wolfssl/wolfcrypt/benchmark/benchmark.c

3419 lines
94 KiB
C

/* benchmark.c
*
* Copyright (C) 2006-2016 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
/* wolfCrypt benchmark */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
/* Macro to disable benchmark */
#ifndef NO_CRYPT_BENCHMARK
#ifdef XMALLOC_USER
#include <stdlib.h> /* we're using malloc / free direct here */
#endif
#ifdef WOLFSSL_STATIC_MEMORY
#include <wolfssl/wolfcrypt/memory.h>
static WOLFSSL_HEAP_HINT* HEAP_HINT;
#else
#define HEAP_HINT NULL
#endif /* WOLFSSL_STATIC_MEMORY */
#include <string.h>
#ifdef FREESCALE_MQX
#include <mqx.h>
#if MQX_USE_IO_OLD
#include <fio.h>
#else
#include <nio.h>
#endif
#elif defined(FREESCALE_KSDK_BM)
#include "fsl_debug_console.h"
#include "fsl_os_abstraction.h"
#undef printf
#define printf PRINTF
#else
#include <stdio.h>
#endif
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/arc4.h>
#include <wolfssl/wolfcrypt/hc128.h>
#include <wolfssl/wolfcrypt/rabbit.h>
#include <wolfssl/wolfcrypt/chacha.h>
#include <wolfssl/wolfcrypt/chacha20_poly1305.h>
#include <wolfssl/wolfcrypt/aes.h>
#include <wolfssl/wolfcrypt/poly1305.h>
#include <wolfssl/wolfcrypt/camellia.h>
#include <wolfssl/wolfcrypt/md5.h>
#include <wolfssl/wolfcrypt/sha.h>
#include <wolfssl/wolfcrypt/sha256.h>
#include <wolfssl/wolfcrypt/sha512.h>
#include <wolfssl/wolfcrypt/rsa.h>
#include <wolfssl/wolfcrypt/asn.h>
#include <wolfssl/wolfcrypt/ripemd.h>
#include <wolfssl/wolfcrypt/cmac.h>
#ifndef NO_PWDBASED
#include <wolfssl/wolfcrypt/pwdbased.h>
#endif
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifdef HAVE_IDEA
#include <wolfssl/wolfcrypt/idea.h>
#endif
#ifdef HAVE_CURVE25519
#include <wolfssl/wolfcrypt/curve25519.h>
#endif
#ifdef HAVE_ED25519
#include <wolfssl/wolfcrypt/ed25519.h>
#endif
#include <wolfssl/wolfcrypt/dh.h>
#ifdef HAVE_NTRU
#include "libntruencrypt/ntru_crypto.h"
#endif
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
/* only for stack size check */
#ifdef HAVE_STACK_SIZE
#include <wolfssl/ssl.h>
#include <wolfssl/test.h>
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
#include <wolfssl/wolfcrypt/async.h>
#endif
#ifdef HAVE_WNR
const char* wnrConfigFile = "wnr-example.conf";
#endif
#if defined(WOLFSSL_MDK_ARM)
extern FILE * wolfSSL_fopen(const char *fname, const char *mode);
#define fopen wolfSSL_fopen
#endif
#if defined(__GNUC__) && defined(__x86_64__) && !defined(NO_ASM)
#define HAVE_GET_CYCLES
static INLINE word64 get_intel_cycles(void);
static THREAD_LS_T word64 total_cycles;
#define INIT_CYCLE_COUNTER
#define BEGIN_INTEL_CYCLES total_cycles = get_intel_cycles();
#define END_INTEL_CYCLES total_cycles = get_intel_cycles() - total_cycles;
#define SHOW_INTEL_CYCLES printf(" Cycles per byte = %6.2f", \
(float)total_cycles / (count*BENCH_SIZE));
#elif defined(LINUX_CYCLE_COUNT)
#include <linux/perf_event.h>
#include <sys/syscall.h>
#include <unistd.h>
static THREAD_LS_T word64 begin_cycles;
static THREAD_LS_T word64 total_cycles;
static THREAD_LS_T int cycles = -1;
static THREAD_LS_T struct perf_event_attr atr;
#define INIT_CYCLE_COUNTER do { \
atr.type = PERF_TYPE_HARDWARE; \
atr.config = PERF_COUNT_HW_CPU_CYCLES; \
cycles = (int)syscall(__NR_perf_event_open, &atr, 0, -1, -1, 0); \
} while (0);
#define BEGIN_INTEL_CYCLES read(cycles, &begin_cycles, sizeof(begin_cycles));
#define END_INTEL_CYCLES do { \
read(cycles, &total_cycles, sizeof(total_cycles)); \
total_cycles = total_cycles - begin_cycles; \
} while (0);
#define SHOW_INTEL_CYCLES printf(" Cycles per byte = %6.2f", \
(float)total_cycles / (count*BENCH_SIZE));
#else
#define INIT_CYCLE_COUNTER
#define BEGIN_INTEL_CYCLES
#define END_INTEL_CYCLES
#define SHOW_INTEL_CYCLES
#endif
/* let's use buffers, we have them */
#if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048)
#define USE_CERT_BUFFERS_2048
#endif
#if defined(USE_CERT_BUFFERS_1024) || defined(USE_CERT_BUFFERS_2048) \
|| !defined(NO_DH)
/* include test cert and key buffers for use with NO_FILESYSTEM */
#include <wolfssl/certs_test.h>
#endif
#ifdef HAVE_BLAKE2
#include <wolfssl/wolfcrypt/blake2.h>
void bench_blake2(void);
#endif
#ifdef _MSC_VER
/* 4996 warning to use MS extensions e.g., strcpy_s instead of strncpy */
#pragma warning(disable: 4996)
#endif
#include "wolfcrypt/benchmark/benchmark.h"
void bench_des(int);
void bench_idea(void);
void bench_arc4(int);
void bench_hc128(void);
void bench_rabbit(void);
void bench_chacha(void);
void bench_chacha20_poly1305_aead(void);
void bench_aescbc(int);
void bench_aesgcm(int);
void bench_aesccm(void);
void bench_aesctr(void);
void bench_poly1305(void);
void bench_camellia(void);
void bench_md5(int);
void bench_sha(int);
void bench_sha224(int);
void bench_sha256(int);
void bench_sha384(int);
void bench_sha512(int);
void bench_ripemd(void);
void bench_cmac(void);
void bench_scrypt(void);
void bench_rsaKeyGen(int);
void bench_rsa(int);
void bench_dh(int);
#ifdef HAVE_ECC
void bench_eccMakeKey(int);
void bench_ecc(int);
#ifdef HAVE_ECC_ENCRYPT
void bench_eccEncrypt(void);
#endif
#endif
#ifdef HAVE_CURVE25519
void bench_curve25519KeyGen(void);
#ifdef HAVE_CURVE25519_SHARED_SECRET
void bench_curve25519KeyAgree(void);
#endif /* HAVE_CURVE25519_SHARED_SECRET */
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED25519
void bench_ed25519KeyGen(void);
void bench_ed25519KeySign(void);
#endif
#ifdef HAVE_NTRU
void bench_ntru(void);
void bench_ntruKeyGen(void);
#endif
#ifndef WC_NO_RNG
void bench_rng(void);
#endif /* WC_NO_RNG */
#ifdef WOLFSSL_CURRTIME_REMAP
#define current_time WOLFSSL_CURRTIME_REMAP
#elif !defined(HAVE_STACK_SIZE)
double current_time(int);
#endif
#if defined(DEBUG_WOLFSSL) && !defined(HAVE_VALGRIND) && \
!defined(HAVE_STACK_SIZE)
WOLFSSL_API int wolfSSL_Debugging_ON();
WOLFSSL_API void wolfSSL_Debugging_OFF(void);
#endif
#if !defined(NO_RSA) || !defined(NO_DH) \
|| defined(WOLFSSL_KEYGEN) || defined(HAVE_ECC) \
|| defined(HAVE_CURVE25519) || defined(HAVE_ED25519)
#define HAVE_LOCAL_RNG
static THREAD_LS_T WC_RNG rng;
#endif
/* Asynchronous helper macros */
static THREAD_LS_T int devId = INVALID_DEVID;
#ifdef WOLFSSL_ASYNC_CRYPT
static THREAD_LS_T WOLF_EVENT_QUEUE eventQueue;
static THREAD_LS_T int asyncPending;
#define BENCH_ASYNC_GET_DEV(obj) (&(obj)->asyncDev)
#define BENCH_ASYNC_GET_NAME(doAsync) (doAsync) ? "HW" : "SW"
#define BENCH_ASYNC_IS_PEND() (asyncPending > 0)
#define BENCH_MAX_PENDING (WOLF_ASYNC_MAX_PENDING)
#ifndef WC_NO_ASYNC_THREADING
typedef struct ThreadData {
pthread_t thread_id;
} ThreadData;
static ThreadData* g_threadData;
static int g_threadCount;
#endif
static INLINE int bench_async_begin(void) {
/* init event queue */
asyncPending = 0;
return wolfEventQueue_Init(&eventQueue);
}
static INLINE void bench_async_end(void) {
/* free event queue */
wolfEventQueue_Free(&eventQueue);
}
static INLINE void bench_async_complete(int* ret, WC_ASYNC_DEV* asyncDev,
int* times)
{
*ret = asyncDev->event.ret;
if (*ret >= 0) {
(*times)++;
asyncDev->event.done = 0; /* reset done flag */
}
}
static INLINE int bench_async_check(int* ret, WC_ASYNC_DEV* asyncDev,
int callAgain, int* times, int limit)
{
int allowNext = 0;
/* if algo doesn't require calling again then use this flow */
if (!callAgain) {
if (asyncDev->event.done) {
/* operation completed */
bench_async_complete(ret, asyncDev, times);
}
}
/* if algo does require calling again then use this flow */
else {
if (asyncDev->event.done) {
allowNext = 1;
}
}
if (asyncDev->event.pending == 0 &&
(*times + asyncPending) < limit) {
allowNext = 1;
}
return allowNext;
}
static INLINE int bench_async_handle(int* ret, WC_ASYNC_DEV* asyncDev,
int callAgain, int* times)
{
if (*ret == WC_PENDING_E) {
*ret = wc_AsyncHandle(asyncDev, &eventQueue,
callAgain ? WC_ASYNC_FLAG_CALL_AGAIN : WC_ASYNC_FLAG_NONE);
if (*ret == 0)
asyncPending++;
}
else if (*ret >= 0) {
/* operation completed */
bench_async_complete(ret, asyncDev, times);
}
return (*ret >= 0) ? 1 : 0;
}
static INLINE void bench_async_poll(void)
{
/* poll until there are events done */
if (asyncPending > 0) {
int ret, asyncDone = 0;
do {
ret = wolfAsync_EventQueuePoll(&eventQueue, NULL, NULL, 0,
WOLF_POLL_FLAG_CHECK_HW, &asyncDone);
if (ret != 0) {
printf("Async poll failed %d\n", ret);
return;
}
} while (asyncDone == 0);
asyncPending -= asyncDone;
}
}
#else
#define BENCH_MAX_PENDING (1)
#define BENCH_ASYNC_GET_NAME(doAsync) ""
#define BENCH_ASYNC_GET_DEV(obj) NULL
#define BENCH_ASYNC_IS_PEND() (0)
#define bench_async_begin()
#define bench_async_end() (void)doAsync;
static INLINE int bench_async_check(int* ret, void* asyncDev,
int callAgain, int* times, int limit)
{
(void)ret;
(void)asyncDev;
(void)callAgain;
(void)times;
(void)limit;
return 1;
}
static INLINE int bench_async_handle(int* ret, void* asyncDev,
int callAgain, int* times)
{
(void)asyncDev;
(void)callAgain;
if (*ret >= 0) {
/* operation completed */
(*times)++;
return 1;
}
return 0;
}
#define bench_async_poll()
#endif /* WOLFSSL_ASYNC_CRYPT */
/* maximum runtime for each benchmark */
#define BENCH_MIN_RUNTIME_SEC 1.0f
#if defined(HAVE_AESGCM) || defined(HAVE_AESCCM)
#define AES_AUTH_ADD_SZ 13
#define AES_AUTH_TAG_SZ 16
#define BENCH_CIPHER_ADD AES_AUTH_TAG_SZ
#endif
#ifndef BENCH_CIPHER_ADD
#define BENCH_CIPHER_ADD 0
#endif
/* use kB instead of mB for embedded benchmarking */
#ifdef BENCH_EMBEDDED
enum BenchmarkBounds {
numBlocks = 25, /* how many kB to test (en/de)cryption */
scryptCnt = 1,
ntimes = 2,
genTimes = BENCH_MAX_PENDING,
agreeTimes = 2
};
static const char blockType[] = "kB"; /* used in printf output */
#define BENCH_SIZE (1024ul)
#else
enum BenchmarkBounds {
numBlocks = 5, /* how many megs to test (en/de)cryption */
scryptCnt = 10,
ntimes = 100,
genTimes = BENCH_MAX_PENDING, /* must be at least BENCH_MAX_PENDING */
agreeTimes = 100
};
static const char blockType[] = "megs"; /* used in printf output */
#define BENCH_SIZE (1024*1024ul)
#endif
/* globals for cipher tests */
#ifdef WOLFSSL_ASYNC_CRYPT
static byte* bench_plain = NULL;
static byte* bench_cipher = NULL;
#else
static byte bench_plain[BENCH_SIZE];
static byte bench_cipher[BENCH_SIZE];
#endif
static const XGEN_ALIGN byte bench_key_buf[] =
{
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,
0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10,
0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67,
0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef
};
static const XGEN_ALIGN byte bench_iv_buf[] =
{
0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef,
0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,
0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81
};
static byte* bench_key = (byte*)bench_key_buf;
static byte* bench_iv = (byte*)bench_iv_buf;
#ifdef WOLFSSL_STATIC_MEMORY
#ifdef BENCH_EMBEDDED
static byte gBenchMemory[50000];
#else
static byte gBenchMemory[400000];
#endif
#endif
/******************************************************************************/
/* Begin Stats Functions */
/******************************************************************************/
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
typedef enum bench_stat_type {
BENCH_STAT_ASYM,
BENCH_STAT_SYM,
} bench_stat_type_t;
typedef struct bench_stats {
struct bench_stats* next;
struct bench_stats* prev;
const char* algo;
const char* desc;
double perfsec;
int strength;
int doAsync;
int finishCount;
bench_stat_type_t type;
} bench_stats_t;
static bench_stats_t* bench_stats_head;
static bench_stats_t* bench_stats_tail;
static pthread_mutex_t bench_lock = PTHREAD_MUTEX_INITIALIZER;
static bench_stats_t* bench_stats_add(bench_stat_type_t type,
const char* algo, int strength, const char* desc, int doAsync,
double perfsec)
{
bench_stats_t* stat;
pthread_mutex_lock(&bench_lock);
/* locate existing in list */
for (stat = bench_stats_head; stat != NULL; stat = stat->next) {
/* match based on algo, strength and desc */
if (stat->algo == algo && stat->strength == strength && stat->desc == desc && stat->doAsync == doAsync) {
break;
}
}
if (stat == NULL) {
/* allocate new and put on list */
stat = (bench_stats_t*)XMALLOC(sizeof(bench_stats_t), NULL, DYNAMIC_TYPE_INFO);
if (stat) {
XMEMSET(stat, 0, sizeof(bench_stats_t));
/* add to list */
stat->next = NULL;
if (bench_stats_tail == NULL) {
bench_stats_head = stat;
}
else {
bench_stats_tail->next = stat;
stat->prev = bench_stats_tail;
}
bench_stats_tail = stat; /* add to the end either way */
}
}
if (stat) {
int isLast = 0;
stat->type = type;
stat->algo = algo;
stat->strength = strength;
stat->desc = desc;
stat->doAsync = doAsync;
stat->perfsec += perfsec;
stat->finishCount++;
if (stat->finishCount == g_threadCount) {
isLast = 1;
}
pthread_mutex_unlock(&bench_lock);
/* wait until remaining are complete */
while (stat->finishCount < g_threadCount) {
wc_AsyncThreadYield();
}
/* print final stat */
if (isLast) {
if (stat->type == BENCH_STAT_SYM) {
printf("%-8s%s %8.3f MB/s\n", stat->desc,
BENCH_ASYNC_GET_NAME(stat->doAsync), stat->perfsec);
}
else {
printf("%-5s %4d %-9s %s %.3f ops/sec\n",
stat->algo, stat->strength, stat->desc,
BENCH_ASYNC_GET_NAME(stat->doAsync), stat->perfsec);
}
}
(void)blockType;
}
else {
pthread_mutex_unlock(&bench_lock);
}
return stat;
}
#endif /* WOLFSSL_ASYNC_CRYPT && !WC_NO_ASYNC_THREADING */
static INLINE void bench_stats_init(void)
{
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
bench_stats_head = NULL;
bench_stats_tail = NULL;
#endif
INIT_CYCLE_COUNTER
}
static INLINE void bench_stats_start(int* count, double* start)
{
*count = 0;
*start = current_time(1);
BEGIN_INTEL_CYCLES
}
static INLINE int bench_stats_sym_check(double start)
{
return ((current_time(0) - start) < BENCH_MIN_RUNTIME_SEC);
}
static void bench_stats_sym_finish(const char* desc, int doAsync, int count, double start)
{
double total, persec = 0;
END_INTEL_CYCLES
total = current_time(0) - start;
if (count > 0)
persec = 1 / total * count;
#ifdef BENCH_EMBEDDED
/* since using kB, convert to MB/s */
persec = persec / 1024;
#endif
printf("%-8s%s %5d %s took %5.3f seconds, %8.3f MB/s",
desc, BENCH_ASYNC_GET_NAME(doAsync), count, blockType, total, persec);
SHOW_INTEL_CYCLES
printf("\n");
(void)doAsync;
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
/* Add to thread stats */
bench_stats_add(BENCH_STAT_SYM, NULL, 0, desc, doAsync, persec);
#endif
}
/* declare here rather than creating a static function to avoid warning of not
* used in the case of something like a leanpsk only build */
void bench_stats_asym_finish(const char* algo, int strength,
const char* desc, int doAsync, int count, double start);
void bench_stats_asym_finish(const char* algo, int strength,
const char* desc, int doAsync, int count, double start)
{
double total, each = 0, opsSec, milliEach;
total = current_time(0) - start;
if (count > 0)
each = total / count; /* per second */
opsSec = count / total; /* ops/per second */
milliEach = each * 1000; /* milliseconds */
printf("%-5s %4d %-9s %s %6d ops took %5.3f sec, avg %5.3f ms,"
" %.3f ops/sec\n", algo, strength, desc, BENCH_ASYNC_GET_NAME(doAsync),
count, total, milliEach, opsSec);
(void)doAsync;
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
/* Add to thread stats */
bench_stats_add(BENCH_STAT_ASYM, algo, strength, desc, doAsync, opsSec);
#endif
}
static INLINE void bench_stats_free(void)
{
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
bench_stats_t* stat;
for (stat = bench_stats_head; stat != NULL; ) {
bench_stats_t* next = stat->next;
XFREE(stat, NULL, DYNAMIC_TYPE_INFO);
stat = next;
}
bench_stats_head = NULL;
bench_stats_tail = NULL;
#endif
}
/******************************************************************************/
/* End Stats Functions */
/******************************************************************************/
static void* benchmarks_do(void* args)
{
#ifdef WOLFSSL_ASYNC_CRYPT
#ifndef WC_NO_ASYNC_THREADING
ThreadData* threadData = (ThreadData*)args;
if (wolfAsync_DevOpenThread(&devId, &threadData->thread_id) < 0)
#else
if (wolfAsync_DevOpen(&devId) < 0)
#endif
{
printf("Async device open failed\nRunning without async\n");
}
#endif /* WOLFSSL_ASYNC_CRYPT */
(void)args;
#if defined(HAVE_LOCAL_RNG)
{
int rngRet;
#ifndef HAVE_FIPS
rngRet = wc_InitRng_ex(&rng, HEAP_HINT, INVALID_DEVID);
#else
rngRet = wc_InitRng(&rng);
#endif
if (rngRet < 0) {
printf("InitRNG failed\n");
}
}
#endif
#ifndef WC_NO_RNG
bench_rng();
#endif /* WC_NO_RNG */
#ifndef NO_AES
#ifdef HAVE_AES_CBC
#ifndef NO_SW_BENCH
bench_aescbc(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
bench_aescbc(1);
#endif
#endif
#ifdef HAVE_AESGCM
#ifndef NO_SW_BENCH
bench_aesgcm(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_AES)
bench_aesgcm(1);
#endif
#endif
#ifdef WOLFSSL_AES_COUNTER
bench_aesctr();
#endif
#ifdef HAVE_AESCCM
bench_aesccm();
#endif
#endif /* !NO_AES */
#ifdef HAVE_CAMELLIA
bench_camellia();
#endif
#ifndef NO_RC4
#ifndef NO_SW_BENCH
bench_arc4(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ARC4)
bench_arc4(1);
#endif
#endif
#ifdef HAVE_HC128
bench_hc128();
#endif
#ifndef NO_RABBIT
bench_rabbit();
#endif
#ifdef HAVE_CHACHA
bench_chacha();
#endif
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
bench_chacha20_poly1305_aead();
#endif
#ifndef NO_DES3
#ifndef NO_SW_BENCH
bench_des(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_3DES)
bench_des(1);
#endif
#endif
#ifdef HAVE_IDEA
bench_idea();
#endif
#ifndef NO_MD5
#ifndef NO_SW_BENCH
bench_md5(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_MD5)
bench_md5(1);
#endif
#endif
#ifdef HAVE_POLY1305
bench_poly1305();
#endif
#ifndef NO_SHA
#ifndef NO_SW_BENCH
bench_sha(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA)
bench_sha(1);
#endif
#endif
#ifdef WOLFSSL_SHA224
#ifndef NO_SW_BENCH
bench_sha224(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA224)
bench_sha224(1);
#endif
#endif
#ifndef NO_SHA256
#ifndef NO_SW_BENCH
bench_sha256(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA256)
bench_sha256(1);
#endif
#endif
#ifdef WOLFSSL_SHA384
#ifndef NO_SW_BENCH
bench_sha384(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA384)
bench_sha384(1);
#endif
#endif
#ifdef WOLFSSL_SHA512
#ifndef NO_SW_BENCH
bench_sha512(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_SHA512)
bench_sha512(1);
#endif
#endif
#ifdef WOLFSSL_RIPEMD
bench_ripemd();
#endif
#ifdef HAVE_BLAKE2
bench_blake2();
#endif
#ifdef WOLFSSL_CMAC
bench_cmac();
#endif
#ifdef HAVE_SCRYPT
bench_scrypt();
#endif
#ifndef NO_RSA
#ifdef WOLFSSL_KEY_GEN
#ifndef NO_SW_BENCH
bench_rsaKeyGen(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
/* async supported in simulator only */
#ifdef WOLFSSL_ASYNC_CRYPT_TEST
bench_rsaKeyGen(1);
#endif
#endif
#endif
#ifndef NO_SW_BENCH
bench_rsa(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_RSA)
bench_rsa(1);
#endif
#endif
#ifndef NO_DH
#ifndef NO_SW_BENCH
bench_dh(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_DH)
bench_dh(1);
#endif
#endif
#ifdef HAVE_NTRU
bench_ntru();
bench_ntruKeyGen();
#endif
#ifdef HAVE_ECC
#ifndef NO_SW_BENCH
bench_eccMakeKey(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ECC)
/* async supported in simulator only */
#ifdef WOLFSSL_ASYNC_CRYPT_TEST
bench_eccMakeKey(1);
#endif
#endif
#ifndef NO_SW_BENCH
bench_ecc(0);
#endif
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(WC_ASYNC_ENABLE_ECC)
bench_ecc(1);
#endif
#ifdef HAVE_ECC_ENCRYPT
bench_eccEncrypt();
#endif
#endif
#ifdef HAVE_CURVE25519
bench_curve25519KeyGen();
#ifdef HAVE_CURVE25519_SHARED_SECRET
bench_curve25519KeyAgree();
#endif
#endif
#ifdef HAVE_ED25519
bench_ed25519KeyGen();
bench_ed25519KeySign();
#endif
#if defined(HAVE_LOCAL_RNG)
wc_FreeRng(&rng);
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
wolfAsync_DevClose(&devId);
#endif
return NULL;
}
/* so embedded projects can pull in tests on their own */
#ifdef HAVE_STACK_SIZE
THREAD_RETURN WOLFSSL_THREAD benchmark_test(void* args)
#else
int benchmark_test(void *args)
#endif
{
int ret = 0;
#ifdef WOLFSSL_STATIC_MEMORY
ret = wc_LoadStaticMemory(&HEAP_HINT, gBenchMemory, sizeof(gBenchMemory),
WOLFMEM_GENERAL, 1);
if (ret != 0) {
printf("unable to load static memory %d\n", ret);
EXIT_TEST(EXIT_FAILURE);
}
#endif /* WOLFSSL_STATIC_MEMORY */
(void)args;
wolfCrypt_Init();
bench_stats_init();
#if defined(DEBUG_WOLFSSL) && !defined(HAVE_VALGRIND)
wolfSSL_Debugging_ON();
#endif
printf("wolfCrypt Benchmark (min %.1f sec each)\n", BENCH_MIN_RUNTIME_SEC);
#ifdef HAVE_WNR
ret = wc_InitNetRandom(wnrConfigFile, NULL, 5000);
if (ret != 0) {
printf("Whitewood netRandom config init failed %d\n", ret);
EXIT_TEST(EXIT_FAILURE);
}
#endif /* HAVE_WNR */
/* setup bench plain, cipher, key and iv globals */
#ifdef WOLFSSL_ASYNC_CRYPT
bench_plain = (byte*)XMALLOC(BENCH_SIZE+BENCH_CIPHER_ADD, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_cipher = (byte*)XMALLOC(BENCH_SIZE+BENCH_CIPHER_ADD, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_key = (byte*)XMALLOC(sizeof(bench_key_buf), HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
bench_iv = (byte*)XMALLOC(sizeof(bench_iv_buf), HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
if (bench_plain == NULL || bench_cipher == NULL || bench_key == NULL || bench_iv == NULL) {
printf("Benchmark cipher buffer alloc failed!\n");
EXIT_TEST(EXIT_FAILURE);
}
XMEMCPY(bench_key, bench_key_buf, sizeof(bench_key_buf));
XMEMCPY(bench_iv, bench_iv_buf, sizeof(bench_iv_buf));
XMEMSET(bench_plain, 0, BENCH_SIZE+BENCH_CIPHER_ADD);
XMEMSET(bench_cipher, 0, BENCH_SIZE+BENCH_CIPHER_ADD);
#endif
(void)bench_plain;
(void)bench_cipher;
(void)bench_key;
(void)bench_iv;
#if defined(WOLFSSL_ASYNC_CRYPT) && !defined(WC_NO_ASYNC_THREADING)
{
int i;
int numCpus = wc_AsyncGetNumberOfCpus();
printf("CPUs: %d\n", numCpus);
g_threadData = (ThreadData*)XMALLOC(sizeof(ThreadData) * numCpus,
HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);
if (g_threadData == NULL) {
printf("Thread data alloc failed!\n");
EXIT_TEST(EXIT_FAILURE);
}
g_threadCount = numCpus;
/* Create threads */
for (i = 0; i < numCpus; i++) {
ret = wc_AsyncThreadCreate(&g_threadData[i].thread_id,
benchmarks_do, &g_threadData[i]);
if (ret != 0) {
printf("Error creating benchmark thread %d\n", ret);
EXIT_TEST(EXIT_FAILURE);
}
}
/* Start threads */
for (i = 0; i < numCpus; i++) {
wc_AsyncThreadJoin(&g_threadData[i].thread_id);
}
XFREE(g_threadData, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);
}
#else
benchmarks_do(NULL);
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
XFREE(bench_plain, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_cipher, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_key, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
XFREE(bench_iv, HEAP_HINT, DYNAMIC_TYPE_WOLF_BIGINT);
#endif
#ifdef HAVE_WNR
ret = wc_FreeNetRandom();
if (ret < 0) {
printf("Failed to free netRandom context %d\n", ret);
EXIT_TEST(EXIT_FAILURE);
}
#endif
bench_stats_free();
if (wolfCrypt_Cleanup() != 0) {
printf("error with wolfCrypt_Cleanup\n");
}
EXIT_TEST(ret);
}
#ifndef WC_NO_RNG
void bench_rng(void)
{
int ret, i, count;
double start;
int pos, len, remain;
WC_RNG myrng;
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(&myrng, HEAP_HINT, devId);
#else
ret = wc_InitRng(&myrng);
#endif
if (ret < 0) {
printf("InitRNG failed %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
/* Split request to handle large RNG request */
pos = 0;
remain = (int)BENCH_SIZE;
while (remain > 0) {
len = remain;
if (len > RNG_MAX_BLOCK_LEN)
len = RNG_MAX_BLOCK_LEN;
ret = wc_RNG_GenerateBlock(&myrng, &bench_plain[pos], len);
if (ret < 0)
goto exit_rng;
remain -= len;
pos += len;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_rng:
bench_stats_sym_finish("RNG", 0, count, start);
if (ret < 0) {
printf("wc_RNG_GenerateBlock failed %d\n", ret);
}
wc_FreeRng(&myrng);
}
#endif /* WC_NO_RNG */
#ifndef NO_AES
#ifdef HAVE_AES_CBC
void bench_aescbc(int doAsync)
{
int ret, i, count = 0, times;
Aes enc[BENCH_MAX_PENDING];
double start;
bench_async_begin();
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_AesInit(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("AesInit failed, ret = %d\n", ret);
goto exit;
}
ret = wc_AesSetKey(&enc[i], bench_key, 16, bench_iv, AES_ENCRYPTION);
if (ret != 0) {
printf("AesSetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks)) {
ret = wc_AesCbcEncrypt(&enc[i], bench_plain, bench_cipher,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times)) {
goto exit_aes_enc;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_enc:
bench_stats_sym_finish("AES-Enc", doAsync, count, start);
if (ret < 0) {
goto exit;
}
#ifdef HAVE_AES_DECRYPT
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_AesSetKey(&enc[i], bench_key, 16, bench_iv, AES_DECRYPTION);
if (ret != 0) {
printf("AesSetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks)) {
ret = wc_AesCbcDecrypt(&enc[i], bench_plain, bench_cipher,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times)) {
goto exit_aes_dec;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_dec:
bench_stats_sym_finish("AES-Dec", doAsync, count, start);
#endif /* HAVE_AES_DECRYPT */
exit:
if (ret < 0) {
printf("bench_aescbc failed: %d\n", ret);
}
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_AesFree(&enc[i]);
}
bench_async_end();
}
#endif /* HAVE_AES_CBC */
#ifdef HAVE_AESGCM
void bench_aesgcm(int doAsync)
{
int ret, i, count = 0, times;
Aes enc[BENCH_MAX_PENDING];
double start;
DECLARE_VAR(bench_additional, byte, AES_AUTH_ADD_SZ, HEAP_HINT);
DECLARE_VAR(bench_tag, byte, AES_AUTH_TAG_SZ, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
#ifdef WOLFSSL_ASYNC_CRYPT
if (bench_additional)
#endif
{ XMEMSET(bench_additional, 0, AES_AUTH_ADD_SZ); }
#ifdef WOLFSSL_ASYNC_CRYPT
if (bench_tag)
#endif
{ XMEMSET(bench_tag, 0, AES_AUTH_TAG_SZ); }
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_AesInit(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("AesInit failed, ret = %d\n", ret);
goto exit;
}
ret = wc_AesGcmSetKey(&enc[i], bench_key, 16);
if (ret != 0) {
printf("AesGcmSetKey failed, ret = %d\n", ret);
goto exit;
}
}
/* GCM uses same routine in backend for both encrypt and decrypt */
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks)) {
ret = wc_AesGcmEncrypt(&enc[i], bench_cipher,
bench_plain, BENCH_SIZE,
bench_iv, 12, bench_tag, AES_AUTH_TAG_SZ,
bench_additional, AES_AUTH_ADD_SZ);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times)) {
goto exit_aes_gcm;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_aes_gcm:
bench_stats_sym_finish("AES-GCM", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_aesgcm failed: %d\n", ret);
}
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_AesFree(&enc[i]);
}
FREE_VAR(bench_additional, HEAP_HINT);
FREE_VAR(bench_tag, HEAP_HINT);
bench_async_end();
}
#endif /* HAVE_AESGCM */
#ifdef WOLFSSL_AES_COUNTER
void bench_aesctr(void)
{
Aes enc;
double start;
int i, count;
wc_AesSetKeyDirect(&enc, bench_key, AES_BLOCK_SIZE, bench_iv, AES_ENCRYPTION);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_AesCtrEncrypt(&enc, bench_plain, bench_cipher, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-CTR", 0, count, start);
}
#endif /* WOLFSSL_AES_COUNTER */
#ifdef HAVE_AESCCM
void bench_aesccm(void)
{
Aes enc;
double start;
int ret, i, count;
DECLARE_VAR(bench_additional, byte, AES_AUTH_ADD_SZ, HEAP_HINT);
DECLARE_VAR(bench_tag, byte, AES_AUTH_TAG_SZ, HEAP_HINT);
if ((ret = wc_AesCcmSetKey(&enc, bench_key, 16)) != 0) {
printf("wc_AesCcmSetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_AesCcmEncrypt(&enc, bench_cipher, bench_plain, BENCH_SIZE,
bench_iv, 12, bench_tag, AES_AUTH_TAG_SZ,
bench_additional, AES_AUTH_ADD_SZ);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-CCM", 0, count, start);
FREE_VAR(bench_additional, HEAP_HINT);
FREE_VAR(bench_tag, HEAP_HINT);
}
#endif /* HAVE_AESCCM */
#endif /* !NO_AES */
#ifdef HAVE_POLY1305
void bench_poly1305()
{
Poly1305 enc;
byte mac[16];
double start;
int ret, i, count;
ret = wc_Poly1305SetKey(&enc, bench_key, 32);
if (ret != 0) {
printf("Poly1305SetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_Poly1305Update(&enc, bench_plain, BENCH_SIZE);
if (ret != 0) {
printf("Poly1305Update failed: %d\n", ret);
break;
}
}
wc_Poly1305Final(&enc, mac);
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("POLY1305", 0, count, start);
}
#endif /* HAVE_POLY1305 */
#ifdef HAVE_CAMELLIA
void bench_camellia(void)
{
Camellia cam;
double start;
int ret, i, count;
ret = wc_CamelliaSetKey(&cam, bench_key, 16, bench_iv);
if (ret != 0) {
printf("CamelliaSetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_CamelliaCbcEncrypt(&cam, bench_plain, bench_cipher,
BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("Camellia", 0, count, start);
}
#endif
#ifndef NO_DES3
void bench_des(int doAsync)
{
int ret, i, count = 0, times;
Des3 enc[BENCH_MAX_PENDING];
double start;
bench_async_begin();
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_Des3Init(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("Des3Init failed, ret = %d\n", ret);
goto exit;
}
ret = wc_Des3_SetKey(&enc[i], bench_key, bench_iv, DES_ENCRYPTION);
if (ret != 0) {
printf("Des3_SetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks)) {
ret = wc_Des3_CbcEncrypt(&enc[i], bench_plain, bench_cipher,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times)) {
goto exit_3des;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_3des:
bench_stats_sym_finish("3DES", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_des failed: %d\n", ret);
}
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Des3Free(&enc[i]);
}
bench_async_end();
}
#endif /* !NO_DES3 */
#ifdef HAVE_IDEA
void bench_idea(void)
{
Idea enc;
double start;
int ret, i, count;
ret = wc_IdeaSetKey(&enc, bench_key, IDEA_KEY_SIZE, bench_iv,
IDEA_ENCRYPTION);
if (ret != 0) {
printf("Des3_SetKey failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_IdeaCbcEncrypt(&enc, bench_plain, bench_cipher, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("IDEA", 0, count, start);
}
#endif /* HAVE_IDEA */
#ifndef NO_RC4
void bench_arc4(int doAsync)
{
int ret, i, count = 0, times;
Arc4 enc[BENCH_MAX_PENDING];
double start;
bench_async_begin();
/* clear for done cleanup */
XMEMSET(enc, 0, sizeof(enc));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if ((ret = wc_Arc4Init(&enc[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) != 0) {
printf("Arc4Init failed, ret = %d\n", ret);
goto exit;
}
ret = wc_Arc4SetKey(&enc[i], bench_key, 16);
if (ret != 0) {
printf("Arc4SetKey failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times, numBlocks)) {
ret = wc_Arc4Process(&enc[i], bench_cipher, bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&enc[i]), 0, &times)) {
goto exit_arc4;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_arc4:
bench_stats_sym_finish("ARC4", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_arc4 failed: %d\n", ret);
}
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Arc4Free(&enc[i]);
}
bench_async_end();
}
#endif /* !NO_RC4 */
#ifdef HAVE_HC128
void bench_hc128(void)
{
HC128 enc;
double start;
int i, count;
wc_Hc128_SetKey(&enc, bench_key, bench_iv);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_Hc128_Process(&enc, bench_cipher, bench_plain, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("HC128", 0, count, start);
}
#endif /* HAVE_HC128 */
#ifndef NO_RABBIT
void bench_rabbit(void)
{
Rabbit enc;
double start;
int i, count;
wc_RabbitSetKey(&enc, bench_key, bench_iv);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_RabbitProcess(&enc, bench_cipher, bench_plain, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("RABBIT", 0, count, start);
}
#endif /* NO_RABBIT */
#ifdef HAVE_CHACHA
void bench_chacha(void)
{
ChaCha enc;
double start;
int i, count;
wc_Chacha_SetKey(&enc, bench_key, 16);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_Chacha_SetIV(&enc, bench_iv, 0);
wc_Chacha_Process(&enc, bench_cipher, bench_plain, BENCH_SIZE);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("CHACHA", 0, count, start);
}
#endif /* HAVE_CHACHA*/
#if defined(HAVE_CHACHA) && defined(HAVE_POLY1305)
void bench_chacha20_poly1305_aead(void)
{
double start;
int ret, i, count;
byte authTag[CHACHA20_POLY1305_AEAD_AUTHTAG_SIZE];
XMEMSET(authTag, 0, sizeof(authTag));
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_ChaCha20Poly1305_Encrypt(bench_key, bench_iv, NULL, 0,
bench_plain, BENCH_SIZE, bench_cipher, authTag);
if (ret < 0) {
printf("wc_ChaCha20Poly1305_Encrypt error: %d\n", ret);
break;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("CHA-POLY", 0, count, start);
}
#endif /* HAVE_CHACHA && HAVE_POLY1305 */
#ifndef NO_MD5
void bench_md5(int doAsync)
{
Md5 hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, MD5_DIGEST_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitMd5_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitMd5_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Md5Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_md5;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Md5Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_md5;
}
}
} /* for i */
} while (BENCH_ASYNC_IS_PEND());
} while (bench_stats_sym_check(start));
exit_md5:
bench_stats_sym_finish("MD5", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_md5 failed: %d\n", ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Md5Free(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif /* !NO_MD5 */
#ifndef NO_SHA
void bench_sha(int doAsync)
{
Sha hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA_DIGEST_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_ShaUpdate(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_ShaFinal(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha;
}
}
} /* for i */
} while (BENCH_ASYNC_IS_PEND());
} while (bench_stats_sym_check(start));
exit_sha:
bench_stats_sym_finish("SHA", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_sha failed: %d\n", ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_ShaFree(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif /* NO_SHA */
#ifdef WOLFSSL_SHA224
void bench_sha224(int doAsync)
{
Sha224 hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA224_DIGEST_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha224_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha224_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha224Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha224;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha224Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha224;
}
}
} /* for i */
} while (BENCH_ASYNC_IS_PEND());
} while (bench_stats_sym_check(start));
exit_sha224:
bench_stats_sym_finish("SHA-224", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_sha224 failed: %d\n", ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha224Free(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif
#ifndef NO_SHA256
void bench_sha256(int doAsync)
{
Sha256 hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA256_DIGEST_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha256_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha256_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha256Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha256;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha256Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha256;
}
}
} /* for i */
} while (BENCH_ASYNC_IS_PEND());
} while (bench_stats_sym_check(start));
exit_sha256:
bench_stats_sym_finish("SHA-256", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_sha256 failed: %d\n", ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha256Free(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif
#ifdef WOLFSSL_SHA384
void bench_sha384(int doAsync)
{
Sha384 hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA384_DIGEST_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha384_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha384_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha384Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha384;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha384Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha384;
}
}
} /* for i */
} while (BENCH_ASYNC_IS_PEND());
} while (bench_stats_sym_check(start));
exit_sha384:
bench_stats_sym_finish("SHA-384", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_sha384 failed: %d\n", ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha384Free(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif
#ifdef WOLFSSL_SHA512
void bench_sha512(int doAsync)
{
Sha512 hash[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, SHA512_DIGEST_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(hash, 0, sizeof(hash));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
ret = wc_InitSha512_ex(&hash[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0) {
printf("InitSha512_ex failed, ret = %d\n", ret);
goto exit;
}
}
bench_stats_start(&count, &start);
do {
for (times = 0; times < numBlocks || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha512Update(&hash[i], bench_plain,
BENCH_SIZE);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha512;
}
}
} /* for i */
} /* for times */
count += times;
times = 0;
do {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times, numBlocks)) {
ret = wc_Sha512Final(&hash[i], digest[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&hash[i]), 0, &times)) {
goto exit_sha512;
}
}
} /* for i */
} while (BENCH_ASYNC_IS_PEND());
} while (bench_stats_sym_check(start));
exit_sha512:
bench_stats_sym_finish("SHA-512", doAsync, count, start);
exit:
if (ret < 0) {
printf("bench_sha512 failed: %d\n", ret);
}
#ifdef WOLFSSL_ASYNC_CRYPT
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_Sha512Free(&hash[i]);
}
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif
#ifdef WOLFSSL_RIPEMD
void bench_ripemd(void)
{
RipeMd hash;
byte digest[RIPEMD_DIGEST_SIZE];
double start;
int i, count;
wc_InitRipeMd(&hash);
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
wc_RipeMdUpdate(&hash, bench_plain, BENCH_SIZE);
}
wc_RipeMdFinal(&hash, digest);
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("RIPEMD", 0, count, start);
}
#endif
#ifdef HAVE_BLAKE2
void bench_blake2(void)
{
Blake2b b2b;
byte digest[64];
double start;
int ret, i, count;
ret = wc_InitBlake2b(&b2b, 64);
if (ret != 0) {
printf("InitBlake2b failed, ret = %d\n", ret);
return;
}
bench_stats_start(&count, &start);
do {
for (i = 0; i < numBlocks; i++) {
ret = wc_Blake2bUpdate(&b2b, bench_plain, BENCH_SIZE);
if (ret != 0) {
printf("Blake2bUpdate failed, ret = %d\n", ret);
return;
}
}
ret = wc_Blake2bFinal(&b2b, digest, 64);
if (ret != 0) {
printf("Blake2bFinal failed, ret = %d\n", ret);
return;
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("BLAKE2b", 0, count, start);
}
#endif
#ifdef WOLFSSL_CMAC
void bench_cmac(void)
{
Cmac cmac;
byte digest[AES_BLOCK_SIZE];
word32 digestSz = sizeof(digest);
double start;
int ret, i, count;
bench_stats_start(&count, &start);
do {
ret = wc_InitCmac(&cmac, bench_key, 16, WC_CMAC_AES, NULL);
if (ret != 0) {
printf("InitCmac failed, ret = %d\n", ret);
return;
}
for (i = 0; i < numBlocks; i++) {
ret = wc_CmacUpdate(&cmac, bench_plain, BENCH_SIZE);
if (ret != 0) {
printf("CmacUpdate failed, ret = %d\n", ret);
return;
}
}
/* Note: final force zero's the Cmac struct */
ret = wc_CmacFinal(&cmac, digest, &digestSz);
if (ret != 0) {
printf("CmacFinal failed, ret = %d\n", ret);
return;
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_sym_finish("AES-CMAC", 0, count, start);
}
#endif /* WOLFSSL_CMAC */
#ifdef HAVE_SCRYPT
void bench_scrypt(void)
{
byte derived[64];
double start;
int ret, i, count;
bench_stats_start(&count, &start);
do {
for (i = 0; i < scryptCnt; i++) {
ret = wc_scrypt(derived, (byte*)"pleaseletmein", 13,
(byte*)"SodiumChloride", 14, 14, 8, 1, sizeof(derived));
if (ret != 0) {
printf("scrypt failed, ret = %d\n", ret);
goto exit;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("scrypt", 0, "", 0, count, start);
}
#endif /* HAVE_SCRYPT */
#ifndef NO_RSA
#if defined(WOLFSSL_KEY_GEN)
void bench_rsaKeyGen(int doAsync)
{
RsaKey genKey[BENCH_MAX_PENDING];
double start;
int ret, i, count = 0, times;
int k, keySz;
const int keySizes[2] = {1024, 2048};
const long rsa_e_val = 65537;
bench_async_begin();
/* clear for done cleanup */
XMEMSET(genKey, 0, sizeof(genKey));
for (k = 0; k < (int)(sizeof(keySizes)/sizeof(int)); k++) {
keySz = keySizes[k];
bench_stats_start(&count, &start);
do {
/* while free pending slots in queue, submit ops */
for (times = 0; times < genTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times, genTimes)) {
wc_FreeRsaKey(&genKey[i]);
ret = wc_InitRsaKey_ex(&genKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret < 0) {
goto exit;
}
ret = wc_MakeRsaKey(&genKey[i], keySz, rsa_e_val, &rng);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("RSA", keySz, "key gen", doAsync, count, start);
if (ret < 0) {
printf("bench_rsaKeyGen failed: %d\n", ret);
break;
}
}
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_FreeRsaKey(&genKey[i]);
}
bench_async_end();
}
#endif /* WOLFSSL_KEY_GEN */
#if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048)
#if defined(WOLFSSL_MDK_SHELL)
static char *certRSAname = "certs/rsa2048.der";
/* set by shell command */
static void set_Bench_RSA_File(char * cert) { certRSAname = cert ; }
#elif defined(FREESCALE_MQX)
static char *certRSAname = "a:\\certs\\rsa2048.der";
#else
static const char *certRSAname = "certs/rsa2048.der";
#endif
#endif
#define RSA_BUF_SIZE 256 /* for up to 2048 bit */
void bench_rsa(int doAsync)
{
int ret, i, times, count = 0;
size_t bytes;
word32 idx = 0;
const byte* tmp;
const char* messageStr = "Everyone gets Friday off.";
const int len = (int)XSTRLEN((char*)messageStr);
double start = 0.0f;
RsaKey rsaKey[BENCH_MAX_PENDING];
int rsaKeySz = RSA_BUF_SIZE * 8; /* used in printf */
DECLARE_VAR_INIT(message, byte, len, messageStr, HEAP_HINT);
DECLARE_ARRAY(enc, byte, BENCH_MAX_PENDING, RSA_BUF_SIZE, HEAP_HINT);
DECLARE_ARRAY(out, byte, BENCH_MAX_PENDING, RSA_BUF_SIZE, HEAP_HINT);
#ifdef USE_CERT_BUFFERS_1024
tmp = rsa_key_der_1024;
bytes = sizeof_rsa_key_der_1024;
rsaKeySz = 1024;
#elif defined(USE_CERT_BUFFERS_2048)
tmp = rsa_key_der_2048;
bytes = sizeof_rsa_key_der_2048;
#else
#error "need a cert buffer size"
#endif /* USE_CERT_BUFFERS */
bench_async_begin();
/* clear for done cleanup */
XMEMSET(rsaKey, 0, sizeof(rsaKey));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
/* setup an async context for each key */
if ((ret = wc_InitRsaKey_ex(&rsaKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) < 0) {
goto exit;
}
#ifdef WC_RSA_BLINDING
ret = wc_RsaSetRNG(&rsaKey[i], &rng);
if (ret != 0)
goto exit;
#endif
/* decode the private key */
idx = 0;
if ((ret = wc_RsaPrivateKeyDecode(tmp, &idx, &rsaKey[i],
(word32)bytes)) != 0) {
printf("wc_RsaPrivateKeyDecode failed! %d\n", ret);
goto exit;
}
}
/* begin public RSA */
bench_stats_start(&count, &start);
do {
for (times = 0; times < ntimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, ntimes)) {
ret = wc_RsaPublicEncrypt(message, len, enc[i],
RSA_BUF_SIZE, &rsaKey[i], &rng);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times)) {
goto exit_rsa_pub;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_rsa_pub:
bench_stats_asym_finish("RSA", rsaKeySz, "public", doAsync, count, start);
if (ret < 0) {
goto exit;
}
#ifdef WOLFSSL_ASYNC_CRYPT
/* Clear events */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
XMEMSET(&rsaKey[i].asyncDev.event, 0, sizeof(WOLF_EVENT));
}
asyncPending = 0;
#endif
/* capture resulting encrypt length */
idx = RSA_BUF_SIZE; /* fixed at 2048 bit */
/* begin private async RSA */
bench_stats_start(&count, &start);
do {
for (times = 0; times < ntimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times, ntimes)) {
ret = wc_RsaPrivateDecrypt(enc[i], idx, out[i],
RSA_BUF_SIZE, &rsaKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&rsaKey[i]), 1, &times)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("RSA", rsaKeySz, "private", doAsync, count, start);
if (ret < 0) {
printf("bench_rsa failed: %d\n", ret);
}
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_FreeRsaKey(&rsaKey[i]);
}
FREE_ARRAY(enc, BENCH_MAX_PENDING, HEAP_HINT);
FREE_ARRAY(out, BENCH_MAX_PENDING, HEAP_HINT);
FREE_VAR(message, HEAP_HINT);
bench_async_end();
}
#endif /* !NO_RSA */
#ifndef NO_DH
#if !defined(USE_CERT_BUFFERS_1024) && !defined(USE_CERT_BUFFERS_2048)
#if defined(WOLFSSL_MDK_SHELL)
static char *certDHname = "certs/dh2048.der";
/* set by shell command */
void set_Bench_DH_File(char * cert) { certDHname = cert ; }
#elif defined(FREESCALE_MQX)
static char *certDHname = "a:\\certs\\dh2048.der";
#elif defined(NO_ASN)
/* do nothing, but don't need a file */
#else
static const char *certDHname = "certs/dh2048.der";
#endif
#endif
#define BENCH_DH_KEY_SIZE 256 /* for 2048 bit */
#define BENCH_DH_PRIV_SIZE (BENCH_DH_KEY_SIZE/8)
void bench_dh(int doAsync)
{
int ret, i;
int count = 0, times;
const byte* tmp = NULL;
double start = 0.0f;
DhKey dhKey[BENCH_MAX_PENDING];
int dhKeySz = 2048; /* used in printf */
#ifndef NO_ASN
size_t bytes;
word32 idx;
#endif
word32 pubSz[BENCH_MAX_PENDING];
word32 privSz[BENCH_MAX_PENDING];
word32 pubSz2;
word32 privSz2;
word32 agreeSz[BENCH_MAX_PENDING];
DECLARE_ARRAY(pub, byte, BENCH_MAX_PENDING, BENCH_DH_KEY_SIZE, HEAP_HINT);
DECLARE_VAR(pub2, byte, BENCH_DH_KEY_SIZE, HEAP_HINT);
DECLARE_ARRAY(agree, byte, BENCH_MAX_PENDING, BENCH_DH_KEY_SIZE, HEAP_HINT);
DECLARE_ARRAY(priv, byte, BENCH_MAX_PENDING, BENCH_DH_PRIV_SIZE, HEAP_HINT);
DECLARE_VAR(priv2, byte, BENCH_DH_PRIV_SIZE, HEAP_HINT);
(void)tmp;
#if defined(NO_ASN)
dhKeySz = 1024;
/* do nothing, but don't use default FILE */
#elif defined(USE_CERT_BUFFERS_1024)
tmp = dh_key_der_1024;
bytes = sizeof_dh_key_der_1024;
dhKeySz = 1024;
#elif defined(USE_CERT_BUFFERS_2048)
tmp = dh_key_der_2048;
bytes = sizeof_dh_key_der_2048;
#else
#error "need to define a cert buffer size"
#endif /* USE_CERT_BUFFERS */
bench_async_begin();
/* clear for done cleanup */
XMEMSET(dhKey, 0, sizeof(dhKey));
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
/* setup an async context for each key */
ret = wc_InitDhKey_ex(&dhKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID);
if (ret != 0)
goto exit;
/* setup key */
#ifdef NO_ASN
ret = wc_DhSetKey(&dhKey[i], dh_p, sizeof(dh_p), dh_g, sizeof(dh_g));
#else
idx = 0;
ret = wc_DhKeyDecode(tmp, &idx, &dhKey[i], (word32)bytes);
#endif
if (ret != 0) {
printf("DhKeyDecode failed %d, can't benchmark\n", ret);
goto exit;
}
}
/* Key Gen */
bench_stats_start(&count, &start);
do {
/* while free pending slots in queue, submit ops */
for (times = 0; times < genTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times, genTimes)) {
privSz[i] = 0;
ret = wc_DhGenerateKeyPair(&dhKey[i], &rng, priv[i], &privSz[i],
pub[i], &pubSz[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times)) {
goto exit_dh_gen;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_dh_gen:
bench_stats_asym_finish("DH", dhKeySz, "key gen", doAsync, count, start);
if (ret < 0) {
goto exit;
}
/* Generate key to use as other public */
ret = wc_DhGenerateKeyPair(&dhKey[0], &rng, priv2, &privSz2, pub2, &pubSz2);
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &dhKey[0].asyncDev, WC_ASYNC_FLAG_NONE);
/* Clear events */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
XMEMSET(&dhKey[i].asyncDev.event, 0, sizeof(WOLF_EVENT));
}
asyncPending = 0;
#endif
/* Key Agree */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times, agreeTimes)) {
ret = wc_DhAgree(&dhKey[i], agree[i], &agreeSz[i], priv[i], privSz[i],
pub2, pubSz2);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&dhKey[i]), 0, &times)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("DH", dhKeySz, "key agree", doAsync, count, start);
if (ret < 0) {
printf("bench_dh failed: %d\n", ret);
}
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_FreeDhKey(&dhKey[i]);
}
FREE_ARRAY(pub, BENCH_MAX_PENDING, HEAP_HINT);
FREE_VAR(pub2, HEAP_HINT);
FREE_ARRAY(priv, BENCH_MAX_PENDING, HEAP_HINT);
FREE_VAR(priv2, HEAP_HINT);
FREE_ARRAY(agree, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#endif /* !NO_DH */
#ifdef HAVE_NTRU
byte GetEntropy(ENTROPY_CMD cmd, byte* out);
byte GetEntropy(ENTROPY_CMD cmd, byte* out)
{
if (cmd == INIT)
return 1; /* using local rng */
if (out == NULL)
return 0;
if (cmd == GET_BYTE_OF_ENTROPY)
return (wc_RNG_GenerateBlock(&rng, out, 1) == 0) ? 1 : 0;
if (cmd == GET_NUM_BYTES_PER_BYTE_OF_ENTROPY) {
*out = 1;
return 1;
}
return 0;
}
void bench_ntru(void)
{
int i;
double start;
byte public_key[1027];
word16 public_key_len = sizeof(public_key);
byte private_key[1120];
word16 private_key_len = sizeof(private_key);
word16 ntruBits = 128;
word16 type = 0;
word32 ret;
byte ciphertext[1022];
word16 ciphertext_len;
byte plaintext[16];
word16 plaintext_len;
DRBG_HANDLE drbg;
static byte const aes_key[] = {
0xf3, 0xe9, 0x87, 0xbb, 0x18, 0x08, 0x3c, 0xaa,
0x7b, 0x12, 0x49, 0x88, 0xaf, 0xb3, 0x22, 0xd8
};
static byte const wolfsslStr[] = {
'w', 'o', 'l', 'f', 'S', 'S', 'L', ' ', 'N', 'T', 'R', 'U'
};
for (ntruBits = 128; ntruBits < 257; ntruBits += 64) {
switch (ntruBits) {
case 128:
type = NTRU_EES439EP1;
break;
case 192:
type = NTRU_EES593EP1;
break;
case 256:
type = NTRU_EES743EP1;
break;
}
ret = ntru_crypto_drbg_instantiate(ntruBits, wolfsslStr,
sizeof(wolfsslStr), (ENTROPY_FN) GetEntropy, &drbg);
if(ret != DRBG_OK) {
printf("NTRU drbg instantiate failed\n");
return;
}
/* set key sizes */
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
NULL, &private_key_len, NULL);
if (ret != NTRU_OK) {
ntru_crypto_drbg_uninstantiate(drbg);
printf("NTRU failed to get key lengths\n");
return;
}
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
public_key, &private_key_len,
private_key);
ntru_crypto_drbg_uninstantiate(drbg);
if (ret != NTRU_OK) {
printf("NTRU keygen failed\n");
return;
}
ret = ntru_crypto_drbg_instantiate(ntruBits, NULL, 0,
(ENTROPY_FN)GetEntropy, &drbg);
if (ret != DRBG_OK) {
printf("NTRU error occurred during DRBG instantiation\n");
return;
}
ret = ntru_crypto_ntru_encrypt(drbg, public_key_len, public_key,
sizeof(aes_key), aes_key, &ciphertext_len, NULL);
if (ret != NTRU_OK) {
printf("NTRU error occurred requesting the buffer size needed\n");
return;
}
bench_stats_start(&i, &start);
for (i = 0; i < ntimes; i++) {
ret = ntru_crypto_ntru_encrypt(drbg, public_key_len, public_key,
sizeof(aes_key), aes_key, &ciphertext_len, ciphertext);
if (ret != NTRU_OK) {
printf("NTRU encrypt error\n");
return;
}
}
bench_stats_asym_finish("NTRU", ntruBits, "encryption", 0, i, start);
ret = ntru_crypto_drbg_uninstantiate(drbg);
if (ret != DRBG_OK) {
printf("NTRU error occurred uninstantiating the DRBG\n");
return;
}
ret = ntru_crypto_ntru_decrypt(private_key_len, private_key,
ciphertext_len, ciphertext, &plaintext_len, NULL);
if (ret != NTRU_OK) {
printf("NTRU decrypt error occurred getting the buffer size needed\n");
return;
}
plaintext_len = sizeof(plaintext);
bench_stats_start(&i, &start);
for (i = 0; i < ntimes; i++) {
ret = ntru_crypto_ntru_decrypt(private_key_len, private_key,
ciphertext_len, ciphertext,
&plaintext_len, plaintext);
if (ret != NTRU_OK) {
printf("NTRU error occurred decrypting the key\n");
return;
}
}
bench_stats_asym_finish("NTRU", ntruBits, "decryption", 0, i, start);
}
}
void bench_ntruKeyGen(void)
{
double start;
int i;
byte public_key[1027];
word16 public_key_len = sizeof(public_key);
byte private_key[1120];
word16 private_key_len = sizeof(private_key);
word16 ntruBits = 128;
word16 type = 0;
word32 ret;
DRBG_HANDLE drbg;
static uint8_t const pers_str[] = {
'w', 'o', 'l', 'f', 'S', 'S', 'L', ' ', 't', 'e', 's', 't'
};
for (ntruBits = 128; ntruBits < 257; ntruBits += 64) {
ret = ntru_crypto_drbg_instantiate(ntruBits, pers_str,
sizeof(pers_str), GetEntropy, &drbg);
if (ret != DRBG_OK) {
printf("NTRU drbg instantiate failed\n");
return;
}
switch (ntruBits) {
case 128:
type = NTRU_EES439EP1;
break;
case 192:
type = NTRU_EES593EP1;
break;
case 256:
type = NTRU_EES743EP1;
break;
}
/* set key sizes */
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
NULL, &private_key_len, NULL);
bench_stats_start(&i, &start);
for (i = 0; i < genTimes; i++) {
ret = ntru_crypto_ntru_encrypt_keygen(drbg, type, &public_key_len,
public_key, &private_key_len,
private_key);
}
bench_stats_asym_finish("NTRU", ntruBits, "key gen", 0, i, start);
if (ret != NTRU_OK) {
printf("keygen failed\n");
return;
}
ret = ntru_crypto_drbg_uninstantiate(drbg);
if (ret != NTRU_OK) {
printf("NTRU drbg uninstantiate failed\n");
return;
}
}
}
#endif
#ifdef HAVE_ECC
#define BENCH_ECC_SIZE 32
void bench_eccMakeKey(int doAsync)
{
int ret, i, times, count;
const int keySize = BENCH_ECC_SIZE;
ecc_key genKey[BENCH_MAX_PENDING];
double start;
bench_async_begin();
/* clear for done cleanup */
XMEMSET(&genKey, 0, sizeof(genKey));
/* ECC Make Key */
bench_stats_start(&count, &start);
do {
/* while free pending slots in queue, submit ops */
for (times = 0; times < genTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times, genTimes)) {
wc_ecc_free(&genKey[i]);
ret = wc_ecc_init_ex(&genKey[i], HEAP_HINT, doAsync ? devId : INVALID_DEVID);
if (ret < 0) {
goto exit;
}
ret = wc_ecc_make_key(&rng, keySize, &genKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 0, &times)) {
goto exit;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("ECC", keySize * 8, "key gen", doAsync, count, start);
if (ret < 0) {
printf("bench_eccMakeKey failed: %d\n", ret);
}
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_ecc_free(&genKey[i]);
}
bench_async_end();
}
void bench_ecc(int doAsync)
{
int ret, i, times, count;
const int keySize = BENCH_ECC_SIZE;
ecc_key genKey[BENCH_MAX_PENDING];
#ifdef HAVE_ECC_DHE
ecc_key genKey2[BENCH_MAX_PENDING];
#endif
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
#ifdef HAVE_ECC_VERIFY
int verify[BENCH_MAX_PENDING];
#endif
#endif
word32 x[BENCH_MAX_PENDING];
double start;
#ifdef HAVE_ECC_DHE
DECLARE_ARRAY(shared, byte, BENCH_MAX_PENDING, BENCH_ECC_SIZE, HEAP_HINT);
#endif
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
DECLARE_ARRAY(sig, byte, BENCH_MAX_PENDING, ECC_MAX_SIG_SIZE, HEAP_HINT);
#endif
DECLARE_ARRAY(digest, byte, BENCH_MAX_PENDING, BENCH_ECC_SIZE, HEAP_HINT);
bench_async_begin();
/* clear for done cleanup */
XMEMSET(&genKey, 0, sizeof(genKey));
#ifdef HAVE_ECC_DHE
XMEMSET(&genKey2, 0, sizeof(genKey2));
#endif
/* init keys */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
/* setup an context for each key */
if ((ret = wc_ecc_init_ex(&genKey[i], HEAP_HINT,
doAsync ? devId : INVALID_DEVID)) < 0) {
goto exit;
}
ret = wc_ecc_make_key(&rng, keySize, &genKey[i]);
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &genKey[i].asyncDev, WC_ASYNC_FLAG_NONE);
#endif
if (ret < 0) {
goto exit;
}
#ifdef HAVE_ECC_DHE
if ((ret = wc_ecc_init_ex(&genKey2[i], HEAP_HINT, INVALID_DEVID)) < 0) {
goto exit;
}
if ((ret = wc_ecc_make_key(&rng, keySize, &genKey2[i])) > 0) {
goto exit;
}
#endif
}
#ifdef HAVE_ECC_DHE
#ifdef WOLFSSL_ASYNC_CRYPT
/* Clear events */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
XMEMSET(&genKey[i].asyncDev.event, 0, sizeof(WOLF_EVENT));
}
asyncPending = 0;
#endif
/* ECC Shared Secret */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, agreeTimes)) {
x[i] = keySize;
ret = wc_ecc_shared_secret(&genKey[i], &genKey2[i], shared[i], &x[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times)) {
goto exit_ecdhe;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_ecdhe:
bench_stats_asym_finish("ECDHE", keySize * 8, "agree", doAsync, count, start);
if (ret < 0) {
goto exit;
}
#endif /* HAVE_ECC_DHE */
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
#ifdef WOLFSSL_ASYNC_CRYPT
/* Clear events */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
XMEMSET(&genKey[i].asyncDev.event, 0, sizeof(WOLF_EVENT));
}
asyncPending = 0;
#endif
/* Init digest to sign */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
for (count = 0; count < keySize; count++) {
digest[i][count] = (byte)count;
}
}
/* ECC Sign */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, agreeTimes)) {
if (genKey[i].state == 0)
x[i] = ECC_MAX_SIG_SIZE;
ret = wc_ecc_sign_hash(digest[i], keySize, sig[i], &x[i],
&rng, &genKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times)) {
goto exit_ecdsa_sign;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_ecdsa_sign:
bench_stats_asym_finish("ECDSA", keySize * 8, "sign", doAsync, count, start);
if (ret < 0) {
goto exit;
}
#ifdef HAVE_ECC_VERIFY
#ifdef WOLFSSL_ASYNC_CRYPT
/* Clear events */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
XMEMSET(&genKey[i].asyncDev.event, 0, sizeof(WOLF_EVENT));
}
asyncPending = 0;
#endif
/* ECC Verify */
bench_stats_start(&count, &start);
do {
for (times = 0; times < agreeTimes || BENCH_ASYNC_IS_PEND(); ) {
bench_async_poll();
/* while free pending slots in queue, submit ops */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
if (bench_async_check(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times, agreeTimes)) {
if (genKey[i].state == 0)
verify[i] = 0;
ret = wc_ecc_verify_hash(sig[i], x[i], digest[i],
keySize, &verify[i], &genKey[i]);
if (!bench_async_handle(&ret, BENCH_ASYNC_GET_DEV(&genKey[i]), 1, &times)) {
goto exit_ecdsa_verify;
}
}
} /* for i */
} /* for times */
count += times;
} while (bench_stats_sym_check(start));
exit_ecdsa_verify:
bench_stats_asym_finish("ECDSA", keySize * 8, "verify", doAsync, count, start);
#endif /* HAVE_ECC_VERIFY */
#endif /* !NO_ASN && HAVE_ECC_SIGN */
exit:
if (ret < 0) {
printf("bench_ecc failed: %d\n", ret);
}
/* cleanup */
for (i = 0; i < BENCH_MAX_PENDING; i++) {
wc_ecc_free(&genKey[i]);
#ifdef HAVE_ECC_DHE
wc_ecc_free(&genKey2[i]);
#endif
}
#ifdef HAVE_ECC_DHE
FREE_ARRAY(shared, BENCH_MAX_PENDING, HEAP_HINT);
#endif
#if !defined(NO_ASN) && defined(HAVE_ECC_SIGN)
FREE_ARRAY(sig, BENCH_MAX_PENDING, HEAP_HINT);
#endif
FREE_ARRAY(digest, BENCH_MAX_PENDING, HEAP_HINT);
bench_async_end();
}
#ifdef HAVE_ECC_ENCRYPT
void bench_eccEncrypt(void)
{
ecc_key userA, userB;
const int keySize = BENCH_ECC_SIZE;
byte msg[48];
byte out[80];
word32 outSz = sizeof(out);
word32 bench_plainSz = BENCH_SIZE;
int ret, i, count;
double start;
ret = wc_ecc_init_ex(&userA, HEAP_HINT, devId);
if (ret != 0) {
printf("wc_ecc_encrypt make key A failed: %d\n", ret);
return;
}
wc_ecc_init_ex(&userB, HEAP_HINT, devId);
if (ret != 0) {
printf("wc_ecc_encrypt make key B failed: %d\n", ret);
wc_ecc_free(&userA);
return;
}
ret = wc_ecc_make_key(&rng, keySize, &userA);
if (ret != 0)
goto exit;
ret = wc_ecc_make_key(&rng, keySize, &userB);
if (ret != 0)
goto exit;
for (i = 0; i < (int)sizeof(msg); i++)
msg[i] = i;
bench_stats_start(&count, &start);
do {
for (i = 0; i < ntimes; i++) {
/* encrypt msg to B */
ret = wc_ecc_encrypt(&userA, &userB, msg, sizeof(msg), out, &outSz, NULL);
if (ret != 0) {
printf("wc_ecc_encrypt failed! %d\n", ret);
goto exit_enc;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_enc:
bench_stats_asym_finish("ECC", keySize * 8, "encrypt", 0, count, start);
bench_stats_start(&count, &start);
do {
for (i = 0; i < ntimes; i++) {
/* decrypt msg from A */
ret = wc_ecc_decrypt(&userB, &userA, out, outSz, bench_plain, &bench_plainSz, NULL);
if (ret != 0) {
printf("wc_ecc_decrypt failed! %d\n", ret);
goto exit_dec;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_dec:
bench_stats_asym_finish("ECC", keySize * 8, "decrypt", 0, count, start);
exit:
if (ret != 0) {
printf("bench_eccEncrypt failed! %d\n", ret);
}
/* cleanup */
wc_ecc_free(&userB);
wc_ecc_free(&userA);
}
#endif
#endif /* HAVE_ECC */
#ifdef HAVE_CURVE25519
void bench_curve25519KeyGen(void)
{
curve25519_key genKey;
double start;
int ret, i, count;
/* Key Gen */
bench_stats_start(&count, &start);
do {
for (i = 0; i < genTimes; i++) {
ret = wc_curve25519_make_key(&rng, 32, &genKey);
wc_curve25519_free(&genKey);
if (ret != 0) {
printf("wc_curve25519_make_key failed: %d\n", ret);
break;
}
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_asym_finish("CURVE", 25519, "key gen", 0, count, start);
}
#ifdef HAVE_CURVE25519_SHARED_SECRET
void bench_curve25519KeyAgree(void)
{
curve25519_key genKey, genKey2;
double start;
int ret, i, count;
byte shared[32];
word32 x = 0;
wc_curve25519_init(&genKey);
wc_curve25519_init(&genKey2);
ret = wc_curve25519_make_key(&rng, 32, &genKey);
if (ret != 0) {
printf("curve25519_make_key failed\n");
return;
}
ret = wc_curve25519_make_key(&rng, 32, &genKey2);
if (ret != 0) {
printf("curve25519_make_key failed: %d\n", ret);
wc_curve25519_free(&genKey);
return;
}
/* Shared secret */
bench_stats_start(&count, &start);
do {
for (i = 0; i < agreeTimes; i++) {
x = sizeof(shared);
ret = wc_curve25519_shared_secret(&genKey, &genKey2, shared, &x);
if (ret != 0) {
printf("curve25519_shared_secret failed: %d\n", ret);
goto exit;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit:
bench_stats_asym_finish("CURVE", 25519, "key agree", 0, count, start);
wc_curve25519_free(&genKey2);
wc_curve25519_free(&genKey);
}
#endif /* HAVE_CURVE25519_SHARED_SECRET */
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED25519
void bench_ed25519KeyGen(void)
{
ed25519_key genKey;
double start;
int i, count;
/* Key Gen */
bench_stats_start(&count, &start);
do {
for (i = 0; i < genTimes; i++) {
wc_ed25519_init(&genKey);
wc_ed25519_make_key(&rng, 32, &genKey);
wc_ed25519_free(&genKey);
}
count += i;
} while (bench_stats_sym_check(start));
bench_stats_asym_finish("ED", 25519, "key gen", 0, count, start);
}
void bench_ed25519KeySign(void)
{
int ret;
ed25519_key genKey;
#ifdef HAVE_ED25519_SIGN
double start;
int i, count;
byte sig[ED25519_SIG_SIZE];
byte msg[512];
word32 x = 0;
#endif
wc_ed25519_init(&genKey);
ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &genKey);
if (ret != 0) {
printf("ed25519_make_key failed\n");
return;
}
#ifdef HAVE_ED25519_SIGN
/* make dummy msg */
for (i = 0; i < (int)sizeof(msg); i++)
msg[i] = (byte)i;
bench_stats_start(&count, &start);
do {
for (i = 0; i < agreeTimes; i++) {
x = sizeof(sig);
ret = wc_ed25519_sign_msg(msg, sizeof(msg), sig, &x, &genKey);
if (ret != 0) {
printf("ed25519_sign_msg failed\n");
goto exit_ed_sign;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_ed_sign:
bench_stats_asym_finish("ED", 25519, "sign", 0, count, start);
#ifdef HAVE_ED25519_VERIFY
bench_stats_start(&count, &start);
do {
for (i = 0; i < agreeTimes; i++) {
int verify = 0;
ret = wc_ed25519_verify_msg(sig, x, msg, sizeof(msg), &verify,
&genKey);
if (ret != 0 || verify != 1) {
printf("ed25519_verify_msg failed\n");
goto exit_ed_verify;
}
}
count += i;
} while (bench_stats_sym_check(start));
exit_ed_verify:
bench_stats_asym_finish("ED", 25519, "verify", 0, count, start);
#endif /* HAVE_ED25519_VERIFY */
#endif /* HAVE_ED25519_SIGN */
wc_ed25519_free(&genKey);
}
#endif /* HAVE_ED25519 */
#ifndef HAVE_STACK_SIZE
#if defined(_WIN32) && !defined(INTIME_RTOS)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
double current_time(int reset)
{
static int init = 0;
static LARGE_INTEGER freq;
LARGE_INTEGER count;
(void)reset;
if (!init) {
QueryPerformanceFrequency(&freq);
init = 1;
}
QueryPerformanceCounter(&count);
return (double)count.QuadPart / freq.QuadPart;
}
#elif defined MICROCHIP_PIC32
#if defined(WOLFSSL_MICROCHIP_PIC32MZ)
#define CLOCK 80000000.0
#else
#include <peripheral/timer.h>
#define CLOCK 40000000.0
#endif
double current_time(int reset)
{
unsigned int ns;
if (reset) {
WriteCoreTimer(0);
}
/* get timer in ns */
ns = ReadCoreTimer();
/* return seconds as a double */
return ( ns / CLOCK * 2.0);
}
#elif defined(WOLFSSL_IAR_ARM_TIME) || defined (WOLFSSL_MDK_ARM) || \
defined(WOLFSSL_USER_CURRTIME) || defined(WOLFSSL_CURRTIME_REMAP)
/* declared above at line 239 */
/* extern double current_time(int reset); */
#elif defined FREERTOS
double current_time(int reset)
{
portTickType tickCount;
(void) reset;
/* tick count == ms, if configTICK_RATE_HZ is set to 1000 */
tickCount = xTaskGetTickCount();
return (double)tickCount / 1000;
}
#elif defined (WOLFSSL_TIRTOS)
extern double current_time(int reset);
#elif defined(FREESCALE_MQX)
double current_time(int reset)
{
TIME_STRUCT tv;
_time_get(&tv);
return (double)tv.SECONDS + (double)tv.MILLISECONDS / 1000;
}
#elif defined(FREESCALE_KSDK_BM)
double current_time(int reset)
{
return (double)OSA_TimeGetMsec() / 1000;
}
#elif defined(WOLFSSL_EMBOS)
#include "RTOS.h"
double current_time(int reset)
{
double time_now;
double current_s = OS_GetTime() / 1000.0;
double current_us = OS_GetTime_us() / 1000000.0;
time_now = (double)( current_s + current_us);
(void) reset;
return time_now;
}
#else
#include <sys/time.h>
double current_time(int reset)
{
struct timeval tv;
(void)reset;
gettimeofday(&tv, 0);
return (double)tv.tv_sec + (double)tv.tv_usec / 1000000;
}
#endif /* _WIN32 */
#endif /* !HAVE_STACK_SIZE */
#if defined(HAVE_GET_CYCLES)
static INLINE word64 get_intel_cycles(void)
{
unsigned int lo_c, hi_c;
__asm__ __volatile__ (
"cpuid\n\t"
"rdtsc"
: "=a"(lo_c), "=d"(hi_c) /* out */
: "a"(0) /* in */
: "%ebx", "%ecx"); /* clobber */
return ((word64)lo_c) | (((word64)hi_c) << 32);
}
#endif /* HAVE_GET_CYCLES */
#ifndef NO_MAIN_DRIVER
int main(int argc, char** argv)
{
int ret = 0;
#ifdef HAVE_STACK_SIZE
ret = StackSizeCheck(NULL, benchmark_test);
#else
ret = benchmark_test(NULL);
#endif
(void)argc;
(void)argv;
return ret;
}
#endif /* !NO_MAIN_DRIVER */
#else
#ifndef NO_MAIN_DRIVER
int main() { return 0; }
#endif
#endif /* !NO_CRYPT_BENCHMARK */