
|
word32 blocks;
|
|
word32 len = sz;
|
|
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->open(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
|
|
WOLFSSL_SCE_TRNG_HANDLE.p_cfg);
|
|
if (ret != SSP_SUCCESS && ret != SSP_ERR_CRYPTO_ALREADY_OPEN) {
|
|
/* error opening TRNG driver */
|
|
return -1;
|
|
}
|
|
|
|
blocks = sz / sizeof(word32);
|
|
if (blocks > 0) {
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->read(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
|
|
(word32*)output, blocks);
|
|
if (ret != SSP_SUCCESS) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
len = len - (blocks * sizeof(word32));
|
|
if (len > 0) {
|
|
word32 tmp;
|
|
|
|
if (len > sizeof(word32)) {
|
|
return -1;
|
|
}
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->read(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl,
|
|
(word32*)&tmp, 1);
|
|
if (ret != SSP_SUCCESS) {
|
|
return -1;
|
|
}
|
|
XMEMCPY(output + (blocks * sizeof(word32)), (byte*)&tmp, len);
|
|
}
|
|
|
|
ret = WOLFSSL_SCE_TRNG_HANDLE.p_api->close(WOLFSSL_SCE_TRNG_HANDLE.p_ctrl);
|
|
if (ret != SSP_SUCCESS) {
|
|
/* error opening TRNG driver */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#elif defined(CUSTOM_RAND_GENERATE_BLOCK)
|
|
/* #define CUSTOM_RAND_GENERATE_BLOCK myRngFunc
|
|
* extern int myRngFunc(byte* output, word32 sz);
|
|
*/
|
|
|
|
#elif defined(__MICROBLAZE__)
|
|
#warning weak source of entropy
|
|
#define LPD_SCNTR_BASE_ADDRESS 0xFF250000
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32* cnt;
|
|
word32 i;
|
|
|
|
/* using current time with srand */
|
|
cnt = (word32*)LPD_SCNTR_BASE_ADDRESS;
|
|
srand(*cnt | *(cnt+1));
|
|
|
|
for (i = 0; i < sz; i++)
|
|
output[i] = rand();
|
|
|
|
(void)os;
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_ZEPHYR)
|
|
|
|
#include <version.h>
|
|
|
|
#if KERNEL_VERSION_NUMBER >= 0x30500
|
|
#include <zephyr/random/random.h>
|
|
#else
|
|
#include <zephyr/random/rand32.h>
|
|
#endif
|
|
|
|
#ifndef _POSIX_C_SOURCE
|
|
#include <zephyr/posix/time.h>
|
|
#else
|
|
#include <time.h>
|
|
#endif
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
sys_rand_get(output, sz);
|
|
return 0;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_TELIT_M2MB)
|
|
|
|
#include "stdlib.h"
|
|
static long get_timestamp(void) {
|
|
long myTime = 0;
|
|
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
|
|
if (fd >= 0) {
|
|
M2MB_RTC_TIMEVAL_T timeval;
|
|
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
|
|
myTime = timeval.msec;
|
|
m2mb_rtc_close(fd);
|
|
}
|
|
return myTime;
|
|
}
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int i;
|
|
srand(get_timestamp());
|
|
for (i = 0; i < sz; i++ ) {
|
|
output[i] = rand() % 256;
|
|
if ((i % 8) == 7) {
|
|
srand(get_timestamp());
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_SE050) && !defined(WOLFSSL_SE050_NO_TRNG)
|
|
#include <wolfssl/wolfcrypt/port/nxp/se050_port.h>
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz){
|
|
int ret = 0;
|
|
|
|
(void)os;
|
|
|
|
if (output == NULL) {
|
|
return BUFFER_E;
|
|
}
|
|
ret = wolfSSL_CryptHwMutexLock();
|
|
if (ret == 0) {
|
|
ret = se050_get_random_number(sz, output);
|
|
wolfSSL_CryptHwMutexUnLock();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(DOLPHIN_EMULATOR)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
(void)os;
|
|
srand(time(NULL));
|
|
for (i = 0; i < sz; i++)
|
|
output[i] = (byte)rand();
|
|
return 0;
|
|
}
|
|
#elif defined(WOLFSSL_MAXQ108X) || defined(WOLFSSL_MAXQ1065)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
(void)os;
|
|
|
|
return maxq10xx_random(output, sz);
|
|
}
|
|
#elif defined(WOLFSSL_GETRANDOM)
|
|
|
|
/* getrandom() was added to the Linux kernel in version 3.17.
|
|
* Added to glibc in version 2.25. */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = 0;
|
|
(void)os;
|
|
|
|
while (sz) {
|
|
int len;
|
|
|
|
errno = 0;
|
|
len = (int)getrandom(output, sz, 0);
|
|
if (len == -1) {
|
|
if (errno == EINTR) {
|
|
/* interrupted, call getrandom again */
|
|
continue;
|
|
}
|
|
else {
|
|
ret = READ_RAN_E;
|
|
}
|
|
break;
|
|
}
|
|
|
|
sz -= len;
|
|
output += len;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#elif defined(WOLFSSL_SAFERTOS) || defined(WOLFSSL_LEANPSK) || \
|
|
defined(WOLFSSL_IAR_ARM) || defined(WOLFSSL_MDK_ARM) || \
|
|
defined(WOLFSSL_uITRON4) || defined(WOLFSSL_uTKERNEL2) || \
|
|
defined(WOLFSSL_LPC43xx) || defined(NO_STM32_RNG) || \
|
|
defined(MBED) || defined(WOLFSSL_EMBOS) || \
|
|
defined(WOLFSSL_GENSEED_FORTEST) || defined(WOLFSSL_CHIBIOS) || \
|
|
defined(WOLFSSL_CONTIKI) || defined(WOLFSSL_AZSPHERE)
|
|
|
|
/* these platforms do not have a default random seed and
|
|
you'll need to implement your own wc_GenerateSeed or define via
|
|
CUSTOM_RAND_GENERATE_BLOCK */
|
|
|
|
#define USE_TEST_GENSEED
|
|
|
|
#elif defined(NO_DEV_RANDOM)
|
|
|
|
/* Allow bare-metal targets to use cryptoCb as seed provider */
|
|
#if defined(WOLF_CRYPTO_CB)
|
|
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = WC_HW_E;
|
|
|
|
#ifndef WOLF_CRYPTO_CB_FIND
|
|
if (os->devId != INVALID_DEVID)
|
|
#endif
|
|
{
|
|
ret = wc_CryptoCb_RandomSeed(os, output, sz);
|
|
if (ret == CRYPTOCB_UNAVAILABLE) {
|
|
ret = WC_HW_E;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#else /* defined(WOLF_CRYPTO_CB)*/
|
|
|
|
#error "you need to write an os specific wc_GenerateSeed() here"
|
|
|
|
/*
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
return 0;
|
|
}
|
|
*/
|
|
|
|
#endif /* !defined(WOLF_CRYPTO_CB) */
|
|
|
|
#else
|
|
|
|
/* may block */
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (os == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef WOLF_CRYPTO_CB
|
|
#ifndef WOLF_CRYPTO_CB_FIND
|
|
if (os->devId != INVALID_DEVID)
|
|
#endif
|
|
{
|
|
ret = wc_CryptoCb_RandomSeed(os, output, sz);
|
|
if (ret != CRYPTOCB_UNAVAILABLE)
|
|
return ret;
|
|
/* fall-through when unavailable */
|
|
ret = 0; /* reset error code */
|
|
}
|
|
#endif
|
|
|
|
#ifdef HAVE_ENTROPY_MEMUSE
|
|
ret = wc_Entropy_Get(MAX_ENTROPY_BITS, output, sz);
|
|
if (ret == 0) {
|
|
return 0;
|
|
}
|
|
#ifdef ENTROPY_MEMUSE_FORCE_FAILURE
|
|
/* Don't fallback to /dev/urandom. */
|
|
return ret;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(HAVE_INTEL_RDSEED) || defined(HAVE_AMD_RDSEED)
|
|
if (IS_INTEL_RDSEED(intel_flags)) {
|
|
ret = wc_GenerateSeed_IntelRD(NULL, output, sz);
|
|
if (ret == 0) {
|
|
/* success, we're done */
|
|
return ret;
|
|
}
|
|
#ifdef FORCE_FAILURE_RDSEED
|
|
/* don't fallback to /dev/urandom */
|
|
return ret;
|
|
#else
|
|
/* reset error and fallback to using /dev/urandom */
|
|
ret = 0;
|
|
#endif
|
|
}
|
|
#endif /* HAVE_INTEL_RDSEED || HAVE_AMD_RDSEED */
|
|
|
|
#ifndef NO_DEV_URANDOM /* way to disable use of /dev/urandom */
|
|
os->fd = open("/dev/urandom", O_RDONLY);
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG("opened /dev/urandom.");
|
|
#endif
|
|
if (os->fd == -1)
|
|
#endif
|
|
{
|
|
/* may still have /dev/random */
|
|
os->fd = open("/dev/random", O_RDONLY);
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG("opened /dev/random.");
|
|
#endif
|
|
if (os->fd == -1)
|
|
return OPEN_RAN_E;
|
|
}
|
|
#if defined(DEBUG_WOLFSSL)
|
|
WOLFSSL_MSG("rnd read...");
|
|
#endif
|
|
while (sz) {
|
|
int len = (int)read(os->fd, output, sz);
|
|
if (len == -1) {
|
|
ret = READ_RAN_E;
|
|
break;
|
|
}
|
|
|
|
sz -= (word32)len;
|
|
output += len;
|
|
|
|
if (sz) {
|
|
#if defined(BLOCKING) || defined(WC_RNG_BLOCKING)
|
|
sleep(0); /* context switch */
|
|
#else
|
|
ret = RAN_BLOCK_E;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
close(os->fd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef USE_TEST_GENSEED
|
|
#ifndef _MSC_VER
|
|
#warning "write a real random seed!!!!, just for testing now"
|
|
#else
|
|
#pragma message("Warning: write a real random seed!!!!, just for testing now")
|
|
#endif
|
|
int wc_GenerateSeed(OS_Seed* os, byte* output, word32 sz)
|
|
{
|
|
word32 i;
|
|
for (i = 0; i < sz; i++ )
|
|
output[i] = i;
|
|
|
|
(void)os;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
/* End wc_GenerateSeed */
|
|
|
|
#if defined(CUSTOM_RAND_GENERATE_BLOCK) && defined(WOLFSSL_KCAPI)
|
|
#include <fcntl.h>
|
|
int wc_hwrng_generate_block(byte *output, word32 sz)
|
|
{
|
|
int fd;
|
|
int ret = 0;
|
|
fd = open("/dev/hwrng", O_RDONLY);
|
|
if (fd == -1)
|
|
return OPEN_RAN_E;
|
|
while(sz)
|
|
{
|
|
int len = (int)read(fd, output, sz);
|
|
if (len == -1)
|
|
{
|
|
ret = READ_RAN_E;
|
|
break;
|
|
}
|
|
sz -= len;
|
|
output += len;
|
|
}
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#endif /* WC_NO_RNG */
|